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NOTATION

P three-dimensional (3D) point, m
p two-dimensional (2D) point, pixel
PM 3D point on the mirror, m
pm projection of point PM, pixel
WP vector with the homogeneous coordinates of a

3D point, expressed in the world referential {W}
Ip vector with the homogeneous coordinates of a

2D point, expressed in the image referential {I}
R matrix
Wl 3D line expressed in the referential {W}

1 INTRODUCTION

The present paper presents a calibration and three-
dimensional (3D) reconstruction method based on

images reflected from planar mirrors and acquired
with one camera. The geometric model of the camera–
mirror set is described and also a method of calibrat-
ing it. The reconstruction technique is based on
volumetric representation. The volumetric 3D recon-
struction uses a space carving algorithm and the pre-
vious calibration results. This camera–mirror set-up
allows a simple and inexpensive multi-ocular system to
be built for 3D reconstruction of a scene.

The volumetric representation of a surface uses a
volumetric element, known as a voxel, and it is based
on the concept of volumetric occupation. Surfaces can
be described by different geometric representations,
and an accepted approach is the description of the
surface geometrical structure by a set of previously
defined surface primitives of different shapes.
Although there are several techniques for solving the
surface reconstruction problem from images, these
solutions are numerically stable and restricted to well-
defined problems. Most approaches to surface recov-
ery employ as many assumptions as needed to ensure
that reconstruction from stereo, shading or occluding
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contours is well-posed when considered in isolation.
Examples include the use of smoothness constraints
for regularization, the use of small stereo baselines for
minimizing the effect of occlusions, and the use of
textureless surfaces for contour-based reconstruc-
tion.1–3 Unfortunately, since no a priori surface infor-
mation about the scene is available when these
assumptions are made, it is impossible to predict their
effect on the final reconstruction. An alternative for
these solutions is the volumetric reconstruction based
on space carving.

The space carving approach demonstrated that very
complex structures could be recovered, based on this
concept.4,5 The technique gives a general solution for
the surface reconstruction from images. To apply the
technique, it is necessary to define, at the beginning, a
volumetric space where the surface to be reconstructed
fits. This volumetric space is then carved until the
resulting surface is consistent with the acquired
images. This means that every visible point within
the volumetric space must be consistent with those
images.

Generally, the images used for all these 3D
reconstruction solutions must be calibrated, i.e. it is
necessary to know the camera parameters associated
with them. The results presented in the present paper
are obtained using the camera calibration process
described in section 2.

The extraction of 3D information from images is a
computer vision problem which has been studied for a
long time, and the solutions differ, owing to the image
acquisition process to the computational algorithm
used on the 3D reconstruction.

According to the image acquisition process, one can
classify the image capture systems in two categories:
the systems that use refracting elements (lenses),
and the systems that use refracting and reflecting
elements.6

The use of mirrors during the image acquisition
phase has many advantages over the conventional use
of systems using only lenses. One of these is the possi-
bility of capturing views of the scene with only one
camera.

As mirrors reduce the number of cameras, usually
to one, the relation between the images is assisted,
because the lens, sensor and digitizer parameters (such
as lens distortions, focal length, pixel size, image
centre, etc.) are identical. Furthermore, the estimation
of some of those parameters becomes easier.7 The
minimization of the occlusion problem is another
advantage of systems using reflection with a mirror.8

The utilization of mirrors with different shapes has
been studied by many researchers.7–12 The shapes of
the mirrors were planar or curved (ellipsoidal, hyper-
bolic, paraboloid, spherical and convex).7,10 The
curved mirrors have been used primarily to increment
the field of view of the cameras.

The epipolar geometry of these systems was studied
by Svoboda and others.11 Sameer and Nayar7
described an image stereo system based on reflective
elements which preserve a single viewpoint. They
demonstrated the use of a single camera and two or
more planar mirrors to acquire stereo data in a single
image.13 Zhuang14 constructed a model for computing
the mirror centre offset, and took its sensitivity into
account. Tamura15 proposed a method for correcting
errors of two-axis mirror scanner parameters using a
coarse–fine parameter search. Since they have dealt
mainly with systems with one or two mirrors, Kim
and Cho8 generalized the use of multiple mirrors. The
results of those experiments demonstrate the viability
of the use of mirrors.

