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Abstract

Building cooperatively 3-D maps of unknown environments is one of the application fields of multi-robot systems. This article
addresses that problem through a probabilistic approach based on information theory. A distributed cooperative architecture model
is formulated whereby robots exhibit cooperation through efficient information sharing. A probabilistic model of a 3-D map and
a statistical sensor model are used to update the map upon range measurements, with an explicit representation of uncertainty
through the definition of the map’s entropy. Each robot is able to build a 3-D map upon measurements from its own range sensor
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nd is committed to cooperate with other robots by sharing useful measurements. An entropy-based measure of i
tility is used to define a cooperation strategy for sharing useful information, without overwhelming communication re
ith redundant or unnecessary information. Each robot reduces the map’s uncertainty by exploring maximum inf
iewpoints, by using its current map to drive its sensor to frontier regions having maximum entropy gradient. The p
ramework is validated through experiments with mobile robots equipped with stereo-vision sensors.
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. Introduction

Multi-robot systems (MRS) have been widely inves-
igated for the last decade[1–4]. These systems employ
eams of cooperative robots to carry out missions that
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are either inherently distributed in time, space or fu
tionality, and cannot be achieved by a single robo
wherein a multi-robot solution is more efficient, c
effective, reliable and robust than a single robot s
tion. Cooperation has, in general, three main pote
advantages: (i)efficiency—taking advantage from th
spatial distribution of sensors makes possible to re
the map’s uncertainty more quickly than if a sin
robot is used; (ii)reliability and robustness—with re-
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dundancy in robots capabilities, the failure of any par-
ticular robot does not necessarily compromise the over-
all mission success; (iii)specialization—robots with
different sensory or motion skills may have comple-
mentary and specialized features that overcome their
individual limitations and increase the team’s total util-
ity. Building a 3-D map of an unknown environment is
one of the application fields of MRS.

This article addresses two main issues: (i) develop-
ing a probabilistic model for vision-based 3-D map-
ping and frontier-based exploration using information
theory and (ii) sharing information efficiently through
communication in a team of cooperative mobile robots,
driven by information utility maximization.

1.1. Robotic mapping

Robotic mapping addresses the problem of acquir-
ing spatial models of physical environments with mo-
bile robots, which might be used to safely navigate
within the environment and perform other useful tasks
(e.g. surveillance). Some examples of sensors used for
building maps are cameras, range finders using sonars,
laser or infra-red rays, radars, tactile sensors, etc. As
sensors have always limited range, are subject to oc-
clusions and yield measurements with noise, mobile
robots have to navigate through the environment and
build the map iteratively. Some key challenges arise
from the nature of measurement noise (sensor model-
ing problem), high dimensionality of the entities be-
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1.1.1. Grid-based maps
Grid-based maps[12,13], also known as occupancy

grids or certainty grids, are widely used to intuitively
represent distributed spatial information, such as occu-
pancy or, closely related, traversability. They discretise
the workspace being mapped in cells with a given res-
olution. For each cell, it is maintained a probabilistic
belief about its state (e.g. free or occupied). In Ref.
[12], Moravec and Elfes developed occupancy grids as
a space representation model. In their seminal work,
they built 2-D occupancy grids by using a robot with
sonars. In Ref.[6], they extended the occupancy grid
technique for environment mapping of 3-D grids, using
stereo-vision as primary sensor. Borenstein and Koren
developed the vector field histogram[14], which is a
popular obstacle avoidance method based on 2-D oc-
cupancy grids. Grocholsky et al. propose in Ref.[15]
the integration of a decentralized architecture – De-
centralized Data Fusion – with occupancy grids, as a
means to combine observations from multiple robots
with communication capabilities. In Ref.[16], it is de-
scribed a blimp project where 3-D space is represented
through digital elevation maps, which are 2-D grids as-
sociating height with each cell. In Ref.[7], the notion
of occupancy grid was refined to avoid the binary rep-
resentation of the cell’s occupancy and to model it as a
continuous value between 0 and 1. They used 2-D cov-
erage maps to perform indoor exploration tasks with a
robot equipped with sonars.

In this article, we propose a grid-based probabilistic
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ng mapped (representation problem), the corres
ence or registration problem (registering meas
ents on a common coordinate space), dynami

hanging environments and defining an efficient
ey strategy to build the map (exploration proble
5].

