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Abstract

In vision based systems used in mobile robotics and vir-
tual reality systems the perception of self-motion and the
structure of the environment is essential. Inertial and earth
field magnetic pose sensors can provide valuable data about
camera ego-motion, as well as absolute references for struc-
ture feature orientations. In this article we present several
techniques running on a biologically inspired artificial sys-
tem which attempts to recreate the “hardware” of biolog-
ical visuovestibular systems resorting to computer vision
and inertial-magnetic devices. More specifically, we ex-
plore the fusion of optical flow and stereo techniques with
data from the inertial and magnetic sensors, enabling the
depth flow segmentation of a moving observer. A depth map
registration and motion segmentation method is proposed,
and experimental results of stereo depth flow segmentation
obtained from a moving robotic/artificial observer are pre-
sented.

1. Introduction

In biological vision systems, inertial cues provided by
the vestibular system play an important role, and are fused
with vision in the early processing stages of image pro-
cessing (e.g, the gravity vertical cue). Artificial perception
systems for robotic applications have since recently been
taking advantage from low-cost inertial sensors for comple-
menting vision systems, using both static and dynamic cues.

Inertial sensors attached to a camera can provide valu-
able data about camera pose and movement. Micromachin-
ing enables the development of low-cost single-chip inertial
sensors that can be easily incorporated alongside the cam-
era’s imaging sensor, thus providing an artificial vestibular
system. Figure 1 shows a stereo-camera pair with an iner-
tial measurement unit (IMU) mounted on a mobile robotic
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Figure 1. Stereo vision system with an inertial
measurement unit used on robotic system,
frames of reference and its 3D segmented
depth map output.

platform. The 3D-structured world is observed by the vi-
sual sensor, and its pose and motion are directly measured
by the inertial sensors. These motion parameters can also
be inferred from the image flow and known scene features.
Combining the two sensing modalities simplifies the 3D re-
construction of the observed world. Inertial sensors also
provide important cues about the observed scene structure,
such as vertical and horizontal references. Inertial naviga-
tion systems obtain velocity and position by integration, and
do not depend on any external references, except gravity.

The inertial-sensed gravity vector provides a unique ref-
erence for image-sensed spatial directions. More specifi-
cally, previous work has shown that the use of visual sen-
sors together with IMUs can be used to estimate camera fo-
cal distance [9] or to perform cross-calibration [3]. Know-
ing the vertical-reference and stereo-camera parameters, the
ground plane can be fully determined. The collineation



between image ground-plane points can be used to speed
up ground-plane segmentation and 3D reconstruction. Us-
ing the inertial reference, vertical features starting from the
ground plane can also be segmented and matched across
the stereo pair, so that their 3D position is determined. The
inertial vertical reference can also be used after applying
standard stereo-vision techniques; taking the ground plane
as a reference, the fusion of multiple maps reduces to a 2D
translation and rotation problem, and dynamic inertial cues
may be used as a first approximation for this transforma-
tion, providing a fast depth-map registration method (Fig-
ure 1) [8]. In addition, inertial data can be integrated into
optical flow techniques, through compensating camera ego-
motion, improving interest-point selection, matching the in-
terest points, and performing subsequent image-motion de-
tection and tracking for depth-flow computation. The image
focus of expansion and centre of rotation are determined by
camera motion and can both be easily found using inertial
data alone, provided that the system has been calibrated.
This information can be useful during vision-based naviga-
tion tasks.

Three-dimensional scene flow estimation was studied by
Vedula et al. [15][14]. Several scenarios are presented, and
the tradeoffs between structure knowledge, correspondence
matching, number of cameras and computed optical flow
explored. Dense scene flow estimation using only two cam-
eras was proposed by Li and Sclaroff by fusing stereo and
optical flow estimation in a single coherent framework [7].
Ye Zhang and Kambhamettu computed dense 3D scene flow
and structure from multiview image sequences with non-
rigid motion in the scene [17]. Stereoscopic MPEG based
video compression methods also deal with motion flow seg-
mentation, such as the joint motion and disparity fields es-
timation method proposed by Yang et al. [16]. A statistical
approach to background modelling was used for segmenta-
tion of video-rate stereo sequences by Eveland et al.[5].

