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Abstract— This paper proposes an approach to calibrate
off-the-shelf cameras and inertial sensors to have a useful
integrated system to be used in static and dynamic situations.
The rotation between the camera and the inertial sensor
can be estimated, when calibrating the camera, by having
both sensors observe the vertical direction, using a vertical
chessboard target and gravity. The translation between the
two can be estimated using a simple passive turntable and
static images, provided that the system can be adjusted to
turn about the inertial sensor null point in several poses.
Simulation and real data results are presented to show the
validity and simple requirements of the proposed method.

Index Terms— computer vision, inertial sensors, sensor
fusion, calibration.

I. I NTRODUCTION

Inertial sensors coupled to cameras can provide valuable
data about camera ego-motion and how world features are
expected to be oriented. Object recognition and tracking
benefits from both static and inertial information. Several
human vision tasks rely on the inertial data provided by the
vestibular. Artificial system should also exploit this sensor
fusion.

In our previous work we explored some of the benefits
of combining the two sensing modalities, and how gravity
can be used as a vertical reference [1][2]. We now focus
on how the two sensors can be cross-calibrated so that they
can be used in static and dynamic situations.

The rotation between the camera and the inertial sensor
can be estimated by having both sensors observe the verti-
cal direction, using a vertical visual target for the camera,
and gravity for the inertial sensors. Standard camera cali-
bration can be performed on the same set of images, both
using the same visual target, such as a vertical chessboard
target, simplifying the whole calibration procedure.

The translation between the two will not be important in
some applications, but if the inertial sensor is attached to
the camera system with a significant lever arm, it will have
to be taken into account for fast motions. Using a simple
passive turntable, and positioning the integrated camera and
inertial system centered on the inertial sensor, the lever arm
can be estimated. Observing the inertial sensor outputs, the
system can be adjusted to turn about their null point in
several poses. The lever arm can than be estimated from
static images of a suitably placed visual target before and
after each rotation.

The problem of estimating the rotation between the
inertial sensor and the camera is a particular case of the
well-known orthogonal Procrustes method for 3D attitude
estimation [3]. Instead of having two sets of points we
have two sets of unit vectors corresponding to the observed
vertical in each sensor at several poses. In our work we
used the unit quaternion derivation of the method [4].

Standard hand-eye calibration [5][6] can be applied to
estimate translation, using the approach of rotating about
the inertial sensor center. However, since the target is being
repositioned after each turn, the method is not applied to
the full data set like in traditional hand-eye calibration. We
used an implementation of the full hand-eye calibration [5]
to provide a comparison in the results using only a camera
with fixed lever arm, by keeping a constant pivot point.

II. STAND ALONE SENSORCALIBRATION

A. Camera Calibration

Camera calibration has been extensively studied, and
standard techniques established. For this work camera
calibration was performed using the Camera Calibration
Toolbox for Matlab [7]. The C implementation of this
toolbox is included in the Intel Open Source Computer
Vision Library [8].

The calibration uses images of a chessboard target in
several positions and recovers the camera’s intrinsic pa-
rameters, as well as the target positions relative to the
camera. The calibration algorithm is based on Zhang’s
work in estimation of planar homographies for camera
calibration [9], but the closed-form estimation of the inter-
nal parameters from the homographies is slightly different,
since the orthogonality of vanishing points is explicitly
used and the distortion coefficients are not estimated at
the initialization phase.

The calibration toolbox was also used to recover camera
extrinsic parameters in the subsequent relative pose cali-
bration.