Robots can be used for building fastidious m
f indoor environments[6,7], but they are particu

arly useful on mapping missions of hazardous
ironments for human beings, such as undergro
ines[8–10], where updated maps are required to

ent future accidents related with inundations or
apses, but where humans access is too risky or
mpossible due to difficult access routes; or nuc
acilities [11], where monitoring the state of the s
ophagus interior is required by maintenance pr
ures, but where humans exposure to radiation mu
voided.
odel of a 3-D map, which stores for each cell (vo
coverage belief. Concerning the map’s represent
odel, our main contribution is a more compact re

entation of this belief than using histograms[7], and
straightforward and efficient Bayesian update pr
ure. We also develop a method to easily update
ap upon new data yielded by range sensors.

.1.2. Registration, localization and SLAM
Robot’s autonomous localization is tightly rela

ith mapping, because accurate mapping depen
ocalization, which in turn relies on tracking the robo
osition to distinguishable landmarks identified in
urrent map, if a global localization scheme is not av
ble. During the mapping process, the robot has to

ster measurements obtained from different locati
hich requires its ability to localize itself accurately

he map. Moreover, in a multi-robot solution, estim
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ing accurately the robots’ relative position is required
to register measurements from different robots on a
common coordinate space. There is some recent work
on 3-D mapping with a single robot, focusing mainly
on the registration problem[11,9].

The problem of building a map and simultaneously
tracking the robot’s position on that map is known as
Simultaneous Localization and Mapping (SLAM). Ex-
tensive research has been devoted to SLAM for the past
few years and important progress has been achieved
[17,10,16,18–22]. It is an important issue, because it
provides an integrated solution of localization and map-
ping for applications where a global localization sys-
tem is not available and the robot is subject to accu-
mulation of pose errors during mapping. Most of the
proposed solutions are based on the implementation of
an extended Kalman filter, which correlates localiza-
tion estimates relative to different landmarks. Thrun et
al. [10] approach mine mapping as a SLAM problem
but, due to cyclic structure of mines, it yields difficult
correspondence problems. To solve this problem, they
use an iterative closest point algorithm, generating 3-D
maps by applying scan matching to 3-D measurements
after a 2-D occupancy grid map of the mine is obtained.
In Ref.[18], the variant FastSLAM is presented, which
combines a particle filter for sampling robot paths and
an extended Kalman filter for representing the map.
The particle filter implements a robust Monte Carlo lo-
calization algorithm[23]. This approach is more robust
to data association problems than algorithms based on
m
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a SLAM-based architecture[31] to a cliff surface ex-
ploration mission with a robot team. Each robot repo-
sitioned its sensors using an information-theoretic ap-
proach so as to fill uncertain regions of the environment
map, based on maximizing the expected new obtained
information.

In this article, we assume that robots are externally
localized through a global localization system, so the
work here presented does not fall in the heading of reg-
istration, localization and SLAM[24,28,25–27,29,30].

1.1.3. Exploration and active sensing
When a robot or a team of robots explore an un-

known environment and build a map, the objective is
to acquire as much new information as possible with
every sensing cycle, so that the time needed to com-
pletely explore it is minimized.

Bourgault et al.[32] used occupancy grids to ad-
dress the single robot exploration problem, as a balance
of alternative motion actions from the point of view
of information gain (in terms of entropy), localization
quality (using SLAM) and navigation cost. Although
they include information gain in their strategy, their
formulation is computationally heavy and they are only
able to use it off-line, for a limited number of proposed
destinations. Yamauchi proposed frontier-based explo-
ration[33] whereby robots are driven towards bound-
aries between open space and unexplored regions. He
also proposed a decentralized scheme whereby robots
shared local 2-D occupancy grids, which were fused
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aximum likelihood data association.
There are also some efforts to develop multi-ro

ocalization algorithms[24–27]and SLAM extension
o multi-robot systems[28–30]. Within these method
hen a robot determines the location of another r

elative to its own, both robots can refine their inte
eliefs based on the other robot’s estimate and imp

ocalization accuracy. Fox et al. introduced a pro
ilistic approach based on Markov localization, wh
as been validated through real experiments sho
drastic improvement in localization speed and a

acy, when compared to single robot localization[24].
oumeliotis and co-workers addressed the determ