However, when dealing with a free moving stereo cam-
era observer, the methods described above are not directly
applicable. Visual and inertial sensing are two sensory
modalities that can be explored to give robust solutions
on image segmentation and recovery of 3D structure from
images [9]; inertial sensors provide valuable data to deal
with the camera motion [10]. Consequently, artificial sys-
tems dealing with motion perception in more complex sit-
uations would clearly gain by introducing bionsinspired vi-
suovestibular sensing using computer vision and inertial-
magnetic devices. In this article, we will present ap-
proaches for ego-motion and independent motion percep-
tion and segmentation based on these biologically inspired
visuovestibular artficial systems.

Correlation-based stereo depth maps can be generated
from a moving vision system, and rotated to a common lev-
elled reference provided by the rotation update from inertial
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Figure 2. Biomimetic artificial perception re-
search proposal schematic (human observer
image courtesy of 3DScience.com).

sensed gravity and magnetic sensed bearing. Voxel quanti-
zation can then be performed on the resulting maps. But
there remains a 3D translation in the successive depth maps
due to the motion, for which the inertial sensors only pro-
vide a rough estimate. By tracking some image targets over
successive frames, the system translation between frames
can be estimated by subtracting their 3D position. The
translation can also be estimated from the 3D data alone.
For scenes where a base horizontal plane is always visible
(eg: the floor or desktop), a histogram in height can be used
to have a common reference along the vertical axis. This
can also be performed for the horizontal axis if the orien-
tation of visible planes is known or detected by a 2D fit to
the data. The two identified planes provide the translation
to merge successive depth maps.

Fully registered depth maps can therefore be obtained
from the moving system — our solution for correlation-
based stereo depth map registration is presented on section
2.

The depth flow that remains in the resultant map is due
to the system covering new scenes, or to moving objects
within the overlap volume of successive observations. Mis-
matches between the depth from stereo and depth from opti-
cal flow indicate possible independent motion. This can be
used to better segment moving objects in the overlap vol-
ume and avoid artifacts from slow moving objects. On sec-
tion 3 we describe our approaches for independent motion
segmentation using these registered maps.

Subsequently, we present results on section 4, draw some
conclusions on section 5 and finally, on section 6, we dis-
cuss the outcome of our studies and propose future work

http://3DScience.com
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Figure 3. Moving observer and world fixed
frames of reference.

which will pave way to the next step in this line of research:
from bioinspired to biomimetic.

As can be seen on Figure 2, the outcome of this kind of
research may become not only a significant advance in ar-
tificial sensing, such as in the solution of ego-motion or in-
dependent motion segmentation which we propose to tackle
directly, but also a challenge in allowing further insight on
aiding human beings to surpass their own perceptive lim-
itations, helping disambiguation and coping with illusions
or conflicts arising in extreme conditions where humans are
prone to failure, namely: in extreme environments (e.g., in
space exploration), where humans are displaced from nor-
mal conditions and factors such as 1G gravity; in perceptive
pathologies (i.e. perception-impaired patients).

2. Registering Stereo Depth Maps

Biological visuovestibular systems take into account
ego-motion, and deal well with independent motion seg-
mentation, while they successfully integrate 3D informa-
tion of the surrounding scene as the biological observer
moves along its trajectory. Taking this into account, our ap-
proaches to ego and independent motion segmentation were
devised so as to take advantage of the output of a preceding
stereo depth map registration procedure.

A moving stereo observer of a background static scene
with some moving objects can compute at each instant a
correlation-based dense depth map. The maps will change
in time due to both the moving objects and the observer
ego-motion. A first step to process the incoming data is
to register the maps to a common fixed frame of reference
{W}, as shown on Figure 3.