B. Inertial Sensor Calibration

Inertial navigation systems also have established cali-
bration techniques, but rely on high-end sensors and ac-
tuators. Nevertheless, in order to use off-the-shelf inertial
sensors attached to a camera, appropriate modelling and
calibration techniques are required. Some of the inertial
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Fig. 1. Unknown rigid body transformation between IMU and camera
frames of reference.

sensors parameters can be determined by performing sim-
ple operations and measuring the sensor outputs, others
can not be so easily determined. We have assumed a linear
sensor model and used a pendulum instrumented with an
encoded shaft to estimate the alignment, bias and scale
factor of inertial measurements [10]. The pendulum was
chosen since it is relatively straightforward to determine
it’s motion and acting forces. It is instrumented with a
high-resolution absolute encoder attached to its axis, so
that the angular position of the pendulum is known and
consequently, the pose of the inertial measuring unit (IMU).
When considering a complete inertial navigation system,
initial calibration and alignment are more elaborate [11].

III. C AMERA AND IMU D ATA RELATIONSHIP

A. IMU Data in Camera Frame of Reference

Since the inertial measurements performed by the inertial
sensors are given in the IMU frame of reference{I}
and not in the camera frame of reference{C}, the rigid
body transformation between the two has to be taken into
account.

This transformation can be expressed by the unit quater-
nion q̊ that rotates inertial measurements in the inertial
sensor frame of reference{I} to the camera frame of ref-
erence{C}, and translation vector−→r . Quaternion algebra
was developed by Hamilton in the nineteenth century as an
extension of imaginary numbers to higher dimensions. Unit
quaternions provide a convenient rotation representation
[4].

1) Angular Velocity of Camera Center of Projection:
Any point of a rigid body has the same angular velocity. To
obtain the camera angular velocity in the camera frame of
reference, we just rotate apply the known rotation between
the two frames of reference:

C−→ω = q̊ I−→ω q̊∗ (1)

2) Linear Acceleration of Camera Center of Projection:
If a rigid body has no angular velocity, any point within
will have the same linear acceleration. But if the rigid
body is rotating about some axis, a centripetal acceleration,
proportional to the perpendicular distance to the rotation
axis, will be added, i.e.

C−→a = q̊ (I−→a − I−→a c )q̊∗ + C−→a c (2)

whereI−→a c is the IMU centripetal acceleration, andC−→a c

the camera centripetal acceleration, both relative to some
rotation axis.

In general, centripetal acceleration−→a c at a point−→r with
the origin on the rotation axis is given by

−→a c = −→ω ×−→v t = −→ω × (−→ω ×−→r ) (3)

where−→ω is the angular velocity and−→v t is the tangential
velocity.

If we assume that the rotation axis goes through the
camera center of projection, than it will not have centripetal
acceleration and its linear acceleration is given by

C−→a = q̊ (I−→a − I−→a c )q̊∗

= q̊ (I−→a − I−→ω × (I−→ω × I−→r ) )q̊∗

= q̊ I−→a q̊∗ + C−→ω × (C−→ω × C−→r )
(4)

whereI−→r is the translation from the IMU to the camera
in the IMU frame of reference,C−→r is the translation from
the camera to the IMU in the camera frame of reference,
and q̊ I−→r q̊∗ = −C−→r .

If we assume that the rotation axis goes though the IMU
center, than no centripetal acceleration will be sensed, and
the camera linear acceleration is given by

C−→a = q̊ I−→a q̊∗ − C−→ω × (C−→ω × C−→r ) (5)

The rigid body transformation between the IMU and
the camera has to be calibrated when using both sensors.
Direct physical measurements are difficult to perform,
since the camera center of projection and inertial sensor
sensing point and axis are not obvious. But rotationq̊ and
translation−→r can be derived from (1) and (5) provided
something is known about the motion.

B. Calibration of Rotation between IMU and Camera

In order to determine the rigid rotation between the INS
frame of reference{I} and the camera frame of reference
{C}, both sensors are used to measure the vertical direction,
as shown in fig. 2. When the IMU sensed acceleration is
equal in magnitude to gravity, the sensed direction is the
vertical. For the camera, using a specific calibration target
such as a chessboard target placed vertically, the vertical
direction can be taken from the corresponding vanishing
point.

