
Stereo Vision 3D Map Registration for Airships
using Vision-Inertial Sensing

Abstract— A depth map registration method is proposed in
this article, and experimental results are presented for long
three-dimensional map sequences obtained from a moving
observer.

In vision based systems used in mobile robotics the per-
ception of self-motion and the structure of the environment is
essential. Inertial and earth field magnetic pose sensors can
provide valuable data about camera ego-motion, as well as
absolute references for structure feature orientations. In this
work we explore the fusion of stereo techniques with data
from the inertial and magnetic sensors, enabling registration
of 3D maps aquired by a moving observer.

The article reviews the camera-inertial calibration used,
other works on registering stereo point clouds from aerial
images, as well as related problems as robust image matching.
The map registration approach is presented and validated
with experimental results on ground outdoor environments.

I. INTRODUCTION

Inertial sensors attached to a camera can provide valu-
able data about camera pose and movement. Microma-
chining enables the development of low-cost single-chip
inertial sensors that can be easily incorporated alongside
the camera’s imaging sensor, thus providing an artificial
vestibular system.

(a) Stereo vision System (b) Frames of References.

Fig. 1. The vision-inertial system.

Figure 1 shows a stereo-camera pair with an inertial
measurement unit (IMU) which is used with the aerial
robotic platform shown in figure 2.

Inertial sensors provide valuable data to deal with the
camera motion [-]. Visual and inertial sensing are two sen-
sory modalities that can be explored to give robust solutions

Fig. 2. The aerial vehicle instruments include a vision system and a
low-cost inertial measurement unit.

on image segmentation and recovery of 3D structure from
images [-].

Perception systems for robotic applications have since
recently taken advantage of low-cost inertial systems to
complement vision systems. Biological vision systems also
utilise inertial cues, such as provided by the vestibular
system, often in the early stages of image processing.

An inertial sensor coupled with a camera provides direct
measures of the camera orientation, and with magne-
tometers and accelerometers (that measure gravity), these
orientation measures are grounded on the world north-east-
up frame of reference. These measures can be combined
with measures taken from the vision system, to simplify
tasks such as the reconstruction of the observed world, or
to improve their accuracy.

Depending on the level of accuracy desired, and on the
quality of inertial measurements, the inertial measurements
can eliminate some degrees of freedom from vision-based
estimation tasks, or at least provide a good initial approx-
imation, therefore allowing faster processing or the use of
simpler movement models.

Stereo vision systems can use correlation based methods
to obtain depth maps. With the current technology, real
time systems are commercially available [1]. When the
vision system is moving the maps have to be fused into
single world map. Before fusing the depth maps, they must
be registered to a common referential. This can be done
using data fitting alone, or aided by known parameters or
restrictions on the way the measurements were made.



In our work, correlation based stereo depth maps are
obtained by the moving vision system, and rotated to a
common levelled reference provided by the rotation update
from inertial sensed gravity and magnetic sensed bearing.

But there remains a 3D translation in the successive
depth maps due to the motion, for which the inertial
sensors only provide a rough estimate. By tracking some
image targets over successive frames, the system translation
between frames can be estimated by subtracting their 3D
position. Fully registered depth maps can therefore be
obtained from the moving system.

In [2], a stereovision only aproach is presented to build a
3D map of the environment from stereo images taken by a
remotely controlled airship, and at the same time localizing
the vehicle (what it is known by SLAM). The system keeps
a Kalman Filter where its state vector contains the camera
pose and the position of automatically detected landmarks
on the ground. Their vision system computes a 3D point
cloud for each stereo image pair, and matches interest
points between successive images. Some of the interest
points are selected to be used as landmarks - their positions
are included on the Kalman Filter state and their detection
is used as a measurement to Kalman Filter update.