The stereo cameras provide intensity images Il(u, v)|i
and Ir(u, v)|i, where u and v are pixel coordinates, and

i the frame time index. Having the stereo rig calibrated,
depth maps for each frame can be computed. A set of 3D
points CP|i is therefore obtained at each frame, given in the
camera frame of reference {C}|i. Each 3D point has a cor-
responding intensity gray level c given by the pixel in the
reference camera, i.e c = Il(u, v)|i. Each point in the set
retains both 3D position and gray level

P (x, y, z, c) ∈ CP|i . (1)

2.1. Rotate to Local Vertical and Magnetic
North

The inertial and magnetic sensors, rigidly fixed to the
stereo camera rig, provide a stable camera rotation update
RRC relative to the local gravity vertical and magnetic
north camera frame of reference {R}|i.

Calibration of the rigid body rotation between {I}|i and
{C}|i can be performed by having both sensors observing
gravity, as vertical vanishing points and sensed acceleration,
as described in [11].

The rotated camera frame of reference {R}|i is time-
dependent only due to the camera system translation, since
rotation has been compensated for.

2.2. Translation from Image Tracked Target

The translation component can be obtained using a sin-
gle fixed target tracked in the scene. The image feature must
have the corresponding 3D point Pt in each depth map, so
that translation can be estimated from

∆~t = Pt|i+1 − Pt|i (2)

with Pt|i+1 ∈ RP|i+1 and Pt|i ∈ RP|i.
The fixed target can be an artificial one, or set of sparse

tracked natural 3D features can be used to improve robust-
ness, but assumptions have to be made in order to reject
outliers that occur from tracking features of the moving ob-
jects.

2.3. Voxel Quantization

The above equations are provided for discrete sets of
points. In order to deal with noise and allow 3D volume
processing, a 3D array is built representing 3D space as vox-
els. For each stereo frame, the corresponding cubic array of
voxels Vox|i can be built. For the occupied voxels the corre-
sponding gray level can be stored in the array. When two or
more points contribute to the same voxel, the average gray
level is used.



Figure 4. Summary of voxel background sub-
traction and optical flow consistency anal-
ysis methods for independent motion seg-
mentation.

For each P (x, y, z, c) ∈ CP|i, Vox(x, y, z)|i = c if pre-
viously empty, or Vox(x, y, z)|i = c̄, where c̄ is the average
gray level of the contributing points.

For a sequence of stereo frames, two cumulative voxel
arrays Voxc and Voxv can be built for both gray level and
occupancy statistics over the frames, with

Voxc(x, y, z) = c̄v, Voxv(x, y, z) = v (3)

where v is the number of frames that voted voxel (x, y, z)
as occupied, and c̄v the average gray level from the voting
frames.

3. Independent Motion Segmentation in Fully
Registered Maps

Having the dense depth maps in a common frame of ref-
erence we can proceed to segment the moving objects seen
by the moving stereo observer. Biological vision systems
are very successful in movement segmentation since they
efficiently resort to flow analysis and accumulated prior
knowledge of the 3D structure of the scene. Artificial per-
ception systems may also build 3D structure maps and use
optical flow to provide cues for ego and independent motion
segmentation (see Figure 4). The maps will change in time
due to moving objects, and eventually grow as the artificial
observer covers new scene areas.

3.1. Background Subtraction for Voxel Seg-
mentation

Occupancy statistics can be used to segment the set of
voxels that correspond to the static scene observed by the
moving system, and segment the moving objects.

Applying a threshold vback on the accumulated vote
count, a binary array of background voxels Voxb can be built
as

Voxb(x, y, z) = 1 when Voxv(x, y, z) > vback . (4)

To improve noise filtering and robustness, a thinning and
growing transformation is applied, removing isolated vox-
els and filling in gaps. The thinning filter takes out voxels
without a minimum number of neighbours, by performing
a convolution with a cubic unit kernel and thresholding the
result back to a binary array. The growing simply performs
a convolution with a cubic unit kernel, and rebuilds the bi-
nary array with all the non-zero voxels.