Nayar10 demonstrated the possibility of triangulat-
ing and computing depth from images obtained from
reflections, generalizing the concept to include n
reflecting elements of arbitrary shapes. Other possi-
bilities for reconstructing a scene using reflected
images of a scene have also been shown.9,12

The precision of mirror-based systems depends on
the accurate estimation of the position and orientation
of the mirrors and correct calibration of the camera
parameters. The accurate estimation of these param-
eters is not easy, owing to dimensional uncertainties
caused by manufacturing tolerances and distortions
and aberrations of the lens. This results in uncertain-
ties in: the parameters associated with the mirrors
(positions and orientations); the camera’s parameters
(extrinsic and intrinsic); and the recovered 3D infor-
mation. Those parameters can be measured directly,
one by one, using precise instruments. However,
during this operation, they could suffer from unex-
pected disturbance or intermittent adjustments (such
as auto-focus or mirror relocation). Such technique
needs manual intervention, high mechanical precision
and a large amount of computation. It is a slow and
cumbersome method but it has the advantage that the
acquired data, and subsequently, the result of its use
are of high-resolution and precision data.

The present paper describes a linear calibration
method for camera–mirror systems where the system
parameters are computed automatically and without
the use of high mechanical precision devices. It deals
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with the linear extraction of some important para-
meters of a camera–mirror system, composed by one
camera and planar mirrors. It shows how the use of a
mirror simplifies the estimation of the epipolar geo-
metry of the camera–mirror system and the computa-
tion of the extrinsic and intrinsic parameters of the
camera.

The paper is organised as follows. Section 2
describes a closed-form solution to the camera calibra-
tion problem. Section 3 explains the shape and texture
recovered, based on the space carving algorithm.
Sections 2 and 3 also provide the experimental results.
Finally, section 4 concludes the paper with the
perspective of this work.

2 CAMERA CALIBRATION

2.1 Introduction

Camera calibration is a necessary step in the process
of the extraction of 3D information from images. Dif-
ferent solutions have been extensively studied. In the
photogrammetry area,16,17 there are several examples
but, more recently, the computer vision community
has developed other techniques.18–26

Zhang27 stratifies the calibration techniques generi-
cally, according to the dimension of the calibration
objects. The first technique (3D calibration) is per-
formed observing a calibration object whose geome-
try, in 3D space, is known with very good precision.28
The calibration object usually consists of two or three
planes orthogonal to each other. Sometimes, a plane
undergoing a precisely known translation is also
used, which equivalently provides 3D reference points.
In spite of the efficiency of this approach, it requires
expensive calibration apparatus and an elaborate
set-up. The second technique (2D calibration) is
performed observing a planar pattern shown at a
few different orientations.29 The third technique (1D
calibration) is performed by observing objects com-
posed of a set of collinear points (one of them fixed)
from several different positions (minimum six).27 To
calibrate the relative geometry between images, it is
necessary to observe the same points (three at least)
simultaneously. It is hardly possible to achieve this
with 3D or 2D calibration, but it is not a problem for
this calibration. Another calibration approach, very
effective in multiple camera calibration, can be per-
formed moving a camera in a static scene, and using
the rigidity of the scene and the image information

alone.30 Although no calibration objects are neces-
sary, a large number of parameters need to be esti-
mated, resulting in a much harder mathematical
problem. These calibration approaches must use
several images, but that is the consequence of using so
little information.

There are other techniques which are difficult to
classify. Some examples are vanishing points for
orthogonal directions30,31 and calibration from pure
rotation.30,32 Kim8 classified the calibration methods
into six categories: techniques involving full-scale non-
linear optimization, techniques involving computa-
tion of a perspective transformation matrix and use of
linear equation solving, the two-plane method, the two
stage method and adaptive self-calibration.

To calibrate the camera–mirror set, the geometry
resulting from the planar mirror and camera position
is explored. This calibration technique is simple and
robust, since two perspectives are combined in just one
image acquired by the camera (see Fig. 1). Figure 2
shows a ray-trace model of this image acquisition. This
image acquisition simulates a multi-ocular geometry,
with a virtual camera and a real one observing the
same scene from two different viewpoints.

