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Inertial sensors attached to a camera can provide valuable data about camera pose and
movement. In biological vision systems, inertial cues provided by the vestibular system
are fused with vision at an early processing stage. In this article we set a framework for
the combination of these two sensing modalities. Cameras can be seen as ray direction
measuring devices, and in the case of stereo vision, depth along the ray can also be com-
puted. The ego-motion can be sensed by the inertial sensors, but there are limitations
determined by the sensor noise level. Keeping track of the vertical direction is required,
so that gravity acceleration can be compensated for, and provides a valuable spatial ref-
erence. Results are shown of stereo depth map alignment using the vertical reference. The
depth map points are mapped to a vertically aligned world frame of reference. In order
to detect the ground plane, a histogram is performed for the different heights. Taking the
ground plane as a reference plane for the acquired maps, the fusion of multiple maps
reduces to a 2D translation and rotation problem. The dynamic inertial cues can be used
as a first approximation for this transformation, allowing a fast depth map registration
method. They also provide an image independent location of the image focus of expan-
sion and center of rotation useful during visual based navigation tasks.
© 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

Biological vision systems are known to incorporate
other sensing modalities. The inner ear vestibular
system in humans and in animals provides inertial
sensing mainly for orientation, navigation, control of
body posture, and equilibrium. This sensorial system
also plays a key role in several visual tasks and head
Journal of Robotic Systems 21(1), 3–12 (2004) © 2004 Wiley Per
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stabilization, such as gaze holding and tracking vi-
sual movements.1 Neural interactions of human vi-
sion and vestibular system occur at a very early pro-
cessing stage.2

Artificial vision systems can provide better per-
ception of their environment by using inertial sensor
measurements of camera pose (rotation and transla-
tion). As in human vision, low level image processing
iodicals, Inc.
m). • DOI: 10.1002/rob.10122
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should take into account the ego motion of the ob-
server. Nowadays micromachined low cost inertial
sensors can be easily incorporated in computer vision
systems, providing an artificial vestibular system. In-
ertial sensing is totally self-contained, except for
gravity which provides an external reference.

This work is part of ongoing research into the fu-
sion of inertial sensor data in computer vision sys-
tems. In ref. 3 a framework is set for vision and in-
ertial sensor cooperation. The use of gravity as a
vertical reference is explored, enabling camera focal
distance calibration with a single vanishing point,
vertical line segmentation, and ground plane seg-
mentation. In ref. 4 world vertical feature detection
and 3D mapping is presented. In this article we con-
tinue to explore the use of inertial data in vision sys-
tems, and present a method for fast alignment and
segmentation of depth maps obtained from correla-
tion based stereovision.

1.1. Related Work

Navigation in aerospace and naval applications has
long relied on high grade inertial sensors.5,6 The elec-
tronic and silicon micromachining development has
produced low cost, batch fabricated, silicon sensors.
Currently they are not suitable for stand-alone iner-
tial systems, but can be useful in many applications.
The level of integration is increasing, and single chip
inertial systems for inertial aided GPS navigation sys-
tems are being developed.7 This development has en-
abled many new applications for inertial sensors, not
just in robotics and computer vision but also in large
consumer commercial devices, such as video camera
vibration compensation.

In computer vision applications, Viéville and
Faugeras have proposed the use of inertial sensors8

and studied the cooperation of the inertial and visual
systems in mobile robot navigation by using the ver-
tical cue, rectifying images and improving self-
motion estimation for 3D structure reconstruction.9–12

Inertial sensors were used to improve optical flow for
obstacle detection by Bhanu et al.;13 inertial sensed
ego motion compensation improved interest point se-
lection, matching of the interest points, and the sub-
sequent motion detection, tracking, and obstacle
detection.

Comparison of camera rotation estimate given by
image optical flow with output from a low cost gy-
roscope was done by Panerai and Sandini for gaze
stabilization of a rotating camera.14,15 In ref. 16 they
also studied the integration of inertial and visual in-
formation in binocular vision systems.
Mukai and Ohnishi used a gyroscope sensor to
discriminate rotation and translation effects on the
image and improve the accuracy of 3D shape
recovery.17,18 In ref. 19 Kurazume and Hirose used in-
ertial sensors for image stabilization and attitude es-
timation of remote legged robots.