The strengths of their work include: the interesting point
detection and matching algorithm[3], based on finding
affine transformations to match a small group of interest
points, and then use the newly found transformation to
focus the matching of other groups, until a transformation
is found that can match enough interesting points; the
determination of the stereo vision error, that affects the
position of individual 3D points and of the landmarks;
and the treatment of uncertainty - for every measurement
of landmarks, motion estimation, or Kalman filter update,
there is at least a reasonable approximation for the uncer-
tainty, avoiding an empirical “filter tuning” stage.

They achieved centimeter level accuracy with a base-
line/depth ratio of aproximatelly 1/15 (depth corresponds
basically to altitude). As they point out themselves, data
from other sensors might be integrated on their framework,
but this was not their aim at the time.

In the work reported in this article, the image registration
starts by using the inertial measurements of the camera
orientation to rotate the 3D point clouds obtained from
stereo to a common orientation, aligned with the north-
west-up frame of reference. There remains a 3D translation
between successive point clouds, due to the camera motion,
but the inertial system can only provide a rough estimate
of it.

Then, point correspondences on the image space are
utilized to find the translation that registers the point clouds:
taking into account only the pixel correspondences that re-
fer to corresponding 3D points, each pair of corresponding
3D points yields a direct measure of the translation between
the point clouds. There are outliers, that are excluded with

a robust algorithm. A single translation vector is calculated
by averaging the inliers and the point clouds are translated
into an unified frame of reference.

We leverage on previous work that calibrate the rigid
body rotation between a camera and a inertial system that
are rigidly coupled, to register a set of 3D point clouds
taken from a moving observer with an calibrated stereo
head.

In the future, the moving observer will be the aerial
vehicle. The image sequences shown here were captured
within real enviroments, including scenes that mimic, in
small scale, forest and buildings.

Although accumulation of errors does not allow the reg-
istration of a long sequence of point clouds by registering
only pairs of point clouds taken from adjacent frames, it is
possible to register and combine into a larger point cloud a
limited sequence of neighbouring point clouds around one
taken as reference.

This unified aggregated 3D point cloud potentially has a
lot of redundant points. To reduce memory usage, a hash
table allows us to search for existing points that are too
close to a new point, and to reject the new point if it is
redundant. The redudant points are also used to eliminate
gross stereo errors - filtering out points that do not appear
in more than a minimum number of point clouds.

From a large number of smaller point clouds, we can
therefore construct a smaller number of larger point clouds,
with many redundant or grossly wrong points eliminated,
that should be easier to register between themselves, what
is left to future work.

The next section reviews the camera-inertial calibration
to be used, other works on registering stereo point clouds
from aerial images, as well as related problems as robust
image matching. Section II describes our present approach,
followed by experimental results on section V and finally
the conclusions on section VI.

II. REGISTERING STEREO DEPTH MAPS

A moving stereo observer of a background static scene
with some moving objects can compute at each instant a
correlation-based dense depth map. The maps will change
in time due to both the moving objects and the observer
ego-motion. To perform independent motion segmentation,
a first step in processing the incoming data is to register
the maps to a common fixed frame of reference {W}, as
shown in figure 3.

The stereo cameras provide intensity images I l(u, v)|i
and Ir(u, v)|i, where u and v are pixel coordinates, and
i the frame time index. Having the stereo rig calibrated,
depth maps for each frame can be computed. A set of 3D
points C

P|i is therefore obtained at each frame, given in
the camera frame of reference {C}|i. Each 3D point has a
corresponding intensity gray level c given by the pixel in
the reference camera, i.e c = Il(u, v)|i. Each point in the
set retains both 3D position and gray level
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Fig. 3. Moving observer and world fixed frames of reference.

P (x, y, z, c) ∈ C
P|i . (1)

A. Rotate to Local Vertical and Magnetic North

The inertial and magnetic sensors, rigidly fixed to the
stereo camera rig, provide a stable camera rotation update
RRC relative to the local gravity vertical and magnetic
north camera frame of reference {R}| i.