The calibration process has three phases:

1. the estimation of an epipole point;
2. the calculation of the camera’s optical centre;
3. the estimation of its pose.

a

b

1 (a) Image from real camera; (b) image from virtual
camera
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For first two phases, the geometry of the acquisition
system as illustrated in Fig. 2 is explored.

2.2 Camera model

The present paper refers to P= (X, Y, Z) as a 3D
world point and p= (x, y) its projection in the
image plane. When using homogeneous coordinates,
those points will be represented, respectively, by
WP= [X Y Z 1]T and Ip= [x y 1]T.

The image projection is modelled using perspective
projection. The relationship between P and p, in
homogeneous coordinates, will be given by
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where k is an arbitrary scale factor, non-null, due to
projective projection, R and t are, respectively, the
rotation and translation, which relates the world coor-
dinate system to the camera coordinate system, C is
the matrix which contains the camera intrinsic para-
meters, R and t contains the camera extrinsic para-
meters. Note that R belongs to a SO(3) group, with
det(R)=+1, and it is always assumed (||r1||= ||r2 ||
=||r3 ||=1).

The intrinsic parameter f is the focal length, mea-
sured in the world metric system. The values (c

x
, c
y
)

are the image coordinates of the principal point, and
k
x
 and k

y
 are, respectively, the horizontal and vertical

relationship between pixel units in the image and
metre units (m).

2.3 Epipole

With any two images from the same scene, the epipole
in one image is the projection of the perspective centre
of the other image. The two perspective centres and
any point in the scene define a plane, called the
epipolar plane, which intersects the two image planes
defining epipolar lines. The epipole point is a unique
point which belongs to all epipolar lines.

The usual techniques for estimating the epipoles
requires first the estimation of the epipolar geometry
from a stereo image set. This can be obtained by com-
puting the fundamental matrix.33 These techniques are
usually very sensitive to small errors on the input data
and image quality. Using a camera–mirror set gives a
robust solution for the epipolar geometry and camera
parameters.

The solution of the camera calibration problem was
based on a so-called epipole ‘by construction’ method,
following the geometric explanation in Fig. 2. The
process uses the definition of image points from scenes
similar to that illustrated in Fig. 3. A dedicated
graphics software interface was designed to assist in
the process.

To obtain the desired epipole e in the image, pro-
jections of at least two 3D points in the scene not
belonging to the mirror plane were chosen. Those 3D

2 Camera–mirror geometric model: P1 and P2 are two
generic 3D points; Cr and Cr are real and virtual (gener-
ated by use of mirror) optical centres; mirror’s reflec-
tions are P1M and P2M. Their image projections are p1,
p2, p1m and p2m, respectively. Intersection of p p

1 1mand p p
2 2m

 defines epipole point in image. That point
is image of intersection of segment C C

v r
 with mirror

plane

3 Definition of epipole point ‘by construction’: referential
in world is defined in mirrors plane; XY plane (Z= 0)
coincides with mirror plane, and Z axis with its normal
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world points P and perspective centre define projec-
tion rays which intersect the planar mirror at points
PM. The epipole e, as shown in Fig. 3, is defined by the
intersection of the two projection rays. Since epipole
e corresponds to the projection of the virtual centre
perspective Cv, these two projection rays must
intersect in the image of the camera.

The image points from the real camera with a corre-
sponding point in the image from the virtual camera
must belong to a line called the epipolar line.

2.4 Centre of perspective

To recover the 3D coordinates of the optical centre, it
is assumed that all rays of light passing through the
camera optical centre are represented by 3D lines.
If the intersection of one pair of those 3D lines is
computed, a 3D point is obtained corresponding to the
camera’s optical centre. To pursue this approach, one
needs to know the 3D coordinates of at least two
points belonging to them. If the reflected point in the
planar mirror and its image projection are used, it is
necessary to know only one point on each 3D line (see
Fig. 4).