Virtual reality modelling and augmented reality
are strong applications for inertial aided vision sys-
tems. Coorg et al.20 use mosaicing and other tech-
niques to perform an automated three-dimensional
modeling of urban environments using pose imagery
(i.e., images with known orientation and position ob-
tained by inertial sensors and GPS). A hybrid inertial
and vision tracking algorithm for augmented reality
registration was proposed by Suya You et al.21 Hoff
et al. used a head mount system with inertial sensors
and cameras, providing 3-D motion and structure es-
timation for augmented reality.22,23

A vision system for automated vehicles built by
Dickmanns et al. has also incorporated inertial
sensors.24 The vision feature trackers use feedback
from the inertial estimated state that has negligible
time delays, and includes perturbations which must
be taken into account by the vision system.

2. DATA FROM CAMERA SENSOR

Cameras can be seen as ray direction measuring de-
vices. The pinhole camera model considers one center
of projection, where all rays originated from world
points converge. The image will be equivalent to a
plane cutting that pencil of rays, projecting images of
world points onto a plane. If we consider a unit
sphere around the optical center, we can model the
images as being formed on its surface. The image
plane can be seen as a plane tangent to a sphere of
radius f , the camera’s focal distance, concentric with
the unit sphere, as shown in Figure 1. Using the unit
sphere gives an interesting model for central perspec-
tive and provides an intuitive visualization of projec-
tive geometry.25,26 It also has numerical advantages
when considering points at infinity, such as vanishing
points.

2.1. Image Points

A world point Pi will project on the image plane as pi
and can be represented by the unit vector mi placed
at the sphere’s center, the optical center of the camera.
With image centered coordinates pi�(xi ,yi) we have
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Pi→mi�
Pi

�Pi�
�

1

�xi
2�yi

2�f2 � xi

yi

f
� . (1)

To avoid ambiguity mi is forced to be positive, so that
only points on the image side hemisphere are
considered.

2.2. Image Lines

Image lines can also be represented in a similar way.
Any image line defines a plane with the center of pro-
jection, as seen in Figure 1. A vector n normal to this
plane uniquely defines the image line and can be
used to represent the line. For a given image line
ax�by�c�0, the unit vector is given by

n�
1

�a2�b2��c/f �2 � a
b

c/f
� . (2)

As seen in Figure 1, we can write the unit vector of an
image line with points m1 and m2 as

n�m1�m2 . (3)

2.3. Vanishing Points

Since the perspective projection maps a 3D world
onto a plane or planar surface, phenomena that only
occurs at infinity will project to very finite locations in
the image. Parallel lines only meet at infinity, but in
the image plane, the point where they meet can be
quite visible and is called the vanishing point of that
set of parallel lines.

Figure 1. Point projection onto unit sphere.
A space line with the orientation of an unit vector
m has, when projected, a vanishing point with unit
sphere vector �m. The vanishing point of a set of 3D
parallel lines with image lines n1 and n2 is given by

m�n1�n2 . (4)

2.4. Ego-motion and Spherical Motion Field

When the camera sensor moves relative to the ob-
served scene, image features will have a correspond-
ing motion across the image. Using a spherical
model, data from different camera configurations,
such as omnidirectional images from catadioptric
mirrors or several cameras with a common center of
projection, can be incorporated into a unified model,
with better spatial observability.

If the camera experiences a pure rotation �, the
fixed world Pi given in the camera referential will
have a motion vector given by

Ṗi����Pi (5)

as shown in Figure 2. The world point after the ro-
tation Pi� is given by Pi���Pi . The unit sphere point
after the rotation mi� is given by

mi��
Pi���Pi

�Pi���Pi�
�mi���mi . (6)

Since the rotation is centered in the camera projective
center, the induced image motion does not depend on
the 3D point depth.

If the camera experiences both rotation � and
translation t the fixed world Pi given in the camera
referential will have a motion vector given by

Figure 2. Projected unit sphere point motion with camera
pure rotation.
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Ṗi��t���Pi (7)

as shown in Figure 3. Projecting onto the unit sphere
as before, the motion field on the unit sphere ṁi is
given by

ṁi�
1

�Pi�
��t.mi�mi�t����mi . (8)

This equation describes the velocity vector ṁi for a
given unit sphere point mi as a function of camera
ego-motion (t,�) and depth �Pi� .