Calibration of the rigid body rotation between {I}| i and
{C}|i can be performed by having both sensors observing
gravity, as vertical vanishing points and sensed accelera-
tion, as described in [4].

The rotated camera frame of reference {R}| i is time-
dependent only due to the camera system translation, since
rotation has been compensated for.

B. Translation from Image Tracked Target

The translation component can be obtained by tracking
a fixed target in the scene. The tracked image feature must
have the corresponding 3D points Pt in each depth map,
so that the translation can be estimated from

Δ�t = Pt|i+1 − Pt|i (2)

with Pt|i+1 ∈ R
P|i+1 and Pt|i ∈ R

P|i.
The fixed target can be an artificial one, or a set of

sparse natural 3D features can be tracked to improve
robustness. Distinctive image features can be automatically
obtained with the Scale Invariant Feature Transform (SIFT
[5]). Assuming that the majority of distinctive features
are from the static background, random sample consensus
(RANSAC [6]) can be used to reject outliers that occur
from tracking features of the moving objects or due to
errors on the process.

III. RESULTS

The hardware system used to acquire data from a moving
observer is shown in fig. 1. The stereo vision is provided
by the Videre MEGA-D Digital Stereo Head [7], and the

pose from the inertial and magnetic sensor package MT9-B
from Xsens [8].

To compute range from stereo images we are using the
SRI Stereo Engine with the Small Vision System (SVS)
Software [1].

Fig. 4. Experimental setup of 3D scene with static background and
swinging pendulum.

A scene was set up with a swinging cylindrical can to
provide motion independent from the observer movement
(fig. 4). The moving observer surveyed the scene perform-
ing map registration and subsequent independent motion
segmentation as presented in the following sections.

A. Moving Depth Map Registration

As described above, the rotation update provided by
the inertial and magnetic sensor package is applied to the
successive depth maps. As shown in figure 5, the depth
maps are correctly rotated, but shifted due to the observer
translation.

The translation was estimated by tracking an image
feature, and observing the translation between the corre-
sponding 3D points in the depth maps. Figure 5 shows
data for frames 1 and 20 of a take of 200 frames with a
moving observer of a static scene with a moving pendulum,
for which the registration performed well.

Fig. 5. Overlaid rotated 3D depth maps from frames 1 and 20 (on the
right) showing a clear mismatch, and circled image feature tracked to
estimate translation.



Fig. 6. Depth maps rotated and translated to common world fixed frame
of reference, for frames 1 and 20 on the left, and for full set of frames
with moving pendulum on the right.

The registered depth map can be seen in figure 6. The
fused map from frames 1 and 20 is shown on the left.
On the right the fused map corresponding to the full set
of frames is shown with the moving pendulum leaving its
trace.

IV. REGISTERING 3D POINT CLOUDS

A. Obtaining rotation and translation measurements be-
tween two point clouds

We record a sequence of stereo image pairs and as-
sociated inertial data taken from a moving observer, and
generate a 3D point cloud for each stereo image pair i, that
is generated into the camera frame of reference {C}| i . To
register these point clouds, it is necessary to compensate
for the rotation and translation of these cameras in relation
to a reference coordinate system.

We take advantage of recent camera-inertial system
calibration, to obtain absolute orientation measurements
for the camera, that compensate for the rotation of the
camera, and obtain rotated 3D point clouds that differ only
in translation.

The raw image frames are the other source of informa-
tion to find the displacement between these point clounds.
Given two images i and j (taken in different instants), with
an overlap region, it is possible to find corresponding points
between these two images. As the stereo processing maps
image pixels to a 3D points, the corresponding image points
should map to corresponding 3D points in the {R}| i and
{R}|j frames of reference. Stereo algorithms may skip
some image points, not mapping them to a 3D point, (e.g.,
due to lack of texture). Therefore we consider only the
image point correspondences whose pixel coordinates are
mapped to a 3D point in both images.