This boresight static approach can be easily performed,
not requiring any additional equipment, apart from the
chessboard target, obtained using a standard printer, already
used for camera calibration.
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Fig. 2. IMU and camera observing gravity.



If n observations are made for distinct camera positions,
recording the vertical reference provided by the inertial sen-
sors and the vanishing point of scene vertical features, the
absolute orientation can be determined using the orthogonal
Procrustes method for 3D attitude estimation. We will use
Horn’s closed-form solution for absolute orientation using
unit quaternions [4], applied here only to unit vectors. Since
we are only observing a 3D direction in space, we can only
determine the rotation between the two frames of reference.

Let I−→v i be a measurement of the vertical by the inertial
sensors, andC−→v i the corresponding measurement made by
the camera derived from some scene vanishing point. We
want to determine the unit quaternion̊q that rotates inertial
measurements in the inertial sensor frame of reference{I}
to the camera frame of reference{C}. We want to find the
unit quaternion̊q that maximises

n∑

i=1

(q̊ I−→v i q̊∗) · C−→v i (6)

which after some manipulation can be expresses as finding
q̊ such that

max q̊T −→N q̊ (7)

where the elements of matrix
−→
N can be expressed using

sums of all 9 product pairings of the components of the
two vector sets. The sums contain all the information that
is required to find the solution. Since

−→
N is a symmetric

matrix, the solution to this problem is the four-vector
−→q max corresponding to the largest eigenvalueλmax of

−→
N

- see [4] for details. A more detailed derivation and some
results of this calibration method are presented in [12] and
[10].

C. Calibration of Translation between IMU and Camera

From (5) we can see that only dynamic motion will have
non zero acceleration from which translation−→r can be
inferred.

A static boresight approach like the one used for rotation
is easier to perform. If the IMU can be set to rotate about
its sensing point and axis, than the camera motion will have
the same rotation and a translation depending on the lever
arm−→r joining the two.

With a turntable and suitable positioning rig the IMU
can be set to rotate about a null point. This requires a me-
chanical rig, but not a controlled dynamic motion requiring
expensive equipment. The output has to be monitored and
adjustments made, starting from the expected sensing axis.

After adjusting the IMU, if2n observations are made for
distinct camera positions, with the chessboard target fixed
and placed in camera view for each pair of measurements,
lever arm−→r can be estimated.

Standard hand-eye calibration [6] can than formulated
using homogeneous transformation matrices as solving

AX = XB (8)

for an unknown hand-to-eye transformationX, where A
is the camera (eye) relative motion transformation, and
B the gripper (hand) relative motion transformation. This
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Fig. 3. n turns,2n static poses with rotation about IMU null point.

equation is a particular case of the Sylvester equation
AX −XB = C. Decomposing the homogeneous trans-
formations in (8) into rotation and translation components
(R, t) we get one matrix and one vector equation

RARX = RXRB , (9)

(RA − I)−→t X = RX
−→
t B −−→t A. (10)

The majority of the approaches solve first for rotation
(9) and than for translation (10). At least two motions with
rotations about non parallel axis are required.

When performing the hand-eye calibration for a robotic
manipulator the relative camera transformationA can be
obtained using a fixed world target and computing the
camera-to-world transformation before and after the mo-
tion, A1 A2, and makingA = A2A

−1
1 . Similarly, having

the transformation matrices from the fixed robot base to
the gripper,B1 B2, we haveB = B−1

2 B1. Keeping the
robot base and target fixed, a setn poses can generate
( n!
2!(n−2)! ) relative motions for which the above equations

can be solved.
For our particular case we want to estimate the lever arm

−→r in the camera frame of reference, and perform simple
turns about the lever arm end point, adjusted to coincide
with the inertial sensor center. Ourhanddoes not translate,
and only rotates in exactly the same way as the camera,
i.e. −→t B = −→0 , RA = RB and RX = I. Rewriting (10)
for this case we have