3. DATA FROM INERTIAL SENSORS

At the most basic level, an inertial system simply per-
forms a double integration of sensed acceleration
over time to estimate position. But if body rotations
occur, they must be taken into account. The measured
accelerations are given in the body frame of reference,
initially aligned with the navigation frame of refer-
ence. In strapdown systems the gyros measure the
body rotation rate, and the sensed accelerations are
computationally converted to the navigation frame of
reference. Figure 4 shows a block diagram of a strap-
down inertial navigation system. The system has an
inertial measurement unit (IMU) with 3D orthogonal
sets of acceleromters and gyrometers. Table I summa-
rizes the data that can be obtained from the inertial
sensors.

High grade sensors are required for inertial navi-
gation, and low-cost MEMs inertial sensors offer low
performance. Some assumptions can be made on the
systems’s dynamics to cope with the accumulated
drift. If the norm of the sensed acceleration is about
9.8 m.s�2, then we can assume that the accelerom-

Figure 3. Projected unit sphere point motion with camera
translation.
eters only measure g, and the attitude can be directly
determined, resetting the accumulated drift in the at-
titude computation. A low threshold can also be ap-
plied to the system, assuming that the system never
accelerates or rotates below a certain value, prevent-
ing the error build up.

It is interesting to notice that human inertial sens-
ing has a similar performance to currently available
low-cost inertial sensors. Measuring the actual vesti-
bular perceptual thresholds is difficult; they are de-
termined by many factors such as mental concentra-
tion, fatigue, other stimulus capturing the attention,
and vary from person to person.27 Reasonable thresh-
old values for perception of rotation are 0.14, 0.5 and
0.5 deg.s�2 for yaw, roll, and pitch motions, respec-
tively. Values of 0.01 g for vertical and 0.006 g for hori-
zontal acceleration are appropriate representative
thresholds for perceptible intensity of linear accelera-
tion. These are valid for sustained and relatively low
frequency stimulus.

The currently available low cost inertial sensors
are capable of similar performances.28 The inertial
system prototype built for this work, using low cost
sensors, has gyros with 0.1 deg.s�1 resolution, and

Figure 4. Simplified strapdown inertial navigation sys-
tem.

Table I. Data from inertial sensors.

d
dt

angular acceleration �=�

rate of linear acceleration (jerk) j� ȧ�x�

angular velocity �� �̇

linear acceleration�gravity a�g� ẍ�g

� dt
angular position (attitude) �

linear velocity v� ẋ

�� dt position x
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accelerometers with 0.005 g resolution. Notice that
the gyros measure angular velocity and not angular
acceleration.

These performances are not suitable for stand-
alone inertial navigation, but combined with vision
cues they contribute to human spatial orientation and
body equilibrium. The inertial cues enhance the per-
formance of the vision system in gaze stabilization,
tracking, and visual navigation.

4. COMBINING STATIC INERTIAL CUES WITH
VISION

4.1. Vertical Reference from Gravity

The measurements taken by the inertial unit’s accel-
erometers include the sensed gravity vector summed
with the body’s acceleration. When the system is mo-
tionless, or subject to constant speed, gravity pro-
vides a vertical reference for the camera system frame
of reference given by

n̂�
a

�a� , (9)

where a is the sensed acceleration, in this case the re-
active (upward) force to gravity. By performing the
rotation update using the IMU gyro data, gravity can
be separated from the sensed acceleration. In this case
n̂ is given by the rotation update, but must be moni-
tored using the low-pass filtered accelerometer sig-
nals, for which the above equation still holds, to reset
the accumulated drift.

The vertical unit vector is given in the IMU ref-
erential, and has to be converted to the camera ref-
erential. Only the rotation is relevant, and can be cali-
brated as described below.

4.2. Rotation between IMU and Camera

Figure 5 shows the several frames of reference that
need to be considered. The inertial measurements
have to be mapped to the camera frame of reference.
If the alignment between them is unknown, calibra-
tion is required.

Both sensors can be used to measure the vertical
direction, so that the rigid transformation between
the IMU frame of reference �I� and the camera frame
of reference �C� can be determined. When the IMU
sensed acceleration is equal in magnitude to gravity,
the sensed direction is the vertical. The camera ver-
tical direction can be taken from the vanishing point
of either a specific calibration target, such as a chess-
board placed vertically, or from some known scene
vertical edges. However, camera calibration is re-
quired to obtain the correct 3D orientation of the van-
ishing points.

If n observations are made for distinct camera po-
sitions, recording the vertical reference provided by
the inertial sensors and the vanishing point of scene
vertical features, the absolute orientation can be de-
termined using Horn’s method.29 Since we are only
observing a 3D direction in space, we can only deter-
mine the rotation between the two frames of
reference.