As the two rotated point clouds have already the same
orientation, the diference in the coordinates of the cor-
responding 3D points is a measure of the translation
vector that brings the reference frame of one rotated point
cloud {R}|i to the other {R}|j . Additionally, given that
the origins of the {R} reference frames are the camera
centers, the translation vector also corresponds directly to
the coordinates of one camera center into the frame of
reference of the other camera.

The SIFT feature detector [9] was used to detect point
correspondences, and the RANSAC[10] procedure was
applied to reject outliers. RANSAC is applied to the 3D
translation vectors (and not on the pixel coordinates of
the correspondences), looking for a inlier set where all
vectors are within a maximum distance of their average
(a few centimeters in our case). Both mismatched SIFTs
and wrong stereo disparities are detected as outliers by the
same RANSAC procedure. Figure 7(a) is a plot of the set
of translation vectors for one image pair. The plotted circles
are the differences between each vector and the mean vector
- i.e., if all vectors were the same, all circles would appear
on the origin. The ’x’s are outliers, that were detected
by RANSAC and excluded from the calculations. The ’+’
signal is the mean of the inliers. Figure 7(b) is a histogram
of the angle between the translation vectors and the mean
vector, showing that most of them point approximatelly to
the same direction, except a few outliers corresponding to
the crosses on the left figure.

(a) Difference between transla-
tions vectors and the mean vector
(in mm).

(b) Histogram of the angle be-
tween the translation vectors and
the mean vector.

Fig. 7. One example of the usage of the RANSAC procedure.

As the model utilised on the RANSAC calculations is
very simple, involving averaging and calculating differ-
ences between euclidean 3D vectors, the RANSAC proce-
dure runs very fast, on the order of a few tenths of seconds
per frame in MATLAB.

As there is not an absolute frame of reference as a GPS,
we can choose arbitrarely one reference frame {R}|0 as the
global frame where the other point clouds will be registered
to.

B. Filtering out redundant points

We are registering point clouds that may have a large
overlap, and therefore may have a large number of redun-
dant points. To save memory, new points too close to a
point already present on the cloud should be rejected. But,
as the number of points is large, it would be too slow to
check linearly all the stored points to test if a new point is
redundant.

Additionally, it is necessary to filter the point clouds,
as there are often wrongly positioned points due to errors
on the stereo processing. We aim to eliminate isolated,
“floating” points, and generate a smoother point cloud.



One approach would be to divide the covered space
in voxels and mark each voxel as occupied or free. The
disavantage of voxel approach is that the number of voxels
increases with the covered space, and many voxels are
empty, outside and inside the 3D surface visible on the
scene. It is desirable to avoid this waste of memory to be
able to cover a larger space.

We have chosen the well-known approach of keeping
only a 3D point cloud and a hash table, that indexes all
points by their coordinates. When a new point is going
to be inserted, the hash table is used to retrieve a list of
potentially close points, and a close point is searched for.

If there are repeated passages over the same scene, we
can filter out doubtfull points by deleting points that were
not seen in a sufficient number of frames. To keep track
of this, every point in the cloud is associated to a counter,
that is incremented every time there is an attempt to insert
a new point on the same position. Each counter can be
incremented only once per frame. In such a way the frames
“vote” for each point.

V. EXPERIMENTAL RESULTS

A. Experimental Platform

The experimental platform is a Videre MEGA-D digital
stereo head [11], rigidily coupled with the inertial sensor
package MTB9-B from Xsens[12].

Xsens inertial measurements are taken immediatelly after
each frame aqcuisition. To compute range from stereo
images we are using the SRI Stereo Engine with the Small
Vision System (SVS) software [13]. This platform was
moved by hand, generating data sets consisting of stereo
image pairs, point clouds, and inertial measurements.