Considering, with no loss of generality, the mirror
plane is in the XY plane (Z= 0), 3D points in the
mirror  PiM= (XM, YM, 0) could be related to image
points pim= (xm , ym ). A generic point in homo-
geneous coordinates in the mirror surface is given by

WPiM= k�[X Y 0 1]T

with k� an arbitrary scale factor. Using equation (1),
the images of those points are given by
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or in a more compact form
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Thus, knowing T
xy

 and Ipim, one obtains WPim. Rewrit-
ing equation (2b), one obtains

Aitxy= 0 (3)

where

Ai
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and

t
xy
= [t11 t12 t13 t21 t22 t23 t31 t32 t33]

Analysis of equation (3) leads to the conclusion that
it is necessary to know at least four 3D points on the
mirror and its projections in the image to estimate t

xy
.

Notice that each 3D point establishes two equations.
The estimation of t

xy
 corresponds to solving the

equation At
xy
= 0, where matrix A is composed of

sub-matrices Ai, which results in the use of different
pairs of points (Ipim , WPiM. Numerically, t

xy
 can be

estimated using the eigenvector associated with the
smallest eigenvalue of the matrix ATA to compute the
fundamental matrix.34

To estimate t
xy

 in equation (3), it will be necessary
to know the 3D coordinates of points in the scene.
Assume, with no loss of generality, the origin of the
world referential {W} is a point in the mirror and its Z
axis coincides with a normal to mirror plane. Thus, the
mirror is the XY plane of {W} and the 3D coordinates
of points are easily obtained using marks or special
characteristics of the 3D point (e.g. a corner of the
mirror). The marks or characteristics are used only for
this purpose and are recognisable in the image, where
its 2D correspondents are manually obtained. Based
on this procedure, a set of image point pairs Ip1m  and
Ip2m , are defined and used to compute equation (3).

Knowing any two 3D points of the scene WP1 and
WP2 not belonging to the mirror, and their corres-
pondent image points Ip1m  and Ip2m , one can define
the 3D lines corresponding to their projective rays,
respectively Wl1 and Wl2. These lines are given by

w w w
w w

w w
l P P

P P
P P1 1
1M 1
1M 1

w - +
-
-

l

and

w w w
w w

w w
l P P

P P
P P2 2
2M 2
2M 2

w - +
-
-

l
4 Definition of 3D lines
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Points WP1M and WP2M are 3D points on the mirror
with Z= 0, and they are obtained from the equation
(2b) when it is applied to the image points Ip1m  and
Ip2m , respectively.

The intersection of these two lines Wl
i
 and Wl

j
 defines

the virtual centre perspective Cv. From the reflective
properties of planar mirrors, the centre of perspective
Cr is given by the X and Y coordinates of the Cv point,
with the symmetric Z coordinate. This come out
directly from the geometry of the camera–mirror set
(see Fig. 2).

The perspective centre (optical centre of the camera)
Cr is given in metres, since the coordinates of the world
points are expressed in that metric.

The line between Cr and Cv is defined as the baseline
WlB.

2.5 Intrinsic and extrinsic parameters

Matrix T
xy

 given by equation (2) models the projection
between the image plane (measured in pixels) and the
mirror plane (measured in metres). So, in order to
know completely the elements of equation (1), which
relates the coordinates of 3D points in the scene and
their 2D image points, one needs to estimate more
than three parameters to fulfil CAL(3×4).

2.5.1 Estimation of t and r3
Since the origin of the world coordinate system is
on the mirror (see section 2.3) the real perspective
centre Cr is equivalent to the translation t of equation
(1). The translation t is estimated by the following
procedure.

To compute r3 consider, as before, the mirror is in
the XY plane (Z= 0). From the knowledge of T

xy
, Cr

and equations (1) and (2)

k�T
XY
=C[r1 r2 t] (4)

for points belonging to the planar mirror surface.
Expanding equation (4), the scale factor k� can be
computed
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From the equality between the element in position
(3, 3), of each matrix, from equation (4) one obtains

′k
t
t

= z

33
(5)

Using this result in the equality for the elements in
position (3, 1), one obtains

r
t t
t31
31
33

= z

For the elements in positions (3, 2), one obtains

r
t t
t32
32
33

= z

Since rotation R belongs to a SO(3) group and
(||r1||= ||r2 || =||r3 ||=1), the internal product between
the same vector of the rotation is unitary. Using this,
one obtains

r r r33 312 322=P - -1

Element r33 belongs to the unit vector representing the
camera optical axis. That unit vector is used in the
equations which model all projective rays and the sign
for r33 is defined according to the sign of the scale
factor—see next section.