Let Ivi be a measurement of the vertical by the
inertial sensors and Cvi the corresponding measure-
ment made by the camera derived from some scene
vanishing point. We want to determine the unit
quaternion q̊ that rotates inertial measurements in the
inertial sensor frame of reference �I� to the camera
frame of reference �C�. In the following equations,
when multiplying vectors with quaternions, the cor-
responding imaginary quaternions are implied. We
want to find the unit quaternion q̊ that maximizes

	
i�1

n

� q̊ Iviq̊
0�•Cvi . (10)

Expressing the quaternion product q̊vi as a ma-
trix multiplication Viq̊, after some manipulation we
get

Figure 5. Camera �C�, IMU �I�, mobile system �N�, and
world fixed �W� frames of reference.
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i�1

n

q̊T IVi
T CVi q̊; (11)

factoring out q̊ we get

q̊T� 	
i�1

n
IVi

T CVi� q̊. (12)

So we want to find q̊ such that

max q̊TNq̊ , (13)

where N�	 i�1
n IVi

T CVi . Matrix N can be expressed
using the sums for all i of all nine pairing products of
the components of the two vectors Ivi and Cvi . The
sums contain all the information that is required to
find the solution. Since N is a symmetric matrix, the
solution to this problem is the four-vector qmax cor-
responding to the largest eigenvalue 
max of N—see
ref. 29 for details. Results of this calibration method
are presented in ref. 30.

4.3. Using the Inertial Vertical Reference

The vertical reference n̂ corresponds to the north pole
of the unit sphere. A set of world vertical features will
project to image lines ni with a common vanishing
point mvp�n̂.

Given a single image vanishing point vp�(x ,y)
of a levelled plane, the horizon line is given by

nxx�nyy�nzf�0, (14)

where f is the focal distance and n̂�(nx ,ny ,nz)T.
Since the vanishing line is determined alone by the
orientation of the planar surface, the horizon line is
the vanishing line of all levelled planes, parallel to the
ground plane.

If a ground plane world point P, given in the cam-
era frame of reference �C�, is known, the plane equa-
tion can be determined and is given by

n̂.P�d�0, (15)

where d is the distance from the origin to the ground
plane, i.e., the system height. In some applications it
can be known or imposed by the physical mount, or
determined using stereo as shown below.

When detecting world features, a convenient
frame of reference has to be established. A moving ro-
bot navigation frame of reference �N� can be consid-
ered, aligned by the ground pane as shown in Figure
5. The vertical unit vector n̂ and system height d can
be used to define �N�; by choosing Nx̂ to be coplanar
with Cx̂ and Cn̂ in order to keep the same heading,28

we have

NP�NTC .CP, (16)

where

NTC��
�1�nx

2 �nxny

�1�nx
2

�nxnz

�1�nx
2

0

0
nz

�1�nx
2

�ny

�1�nx
2

0

nx ny nz d

0 0 0 1

� . (17)

If a heading reference is available, then �N�
should not be restricted to having Nx̂ coplanar with Cx̂
and Cn̂, but use the known heading.28 Using the ro-
bot’s odometry, the inertial sensors, and landmark
matching, conversion to the world fixed frame of ref-
erence �W� can be accomplished.

4.4. Stereo Depth Map Alignment Using Vertical
Reference

Stereo vision systems can use correlation based meth-
ods to obtain depth maps. With the current technol-
ogy, real time systems are commercially available.
When the vision system is moving the maps have to
be fused into a single world map. Before fusing the
depth maps, they must be registered to a common ref-
erential. This can be done using data fitting alone, or
aided by known parameters or restrictions on the
way the measurements were made.

Figure 6. Frames of reference and stereo vision system
with inertial measurement unit.
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In order to obtain depth maps with known vision
system pose, the stereo vision system was mounted
onto an inertial measurement unit (IMU), as shown in
Figure 6. To compute range from stereo images we are
using the SRI stereo engine31 with the small vision
system (SVS) software and the MEGA-D digital ste-
reo head, shown in Figure 6.

The depth maps are given in the right camera
frame of reference, with the Z axis pointing forward
along the optical axis. The depth map is given by a
pencil of rays with known depth from the origin
(Figure 7).

Using the vertical reference, the depth maps can
be segmented to identify horizontal and vertical fea-
tures. The aim is on having a simple algorithm suit-
able for a real-time implementation. Since we are able
to map the points to an inertial reference frame, pla-
nar leveled patches will have the same depth z , and
vertical features the same xy , allowing simple feature
segmentation using histogram local peak detection.
Figure 8 summarizes the proposed depth map seg-
mentation method.