(RA − I)−→r = −−→t A. (11)

where the relative motion parameters can be obtained from
the camera-to-target visual calibration. However, since the
target is being repositioned after each turn,2n poses only
contributen relative motions for the estimation of−→r . Each
pair contributes with the projection of−→r on the rotation
plane, and at least two rotations about non parallel axis are
required. The above equation can be rewritten for then
relative motionsMi as

(RMi − I)−→r = −−→t Mi . (12)

The camera translation−→t Mi induced by the lever arm
−→r can be estimated by observing a fixed chessboard target
with the camera and recovering the extrinsic parameters.
The final camera position relative to its initial position gives
translation−→t Mi and rotationRMi .

Solving (12) for n turns using the standard hand-eye
method [5] we obtain the 3D lever arm−→r in the camera
frame of reference.



IV. SIMULATION RESULTS

In order to validate the proposed methods and perform
noise sensitivity tests, both where tested in simulation
under varying conditions.

A. Rotation Estimation

For each simulation run a random rotation̊q is applied
to a random set of simulated inertial observed verticals,
I−→v i, to obtain a corresponding set of camera observed
verticals, C−→v i. These simulated camera observations are
corrupted by applying a rotation magnitude with zero mean
and absolute standard deviation about a random axis, i.e.
a uniformly distributed 3D axis. The rotation quaternion
that relates the two sets is estimated asˆ̊q by the above
method. The error in the estimation can be measured by
considering the rotation required to correct the estimate to
the true value,̊q = e̊ ∗ ˆ̊q. With θe = 2 cos−1(es), where
esis the scalar component of̊e, we takeδθ = |θe| as the
error measure. Fig. 4 shows simulation results of several
takes with different noise levels and number of observations
used, with 1000 runs in each take. As expected the method
performs well, even with few observations.
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Fig. 4. Simulation rotation estimation mean error for increasing standard
deviation of zero mean gaussian noise added as a rotation of the observed
camera verticals. The decreasing error lines correspond to simulating
4,5,6,8,10 and 15 observations. For each noise setting the method runs
1000 times and the mean error is evaluated.

B. Translation Estimation

The above described method takes a set of measured
camera translations−→t Mi and rotationsθMi , induced by the
unknown lever arm−→r .

For each simulation run a random lever arm−→r is chosen
and set of random rotationsRMi are applied to produce a
set of simulated camera translations−→t Mi .

With ν = SNR−1 ∈ (0, 1) being the inverse of the signal
to noise ratio, we disturb the simulated translation values−→
t Mi , by

−̃→
t Mi = −→

t Mi + ν
∥∥−→t Mi

∥∥ randn3×1 (13)

where randnn×1 is a n vector of random numbers that
follow a uniform distribution, simulating white gaussian
noise with zero mean andσ = 1.

The estimated lever arm̂−→r is compared with the true
simulation value−→r , in length and alignment, to get the
error measure. Fig. 5 shows a set of simulation results of
several takes with different noise levels and number of turns
used, with 1000 runs in each take.
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Fig. 5. Simulation translation estimation mean error for increasing noise
ν. Mean length error is given as a percentage of real value and angular
error by its absolute mean value. The decreasing error lines correspond
to simulating 3,4,5,6,8,10 and 15 turns.

To better understand noise sensitivity issues, we have
to take into account how the rotation induced translation
is measured. By observing the chessboard target and per-
forming the camera calibration with the Matlab Camera
Calibration Toolbox [7], we obtain the camera extrinsic
parameters for each image relative to the target, as shown
in fig. 6.

The above described camera translations−→
t Mi and rota-

tions RMi , induced by the unknown lever arm−→r , can be
derived from the camera extrinsic parameters as follows

RMi = Rc1Rc−1
2 (14)

−→
t Mi = Rc1

(
Rc−1

2

(−−→t c2

))
+−→

t c1 (15)

where index1 and2 indicate the initial and final extrinsic
camera parameters for turni, both relative to the camera
position before the turn.