B. Experiments

Given a sequence of image frames, inertial measure-
ments and 3D point clouds, an image frame is chosen as
the reference frame, and the frames immediatelly before
and after it in time are matched with it using the usual
SIFT matching process. Each pair of matching SIFT fea-
tures whose pixel location corresponds to a 3D point on
both images yields a translation vector, by subtracting the
coordinates of the respective 3D points. Therefore a set
of translation vectors is generated for a given image pair,
measuring of the displacement between the two camera
frames of reference {C}|i and {C}|j , and the RANSAC
procedure search for a consensus translation vector on this
set.

As many backward and forward frames are matched as
it is possible, by keeping trying to match frames in the
sequence untill the number of outliers falls below a certain
threshold - probably because the camera has moved and
the overlap region is too small.

The garden sequence was taken on an outdoor grass field,
under indirect sunlight. The sift algorithm can extract a
large number of features from the grass surface, that is

roughly planar, although irregular. Figure 8(a) shows one
point cloud from this data set, with its corresponding left
camera image displayed on the back. Figure 8(b) shows
two registered point clouds, one in plain green, other in the
original gray level color. Figure 9 shows the resulting point
cloud after registering together a sequence of 26 successive
frames.

(a) (b)

Fig. 8. From the garden dataset: (a) one point cloud; (b) two registered
point clouds.

(a) Registered point clouds (only
one every four).

(b) the final, filtered point cloud.
The camera trajectory is shown in
blue.

Fig. 9. The result of registering point clouds for 26 successive frames.

The jeep sequence shows a jeep parked on the street
under sunlight, and the sidewalk. Analogously, Figures
10(a) and 12(a) show one point cloud from this data set,
with its corresponding left camera image displayed on the
back. Figures 10(b) and 12(b) show two registered point
clouds, in the original gray level color, with their respective
images displayed behind them. Figures 11 and 13 show, in
the left, a set of registered point clouds, and in the right, the
resulting point cloud after registering together a sequence
of 27 (in both figures) successive point clouds, and filtering
out points with less than four votes. In the left figure, only
one every four point clouds is shown, to ease visualisation.

The pyramids on figures 9, 11 and 13 represent the
camera trajectory and orientation: there is one pyramid for
every four camera poses, and camera points towards the
base of the pyramid. The images on the graph sides are
an approximate visual reference, being stretched up to the
extreme coordinates of their point clouds.

The RANSAC threshold for membership in the inlier
set was 5 cm for both datasets. The minimum acceptable
number of inliers was 20.



(a) (b)

Fig. 10. From the jeep dataset: (a) one point cloud; (b) two registered
point clouds.

(a) Registered point clouds (only
one every four)

(b) The resulting, filtered point
cloud. The camera trajectory is
shown in blue.

Fig. 11. The result of registering point clouds for 27 successive frames.

For each frame chosen as a reference frame, we could
register between 20 and 50 frames, (approximatelly be-
tween 1.5 and 3 seconds at 15fps).

VI. CONCLUSION

From a large number of small point clouds, a smaller
number of larger point clouds were generated, by register-
ing sequences of point clouds around a reference frame.

If greater accuracy were desired, more sofisticated point
cloud matching algorithms could make use of the process
described here as an initial approximation.

The inertial data was used to eliminate the degrees of
fredom associated with rotation, grounding the point clouds
into a north-east-up frame of reference, and allowing the
usage of a simple translation-only movement model - that
allowed a single run of a robust algorithm to detect gross
outliers both on the pixel correspondences and on the stereo
calculations.

It is expected that these larger point clouds will be
easier to register among themselves than if one had to deal
directly with one smaller point cloud per frame. But this
is left as future work.

(a) (b)

Fig. 12. The sidewalk from the jeep dataset: (a) one point cloud; (b)
two registered point clouds.

(a) Registered point clouds (only
one every four)

(b) The resulting, filtered point
cloud. The camera trajectory is
shown in blue.

Fig. 13. The result of registering point clouds for 27 successive frames.
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