For a single frame i, the set of voxels from moving ob-
jects will be given by

Voxm|i = Vox|i
⋂

Voxb . (5)

To deal with noise, thinning and growth smoothing can
also be applied to Voxm|i, but smearing of the intensity gray
level might not help subsequent 3D intensity based meth-
ods.

The underlying assumption is that the moving observer
repeatedly covers the same scene so that background voxels
are seen more times than moving objects. Experimental re-
sults show that moving objects are successfully segmented
and that thinning and growth smoothing filter out noise from
the correlation based stereo depth maps.

3.2. Optical Flow Consistency Segmenta-
tion

Optical flow is the apparent motion of brightness patterns
in the image. Generally, optical flow corresponds to the
projected motion field, but not always. Shading, changing
lighting and some texture patterns might induce an optical
field different from the motion field. However since what
can be observed is the optical field, the assumption is made
that optical flow field provides a good estimate for the true
projected motion field.

Optical flow computation can be made in a dense way,
by estimating motion vectors for every image pixel, or fea-
ture based, estimating motion parameters only for matched
features.

Representing the 2D velocity of an image pixel u =
(u, v)T as du

dt , the brightness constancy constraint says that
the projection of a world point has a constant intensity over
a short interval of time, i.e., assuming that the pixel intensity
or brightness is constant during dt, we have

I(u +
du

dt
dt, v +

dv

dt
dt)|t+dt = I(u, v)|t (6)



Figure 5. Experimental setup of 3D scene
with static background and swinging pendu-
lum.

If the brightness changes smoothly with u, v and t, we can
expand the left-hand-side by a Taylor series and reject the
higher order terms to obtain

∇I · du

dt
+

∂I

∂t
dt = 0 (7)

where ∇I is the image gradient at pixel u. These spatial
and time derivatives can be estimated using a convolution
kernel on the image frames.

But for each pixel we only have one constraint equation,
and two unknowns. Only the normal flow can be deter-
mined, i.e., the flow along the direction of image gradient.
The flow on the tangent direction of an isointensity contour
cannot be estimated. This is the so called aperture prob-
lem. Therefore, to determine optical flow uniquely addi-
tional constraints are needed.

The problem is that a single pixel cannot be tracked, un-
less it has a distinctive brightness with respect to all of its
neighbours. If a local window of pixels is used, a local con-
straint can be added, i.e., single pixels will not be tracked,
but windows of pixels instead.

Barron et al. [4] present a quantitative evaluation of op-
tical flow techniques, including the Lucas-Kanade method,
that uses local consistency to overcome the aperture prob-
lem [12]. The assumption is made that a constant model can
be used to describe the optical flow in a small window.

When the camera is moving and observing a static scene
with some moving objects, some optical flow will be consis-
tent with the camera ego-motion observing the static scene,
other might be moving objects. Since the stereo provides
a dense depth map, and we reconstruct camera motion, we
can compute the expected projected optical flow in the im-
age from the 3D data.

In the perspective camera model, the relationship be-
tween a 3D world point x = (X, Y, Z)T and its projection
u = (u, v)T in the 2D image plane is given by

u =
P1 (x, y, z, 1)T

P3 (x, y, z, 1)T
(8)

Figure 6. Overlaid rotated 3D depth maps
from frames 1 and 20 (on the right) showing
a clear mismatch, and circled image feature
tracked to estimate translation.

Figure 7. Depth maps rotated and translated
to common world fixed frame of reference,
for frames 1 and 20 on the left, and for full
set of frames with moving pendulum on the
right.

v =
P2 (x, y, z, 1)T

P3 (x, y, z, 1)T
(9)

where Pj is the jth row of the camera projection matrix P .
When the camera moves, the relative motion of the 3D

point dx
dt will induce a projected optical flow given by

dui

dt
=

δui

δx

dx

dt
(10)

where δui

δx is the 2 × 3 Jacobian matrix that represents the
differential relationship between x and ui, which can be
obtained by differentiating (8) and (9).