Since the real data will be derived in this way, a
second simulation trial was made, but now adding white
gaussian noise to−→t cn and Rcn. The behavior of the
method with added noise and number of turns has already
been evaluated. The critical factor when considering the
geometry presented in fig. 6 is the dilution of precision
that results when estimating the translation with (15). To
study this effect, the simulation runs where performed for
different target distances, relative to the lever arm length.

{C2}

{Target}

{C1}

Rc2

R∆ Rc2

t∆ tc1

tc2

Fig. 6. Parameters obtained from camera calibration and derived
translation induced by lever arm rotation.
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Fig. 7. Translation estimation from simulated camera extrinsic param-
eters for increasing noiseν. Mean length error is given as a percentage
of real value. The increasing error lines correspond to simulating 1,2,4,6
and 8 target distance scale relative to lever arm length.

Fig. 8. Required setup for rotation calibration, and turntable used for
translation calibration

Fig. 7 shows simulation results of several takes with
different noise levels and target distance to camera scale
relative to lever arm length, using 10 turns per run, with
1000 runs in each take. The results clearly shows the
limitations of the method, and that care has to be taken
in positioning the target, so that the error is not amplified
in the lever arm computation.

V. REAL DATA RESULTS

A. Rotation Estimation

The rotation estimation can be performed together with
the camera calibration with the simple setup shown in
fig. 8. The code used is available from the implemented
InerVis Matlab Toolbox [13], that adds on to the Camera
Calibration Toolbox [7].

To present some results, a data set was obtained us-
ing MT9-B IMU sensor from Xsens [14] and a low
cost firewire camera from Unibrain shown in fig. 9.
A set of 16 images and accelerometer data was taken,
and the estimated rotation was̊q = −0.7149 <
0.010013, 0.023479, 0.69876 >, indicating a−88.73◦ ro-
tation about the axis(0.0143, 0.0336, 0.9993), i.e. a near
right angle about the cameraz-axis consistent with the
layout shown in fig. 9. Using the estimated rotation, the
inertial sensed verticals where rotated to match with the
vertical vanishing point of the chessboard target, and the
observed misalignment had a root mean square error of
0.69◦.

B. Translation Estimation

To better assess the calibration performance a rotating u-
joint was initially used so that a fixed pivot could be used
over several turns, enabling the use of standard hand-eye
calibration methods for comparison, as seen in fig. 10. With

Fig. 9. Setup and results of rotation estimation

this setup a set of 30 images was taken, corresponding to 15
distinct turns about a single pivot point with the chessboard
target always in view, placed in 2 different places during
image acquisition.

Our method is compared with a standard implementation
of the Tsai and Lenz [5] hand-eye calibration. Assuming
the fixed pivot point and fixed target, the gripper to camera
transformation will be the lever arm translation, if the cam-
era rotation is used as the world to gripper transformation.

Table Ia presents the results. A total of 40 images where
taken, the first 10 were used only to improve the camera
calibration set, data set A has 5 turns (10 images) with a
single pivot point and set B has 10 turns (20 images) with
a distinct fixed pivot point. Results of lever arm estimation,
−→r = (rx, ry, rz) with r = ‖−→r ‖, are shown for our method
and for Tsai and Lenz applied to sets A&B, A and B, and
r̄ is the mean of the distinct estimates from set A and set
B. The values shown in bold fall within the uncertainty of
the direct ruler measurementrm.

Tsai and Lenz clearly has a better performance, since
it performs a global optimization using all the images by
considering the pivot point and the target are always fixed.
When the method is applied to the complete data set A&B
it fails completely since its not applicable. Our method
just requires sets of turns between which both the target
and pivot point can be repositioned. It is based only on the
relative camera motion in each turn, and is therefor more
sensitive and prone to errors. But, as we will see in the
second example, requires a much simpler setup and can
provide a good estimate of the lever arm under controlled
conditions.