Using this procedure, the elements t and r3 of R are
computed.

2.5.2 Estimation of (cx, cy), kx, ky and f

The rotation matrix R expresses the orientation of
the world referential in the camera referential. From
the properties of the group SO(3), it is known that
R–1=RT. This means that the last row of R,
r�3= [r31 r32 r33 ]T is the unit vector normal to the
image plane and parallel to the optical axis. Any point
in the optical vector belongs to the 3D line

Wlo=Cr+cr�3
Computing the intersection of Wlo with the mirror

plane (Z= 0), one obtains a point PoM (see Fig. 5). The
projection of this point in the image plane will define
the principal point pom= (c

x
, c
y
). Equation (2) allows

the coordinates (c
x
, c
y
) to be computed from PoM.

To know the metric relations between horizontal
and vertical pixels and metres, k

x
 and k

y
, respectively,

the process described in Fig. 5 is followed.
Thus, to obtain the values for parameters k

x
 and k

y
,

two distances are defined on the image plane and two
distances on the mirror plane. In the image, each dis-
tance, in pixels, is defined in vertical and horizontal
directions of the image d

y
 and d

x
, respectively. The two

distances d
y
 and d

x
 have equivalent distances D

y
 and

D
x
, respectively, on the mirror plane, defined in metres

(see Fig. 5). Those distances have values that can be
computed by equation (2b).
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Parameters k
x
 and k

y
 are expressed by

k
d
D

k
d
Dx

x

x
y

y

y
= =

where

d p p d p p
x y= - = -1 0 2 0

and, using equation (2b), one obtains

D T p T p

D T p T p
x XY XY

y XY XY

= -

= -

− −

− −

1
1

1
0

1 2 1
0

In spite of the image coordinate points (p0, p1 and
p2) being in pixels, distances D

y
 and D

x
 are in metres

owing to the use of matrix T
xy

. This scale issue is in the
matrix because its estimation was done with world
points (measured in metres) and image points
(measured in pixels).

In practice, to avoid distortion effects from the lens,
points p0, p1 and p2 are centred on the image.

The information estimated so far enables the focal
length f to be estimated based on the similarity
between triangles (see Fig. 6). Based on this similarity,
the focal length is given by

f
t p e

P P
=

-
z
( )
om

oM EM
Point pom is the principal point in the image; the

point PoM is the intersection of lo with the mirror plane,
e is the estimated epipole, and PEM is the intersection
of the baseline C C

r v
with the planar mirror. Notice

the distance C C
r v

is perpendicular to the mirror, and
C P
r oM

is perpendicular to the image plane.
To have all the measurements in the same metric, it

is necessary to divide the x and y coordinates of the
image points by k

x
 and k

y
, respectively.

2.5.3 Estimation of fky
A technique to reduce error propagation in the
calibration process is to compute fk

y
 on behalf of k

y
.

Using equation (4) and the equality between the
elements (2, 3), fk

y
 can be estimated, where

f k
t t c t t

t ty
z y x

y

=
-23 33
33

However, the previous computation of k
x
 and k

y
 are

usually used.

2.5.4 Estimation of r1 and r2
Based on the previously obtained parameters and
equations (4) and (5), it is possible to compute
parameters r1 and r2 from R.

Using equation (4) and the equality between
elements (2, 1) of each matrix, one obtains

r
k t c r

f k21
21 31=
-′
y

y
Now using f, k

x
, k
y
, c
x
, c
y
 and equation (5), from the

equality between the element in position (2,2) of each
matrix in equation (4), one gets

r
k t c r

f k22
22 32=
-′
y

y
Usng the same process for the element in position
(1, 3) of each matrix in equation (4), one obtains

c=
- -′k t c t f k t

t
13 x z x x

y
Finally, using all the parameters estimated so far

r
k t c t r
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r
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f k
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11 31 21
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12 32 22

=
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=
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′

′

x

x

x

x

c

c

is calculated.