The depth map points are mapped to the world
frame of reference. In order to detect the ground

Figure 7. Observed scene and depth map obtained with
SVS.31
plane, a histogram is performed for the different
heights. The histogram’s lower local peak, zgnd , is
used as the reference height for the ground plane. Fig-
ure 9 shows some results of ground plane detection
and depth map rectification.

5. COMBINING DYNAMIC INERTIAL CUES WITH
VISION

Inertial sensors can only provide direct measure-
ments of angular velocity � and, after subtracting
gravity, linear acceleration a. Angular position re-
quired to subtract gravity is obtained from integra-
tion over time, with unbounded error buildup. Linear
velocity and position is again done by integration
over time with the associated error accumulation. As
previously described, some heuristics can be applied
to reset or bound some of the error drift.

From (8) we see how velocities t and � are pro-
jected onto the image. Inertial angular velocity mea-
surements, being directly measured, should be used
with more confidence than linear velocities.

5.1. Image Focus of Expansion

When the camera is moving with linear velocity t and
not rotating, from (8) we see that the image point

mFOE�
t

�t�
(18)

will have no motion, i.e., ṁFOE�0, and all others will
be expanding or contracting to this point. This point
Figure 8. Summary of depth map vertical alignment method.
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Figure 9. On the left the graphical front-end of the implemented system, showing the height histogram for ground plane
detection, the detected plane and 3D segmented depth map; on the right the top and front view of the aligned segmented
depth maps that only require a translation (tx ,ty) and rotation � to be correctly fused.
is known as the the image focus of expansion (FOE).
When the system is also rotating, the FOE will have
depth independent velocity

ṁFOE����mFOE����
t

�t�
. (19)

The FOE can be found using the inertial data alone,
provided that the system has been calibrated.

5.2. Image Center of Rotation

When the camera is moving with angular velocity t
and no linear translation, from (8) we see that the im-
age point

mCOR�
�

��� (20)

will have no motion, i.e., ṁCOR�0, and all others will
be rotating around this point. This point is known as
the image center of rotation (COR). When the system
is also translating at velocity t, the COR will have
depth dependent velocity

ṁCOR�
1

�PFOE� ��t.mCOR�mCOR�t�, (21)

where PFOE in the 3D point in view along the image
ray given by mCOR . The COR can be easily defined
using the inertial data alone, provided that the sys-
tem has been calibrated using the procedure de-
scribed in Section 4. The definition of the FOE and
COR can be useful during visual based navigation
tasks.

5.3. Registering Depth Maps

With the vision system moving, the acquired depth
maps have to be registered to a common frame of ref-
erence. After the alignment using the vertical refer-
ence and subsequent ground plane detection, the reg-
istration is a 2D problem; only a translation (tx ,ty)
and rotation � are needed (see Figure 9).

An approximation to these 2D parameters can be
found by projecting the inertial sensed parameters
onto the level plane. These allow registering dynamic
depth maps, with moving objects, to a common frame
of reference.

6. CONCLUSIONS

This paper has presented a framework for the com-
bination of inertial and visual sensing modalities.

Keeping track of the vertical direction provides a
valuable spatial reference. Results were shown of ste-
reo depth map alignment using the vertical reference.
The depth map points are mapped to a vertically
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aligned world frame of reference. In order to detect
the ground plane, a histogram is performed for the
different heights. Taking the ground plane as a ref-
erence plane for the acquired maps, the fusion of mul-
tiple maps reduces to a 2D translation and rotation
problem. The dynamic inertial cues can be used as a
first approximation for this transformation, allowing
a fast depth map registration method.

The definition of the FOE and COR can be done
from the inertial cues, and used during visual based
navigation tasks.

Future work will address the fusion of optical
flow computation with the inertial ego-motion esti-
mate. The image optical flow imposes a further re-
striction to bound the drift in the inertial estimated
ego-motion. The computed depth from flow and
known ego-motion can be combined with the stereo
correlation computed depth, producing a more ro-
bust 3D reconstruction technique.
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8. T. Viéville and O.D. Faugeras, Computation of inertial
information on a robot, in Symposium on Robotics Re-
search, edited by H. Miura and S. Arimoto, editors,
Fifth Inter MIT, Cambridge, 1989, pp. 57–65.
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