A second calibration was done with a passive turntable,
placing the camera with attached inertial sensors in differ-
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Fig. 10. Camera reconstructed pose relative to calibration target, with
the pivot point at two different positions, showing frame number, camera
orientation and the estimated lever arm in green.



TABLE I
a) Translation estimation using two data sets with fixed pivot point b) Translation estimation using turntable

Our method Tsai and Lenz -
A&B A B r̄ σ A&B A B r̄ σ rm

rx 252.54 252.77 253.05 252.91 0.14 81.70 251.16 251.79 251.48 0.32 249±5
ry 26.27 29.85 22.28 26.07 3.79 -75.00 28.72 21.67 25.20 3.52 25±3
rz -31.57 -34.47 -29.64 -32.05 2.42 793.01 -28.71 -27.78 -28.24 0.46 -31±3
r 255.86 256.85 255.75 256.26 0.55 800.72 254.42 254.25 254.31 0.09 252±5

n 1:1:15 1:2:15 1:1:10 1:2:11 5:1:15 5:2:15 mean σ

rx -87.4 -86.7 -92.9 -86.6 -83.0 -83.2 -86.6 3.6
ry 91.7 91.6 92.0 91.5 93.1 92.1 92.0 0.6
rz 2.6 1.7 1.8 1.7 6.2 2.8 2.8 1.7

r 126.7 126.1 130.8 126.0 124.9 124.1 126.4 2.3

ent poses as shown in fig. 8 and 11, and fine adjusting the
position to zero the force sensed by the accelerometers,
besides gravity, placing them at the rotation center.

With the passive turntable setup a set of 30 images was
taken, corresponding to 15 distinct turns. The accelerom-
eter output was observed while manually forcing rapid
turns to adjust their position to the center of rotation.
The chessboard target was conveniently placed, and the
reconstruction result for the complete set is shown in fig.
11.

In table Ib results are presented for several groupings of
sets of measurements, to better evaluate the estimation per-
formance. Direct measurement of the lever arm indicated a
length about125± 10mm, since the exact position of the
accelerometers within the packaged sensor is not known,
confirming the estimated value.

The implemented code for translation estimation will be
made available in the InerVis Matlab Toolbox [13], that
currently only performs rotation estimation.

VI. CONCLUSIONS

We have seen how a simple calibration can be made with
off-the-shelf cameras and inertial sensors to have a useful
integrated system.

With a set of static poses observing a vertical target,
full camera calibration can be performed using standard
techniques, and inertial sensor to camera rotation can
estimated as well by registering the inertial sensed gravity.
With a simple passive turntable and with2n static poses of
n rotations about the inertial sensor, the translation between
the two sensors can also be estimated.

The method works well in estimating rotation, but the
translation estimation is sensitive to the chosen target
position, and care has to be taken so that the geometric
configuration does not magnify the error in the visual target
pose onto the final lever arm estimation.
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Fig. 11. Camera reconstructed pose relative to calibration target showing
estimated lever arm in green.

Lever arm calibration can also be accomplished using
standard Hand/Eye calibration [6], like the Tsai and Lenz
implementation used above for comparison [5]. These
methods, applied here in a simplified case where the camera
rotation is used as the base-to-hand transformation, are
clearly more stable. Our method only uses the relative
camera motion in each turn, but Hand/Eye methods use
the full camera and hand pose data over the complete data
set. But they are also more restrictive on the setup. A
simple turntable is no longer sufficient, since a fixed pivot
point has to be maintained. A passive double gimbal might
prove useful, but would have to accommodate for proper
centering of the system, and using an active controlled
manipulator might be better. Our aim however is to have a
simple procedure to estimate the lever arm, that can be
performed without complicated equipment, and comple-
ment the simple procedure used for camera and rotation
calibration.
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