5 Geometric model used to compute principal point and
metric relations between horizontal/vertical pixels and
metres, respectively, k

x
 and k

y

6 Geometric model used to compute focal length
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This process enables parameters r1 and r2 to be esti-
mated from R. From r1 and r2 and using the properties
of rotation matrix R, the previous values for r3 can be
validated from

r3= r1∧ r2 (6)

2.6 Calibration procedure

A summary of the camera–mirror calibration is as
follows:

1. Define the epipole e—section 2.3.
2. Estimate the transformation T

xy
 between the image

plane and the planar mirror—section 2.4.
3. Estimate the centre of perspective of the real

camera and virtual camera Cr and Cv, respec-
tively—section 2.4.

4. Estimate t and r3—section 2.5.
5. Estimate (c

x
, c
y
), k
x
, k
y
 and f—section 2.5.

6. Estimate r1 and r2—section 2.5.

2.7 Camera calibration results

To exemplify the camera–mirror calibration process,
images similar to those in Fig. 1 were used. From that
image and the camera calibration process described
above, the intrinsic parameters of the camera (matrix
C), are obtained, given by

C=
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Another interesting example was to see the behaviour
of the calibration algorithm when the skew parameter
was set to zero (c= 0). So, for the same data used
above one gets
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Both the results are acceptable because, when they
are used in known 3D points, the corresponding
known image points are obtained. It is noticeable that
the translation is the same, because the camera does
not move. The differences between the rotation and
calibration matrices are the readjustment due the
skew.

To verify the relative magnitude of errors that arise
in the present calibration method (its robustness),
uniform noise was randomly added to the set of points
used to compute the calibration parameters. First, the
calibration parameters were obtained without intro-
ducing noise, and then those parameters were esti-
mated with different noise levels. The results in Table 1
are the ratio between the parameters obtained with
noise and the parameters without noise.

Table 1 shows that the method gives acceptable
parameters f5% of noise. Beyond that percentage,
some of the results did not make any practical sense.
As illustrated in the table, the method started be more
unstable with additive noise >5% on the points used
as input for the method. These results are mainly
due to data flow of the method where the previous
computation of some parameters is used to compute
the others (error propagation).

This method is also compared with Zhang’s
method.29 Thus, for the same camera, the same scene
was used and three more images were captured from
different positions. Using the minimum number of
images, the resulting camera’s intrinsic parameters
(matrix C) are given by

Table 1 Relative magnitude of error for specific noise level
in used points (%)

Noise level

1% 5% 6% 7% 10%

c
x
 (pixel) −2 −14 38 81 —

fk
x
 (pixel) 15 55 — — —

fk
y
 (pixel) 10 40 — — —

k
y
 (m) 0.0003 −0.0011 −0.0032 −0.0041 −0.005

— values not available.



9CAMERA CALIBRATION USING REFLECTIONS IN PLANAR MIRRORS

The Imaging Science Journal Vol 52IMAG 1803 © RPS 2004

C=
1079 0 0 322 8

0 1054 0 516 0

0 0 1

. .
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The comparison shows that, in spite of the differ-
ences, the parameters follow the same pattern for the
same relative additive noise in the data points used
to obtain Table 1. However, this method uses only a
simple image instead of the four in Zhang’s method.
This method is performing well mainly owing the
geometric properties of the reflected images which are
useful for camera calibration.

Finally, as a last example, important for use in the
following sections of paper, images were acquired in
three different positions, as illustrated in Fig. 7.

The intrinsic parameters of the camera are

C=
- -

- -
4 712 3 0 3 851 9

0 1 842 3 2 701 10

0 0 1

. .

. .

e e

e e
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Since the camera is the same, matrix C is equal to all
three positions.

The extrinsic parameters for each chosen position
(relative orientation) are
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3 RECONSTRUCTION

The projection matrices obtained by the calibration
method described above will be used in a reconstruc-
tion process. The 3D reconstruction results are depen-
dent on the results from the calibration method, and
they are a good assessment for the calibration process.