Image areas where the computed flow is inconsistent
with the expected one indicate moving objects, and the cor-
responding voxels can be segmented. This approach does
not require the occupancy statistics memory, since it’s dif-
ferential and can be applied to pairs of successive frames.

Experimental results show that this method works on se-
quences with significant optical flow. However, this pro-
cedure is noise sensitive and, due to its differential based



Figure 8. 3D volume of all accumulated vox-
els in frame sequence on the left, and with
vote count above 30 on the right.

Figure 9. Background voxels after thinning
for at least 6 neighbours on the left, and sub-
sequent growth with a size 53 kernel on the
right.

estimation, it performs poorly at low speeds, where the un-
certainties in camera motion and optical flow are higher.

A summarising diagram of the procedures for both inde-
pendent motion segmentation methods studied in this work
is presented on Figure 4.

4. Results

The hardware system used to acquire data from a moving
observer is shown in fig. 1. The stereo vision is provided by
the Videre MEGA-D Digital Stereo Head [1], and the pose
from the inertial and magnetic sensor package MT9-B from
Xsens [2].

To compute range from stereo images we are using the
SRI Stereo Engine with the Small Vision System (SVS)
Software [6].

A scene was set up with a swinging cylindrical can to
provide motion independent from the observer movement,
as shown on Figure 5. The moving observer surveyed the
scene performing map registration and subsequent indepen-
dent motion segmentation as described below.

Figure 10. Initial voxel set and segmented
moving object voxels for one frame.

4.1. Moving Depth Map Registration

As described above, the rotation update provided by the
inertial and magnetic sensor package is applied to the suc-
cessive depth maps. As shown on Figure 6, the depth maps
are correctly rotated, but shifted due to the observer transla-
tion.

The translation was estimated by tracking an image fea-
ture, and observing the translation between the correspond-
ing 3D points in the depth maps. Figure 6 shows data for
frames 1 and 20 of a take of 200 frames with a moving ob-
server of a static scene with a moving pendulum, for which
the registration performed well.

The registered depth map can be seen in Figure 7. The
fused map from frames 1 and 20 is shown on the left. On the
right the fused map corresponding to the full set of frames
is shown with the moving pendulum leaving its trace.

4.2. Background subtraction for Voxel Seg-
mentation

The above results are shown with VRML rendering of
the full set of computed points without voxel quantization.
As described above, occupancy statistics can be used to
identify the static scene voxels.

In a new test sequence, a one cubic meter volume of the
observed space was chosen as the working volume, quan-
tized to a 100 × 100 × 100 array corresponding to 1 cm3

voxels.
Figure 8 shows the 3D volume of all accumulated voxels

for this test sequence with 130 frames, and the ones with
a vote count above the empirically chosen threshold of 30.
This choice was made based on the following observations:
very low thresholds will mark slow objects as background;
too high will segment newly observed static background as
moving objects. Frame rate, observer motion and indepen-
dent motion velocities are determining factors when choos-
ing appropriate thresholds.
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Figure 11. Difference between observed and
estimated optical flow indicating areas incon-
sistent with static scene after camera motion
compensation.

Figure 12. Output of the two methods for the
same frame, voxel background subtraction
on the left, and optical flow consistency on
the right.

The result of thinning and growth filters applied to the
background voxels is shown in Figure 9. Figure 10 shows
initial voxel set and segmented moving object voxels af-
ter thinning and subsequent smoothing, for one frame from
the above sequence. These results show that moving object
voxels can be successfully segmented, however the moving
observer has to cover the same scene more than once so that
the background voxels can be correctly segmented.