First, the algorithm used to reconstruct from
images, which is based on the technique from volume-
tric modelling known as space carving,4 is described.
Then, some reconstruction results are presented, one
using the images in Fig. 7 and its projection matrices.

a

b

c

7 Images used in surface reconstruction process



10 N. MARTINS AND J. DIAS

The Imaging Science Journal Vol 52 IMAG 1803 © RPS 2004

It should be noted that the reconstruction process
does not take advantage of the use of mirrors and can
be used with other sets of calibrated images obtained
from different viewpoints. The reconstruction method
described in the paper only needs to have calibrated
images of the 3D object to be reconstructed, and some
of those images can be images reflected from mirrors.

As described in section 1, the technique is applied to
a volume previously defined. That volume is carved
until the resulting surface is consistent with the
acquired images. One voxel (a volumetric element of
the 3D world) is consistent with an image when its
radiation value is similar to its colour projection in the
image. So, in the excavation process there is a radia-
tion function which attributes its radiation value to a
voxel in space. The consistence criterion is estimated
for the voxel and, if it is satisfied, the radiation value
is attributed accordingly. Otherwise, the voxel will
be eliminated, since it does not belong to the volume
being reconstructed. This process is repeated until no
more voxels can be eliminated.

This approach follows Wong’s work5 to obtain the
shape and texture of the object in the scene. Thus,
the reconstruction algorithm creates an octree from
the images and uses a variation of the consistence test.
Instead of a function that models the scene radiation,
silhouettes from the object are used. These silhouettes
are obtained from silhouettes extracted by an edge
filter. This variation improves the test of consistence
for each voxel.

The surface texture is computed in parallel with the
volume carving. Since each image from a surface point
defines a set of colours, the final texture will be gener-
ated from that set of colours, as described in section
3.3.

3.1 Octree representation

An octree35 is a data structure with the shape of a tree,
in which every node has, at most, eight ramifications.
It is generally used in graphic computation for a volu-
metric representation of objects, where every node on
the tree represents a part of the object surface, called
voxel (volume element), in 3D space.

The representation of the objects is achieved as
follows. The root node of the octree consists of a sole
voxel of large dimension, which defines the involving
volume of the object. The octree is built, subdividing
recursively every voxel of the tree into eight sub-
voxels, which are represented by eight resulting nodes.
To every node of the tree is attributed one of three

colours (black, grey or white), according to the occu-
pation of the voxels with the object (occupation rate).
A black node represents a completely filled voxel, a
grey node represents a partially filled voxel, and a
white node represents a completely empty voxel. It is
noticeable that neither the black nor the white nodes
have ramifications. The grey nodes have ramifications
that could have one of the three colours. Figure 8
shows a simple volume represented by an octree.

More details concerning the building and manipula-
tion of the octree can be found in the work of Jackins
and Tanimoto35 and Chen and Huang.36

In the present implementation, the voxels are cubes
and every sub-division generates eight identical sub-
cubes. Every node in the octree stores the voxel colour,
its length and the coordinates of its centre. It also
contains information about its ramifications, if there
are any. The voxel colour represents its occupation
level with the object. So, it will be black if completely
filled, grey if partially filled or white if completely
empty.

3.2 Space carving

The algorithm, based on silhouettes, initially estab-
lishes the root node of the octree as a grey node which
completely enfolds the object. From this node new
levels are formed, subdividing every grey node from
the previous level into eight sub-nodes. Neither the
white nor the black nodes need to be subdivided
because all their possible ramification nodes would
have the same classification as the original ones. To
test whether a voxel must be divided, the consistence
test is applied by projecting the voxels in every used
image and, with the resulting points, verifying whether
they belong to the silhouette in those images.

The algorithm for the 3D reconstruction, using
calibrated images of the same scene, collected from
several different positions, is given by the following
pseudo code:

Set the size of the cube that contains the object;
Set the number of levels for the octree;

8 Representation of simple volume by octree
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Initialise the root node of the octree as grey;
While maximum level is not reached do,

If no grey node in the current level then,
End the process;

For each grey node of the current level do,
Subdivide it into eight sub nodes;
For each sub node do,

Set its colour to black;
For each image in the sequence do,

Project the cube onto the image;
If the projection lies completely outside the silhouette
then,

Set the colour of the correspondent node to white;
Ignore the rest of the images;

Else,
If the projection lies partially inside the silhouette
then,

Set the colour of the correspondent node to grey;
Else,

Keep the colour of the node;

In this algorithm, the bigger the division of the
initial volume, the better the reconstruction resolution
will be. However, for high-resolution volumes, the
process will be computationally slower, since the
number of voxels to test will increase by 8NL, NL being
the number of the octree level.

After completing the process of removing the
voxels, the remnants correspond to the 3D recon-
structed surface, which ensures geometric and photo-
metric consistency of the images of the surface, as
illustrated in Fig. 9.

A graphic library, OpenGL in this case, is used to
render the information included in the octree.

3.3 Textures

The textures are obtained in the same phase where the
voxels are tested. To recover the texture of a voxel, the
projection of the voxel on each the image is computed.
The final texture is a linear combination of the colour
set visible from each image. In the limit, the projection
of a voxel, on each image, is confined to a unique
point. In that case, the colour of the point in the image
will be colour of the voxel.

In practice, as several images of the 3D surface are
used and these images are captured from different

positions, the colour in each image, related to the same
3D point, can be different. The solution of this pro-
blem is to define the colour of the voxel by averaging
the colours of its projection in all the images.

In high-resolution volumes, more voxel points are
used and better results will be achieved, as illustrated
in Fig. 10.

3.4 Reconstruction results

The results from the reconstruction process are
presented in Fig. 11, using the calibration results
presented in section 2 for images illustrated in Fig. 7.
This result is supported by a 10-level octree.

9 Different levels of octree: (a) 2; (b) 3; (c) 4

a b

c d

e f

10 Textured results by levels: (a) 4; (b) 5; (c) 6; (d) 7; (e) 8;
(f) 9

11 Reconstruction result, using space carving process, of
scene presented in Fig. 7
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In order to show these method capabilities, a 3D
reconstruction of a person is presented in Fig. 12. This
result is supported by a nine-level octree, with more
accuracy of texture recovery than the results in Fig. 10.
Instead of four points of the voxel’s projections, more
points were used to calculate the final texture of the
voxel. One of the images used which produced that
result is presented to serve as ground truth in the pro-
cess of validating this method. For more dense details,
more octree levels can be used.

To compare the processing time and results with
other techniques, the Octcarve5 application, available
on the Internet,37 was used. For comparisons, some
of the sets of calibrated images, downloaded from
the Internet,37 were used, namely the ‘David’ and
‘Haniwa’ sets. For the ‘David’ images, the results from
the Octcarve application are presented in Fig. 13a,
obtained with a processing time of 1 min 15 s. With the
present application, the result presented in Fig. 13b
was obtained with a processing time of 0 min 56 s.
Both results are obtained by parameterisation of an
octree with 10 levels.

For the images from ‘Haniwa’, the results from
Octcarve application are presented in Fig. 14a,
obtained with a processing time of 3 min 53 s. With the
present application, the result presented in Fig. 14b
was obtained with a processing time of 3 min 02 s.

Both results are obtained with a parameterisation of
an octree with 10 levels.

The results verify that, in spite of the present
program being faster, the results from the Octcarve
application provide more detailed reconstruction. To
achieve similar results with the present application,
more octree levels need to be used.

4 CONCLUSIONS

The present paper developed a flexible new technique
for calibrating the camera, based on mirrors, applying
it to the surface reconstruction problem. This calibra-
tion method begins with Sameer’s idea7 and expands it
in order to obtain all the information needed concern-
ing the intrinsic camera parameters and the camera
relative orientation. It is a very simple method because
it requires the knowledge of only four points in a
planar mirror, two 3D points between the camera and
the planar mirror, and the projections of all 3D points
in each captured image. Although the points were not
measured with a precision device and data norma-
lisation was not used on the different estimation
processes, the present method obtains good recon-
struction results, as shown in Figs 11 and 12. These
results can be improved using more levels in the octree
with a subsequent increase in computing time.
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