4.3. Optical Flow Consistency Segmenta-
tion

Figure 11 shows the optical flow at one frame within a
test sequence where the pendulum and observer were both
moving. The image observed optical flow was estimated
with the Lucas-Kanade [12] method applied to successive
frames. The predicted flow was computed considering the

3D motion of the depth map relative to the camera, and pro-
jecting onto the image using (10).

The difference between the observed optical flow and
the predicted flow indicate areas inconsistent with a static
scene. The voxels associated with these image pixels corre-
spond to moving objects. A decision threshold is applied to
the optical flow difference to segment the voxels. The result
for this frame is shown in figure 12 on the right.

The method works, but is clearly sensitive to noise due
to the differential based estimation. In the complete test se-
quence there, frames with small camera motion performed
poorly, since the uncertainties in camera motion and optical
flow computation degrade the detection of moving objects.

5. Conclusions

Two methods were presented for motion segmentation
for a moving observer of a background static scene with
some independently moving objects. The moving observer
has stereo vision and inertial and magnetic sensors to pro-
vide a rotation update. Having compensated rotation, trans-
lation can be obtained from a single tracked image feature.
Depth maps from stereo vision can therefore be registered
to a common frame of reference.

Occupancy statistics can then be used to segment the
voxels between the static background scene and moving ob-
jects. However, the moving observer has to cover the same
scene so that the background voxels can be correctly seg-
mented. An alternative method is to check the consistency
of the observed image optical flow. This approach is differ-
ential and can be applied to pairs of successive frames, but
is more noise sensitive.

Figure 12 shows the output of the two methods for the
same frame. The voxel background subtraction correctly
identifies the independent motion. Due to this fact, in this
work it also provided a ground truth to compare the opti-
cal flow consistency method. The optical flow consistency
method also segments the independent motion, but with
added false positives due to uncertainties in the optical flow
computation and camera motion reconstruction.

On the other hand, voxel background subtraction re-
quires a volumetric representation of the whole workspace,
and also some past history statistics, which introduces a
start-up lag of at least 10 frames, whereas optical flow con-
sistency only needs the present and immediately preceding
frames to function.

Therefore, a hybrid method can be devised which would
take advantage of the strengths of both of these methods by
using a differential approach based on optical flow whilst re-
taining a short-term memory of 3D space occupancy, since
the inertial data allows fast depth map registration. Further-
more, this hybrid approach would more closely follow what
indeed happens in biological/human perception systems,



where priors gathered from past states of the workspace be-
ing perceived are combined with fast low-level processing
of retinal optical flow.

6. Discussion and Future Work

Although the techniques presented in this text are based
on models that assume sensing technology that attempts to
recreate the “hardware” of biological visuovestibular sys-
tems, no attempt has yet been made to follow the internal
biological models of perception.

The usefulness of introducing models which mimic bio-
logical systems of perception and the limitations of biologi-
cal perception posed by the physiological characteristics of
biological motion sensors, which in certain situations yield
partial or ambiguous information, has been demonstrated in
previous research (see, for example, work by Reymond et
al. [13]). Biological visuovestibular systems take into ac-
count ego-motion, and deal well with independent motion
segmentation. In spite of this, however robust, biological
perception estimation processes are prone to suffering from
illusions, conflicts and ambiguities.

We have thus reached a point in which the next step will
be to take artificial perception to the next level: from bioin-
spired to biomimetic — see figure 2.

We therefore propose in future work to perform psy-
chophysical studies, such as in [13], of human visuovestibu-
lar models under a Bayesian framework, to implement these
models as closely as possible using the technology pre-
sented on [9, 3, 8] in a robotic-based artificial perception
system, to tackle 3D structure perception (specifically in-
dependent motion segmentation in the presence of self-
motion), and to test the possibilities opened by the robust-
ness of artificial sensor technology as opposed to biological
sensory solutions on extreme perception tasks (see Figure
2). In the case of independent motion segmentation, we
will address the use of inertial dynamic data to improve the
optical flow consistency check, without depending on any
tracked feature for the translation, and on combining the
two methods to improve robustness.
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