ion of upper bounds on the position uncertainty ac
ulation for a group of robots, by using an exten
alman filter[25,26]. Martinelli et al. extended this a
roach, by considering the most general relative ob
ation between two robots[27]. Sujan et al. propose
ith their own local maps in order to obtain a glo
rid. Each robot explores the environment by selec

he closest frontier cell in its neighborhood. Burg
t al. developed a technique for coordinating a t
f robots while they are exploring their environm

o build a 2-D occupancy grid[34]. Their approac
ses the frontier-cell concept proposed in Ref.[33] and
onsiders a balance between travel cost and utili
nexplored regions so that robots simultaneously
lores different regions. The utility of a region is
uced when a robot selects a target viewpoint w
isibility range covers it. They do not define an
hitecture for the team and it is not clear how rob
hould interact and what to communicate to acc
lish the proposed coordination. In their seminal w
eported in Ref.[35], they used entropy minimizatio
o actively localize a robot by minimizing the expec
uture uncertainty.
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In Ref. [36], the problem of merging local maps
from different robots, with unknown start locations,
is addressed. Robots that can communicate with each
other are arranged in exploration clusters. The robots
within each cluster share a common map and coordi-
nate their exploration using an algorithm similar to the
one proposed in Ref.[34]. Before two robots merge
their local maps, they actively verify their relative lo-
cations, through the implementation of a particle filter
and a rendezvous strategy. The solution has been ap-
plied within the Centibots project[37], which deploys
100 robots in unexplored areas to build a map, search
for valuable objects and protect the environment from
intruders. A similar project is presented in Ref.[38],
reporting experiments with a team of 80 heterogeneous
robots. In Ref.[39], a 2-D grid-based version of Fast-
SLAM [18] algorithm is developed, which generates
trajectories to actively close loops during SLAM and
takes into account the uncertainty about the pose of
the robot during the exploration. Whenever this uncer-
tainty becomes too large, the robot re-visits portions
of the previously explored area. When the localization
uncertainty is low and no loop can be closed, a frontier-
based exploration strategy[33] is used.

Our approach to exploration and active sensing is
closely related with frontier-based exploration[33,34],
with two important improvements. Firstly, we ex-
plicitly define a distributed architecture model for
the robots, which restricts the communication among
robots to the minimum necessary to share useful sen-
s plo-
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which serves as a basis to reason and act coherently
towards a global system goal. Communication may
appear in three different forms of interaction[1]: (i)
via environment, using the environment itself as the
communication medium (stigmergy); (ii)via sensing,
when an agent knowingly uses its sensing capabilities
to observe and perceive the actions of its teammates;
and (iii) via communication, using a communication
channel to explicitly exchange messages among the
agents, thus compensating perception limitations.

Arkin [46] demonstrated that sometimes coopera-
tion between robotic agents was possible even in the
absence of communication, though it is a weak form of
cooperation, which may me very inefficient. Matarić
[47] showed that the ability to distinguish other robots
from the rest of other objects provides sufficient power
to overcome interference. Balch and Arkin[48] made
simulation studies of three typical multi-agent tasks,
using the three basic communication types referred
above, and found that: communication improves per-
formance significantly in tasks with little implicit com-
munication; and that more complex communication
strategies (goal-oriented) offer little benefit over ba-
sic communication (state). Within CEBOT framework,
Fukuda and Sekiyama[49] studied methods that sought
to reduce communication requirements, by increasing
the awareness level of individual cells. Parker[50] in-
vestigated the impact of awareness on a MRS and con-
cluded that it improves performance, regardless of team
size. Tambe presented STEAM[51], a general model
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ory data among robots and to coordinate the ex
ation. Secondly, we use entropy to explicitly rep
ent uncertainty in the grid-based probabilistic map
means to define a formal information-theoretic ba
round to reason about the mapping and explora
rocess.

.2. Communication in cooperative multi-robot
ystems (MRS)

Most of the work in MRS has been d
oted to the definition of different architectur
40,41,33,42,43,15,37], mostly behavior-base
44,45], that rule the interaction between the behav
f individual robots. Communication is a cent

ssue of MRS because it determines the pos
odes of interaction among robots, as well as
bility of robots to build successfully a world mod
f teamwork, which includes a heuristic that attem
o follow the most cost-effective method of attain
utual belief in joint intentions, by managing a tra
ff between communication and team incohere
osts. Stone and Veloso[52] proposed a method f

nter-agent communication, which assumes that ag
lternate between periods of limited and unlim
ommunication.

Although previous work on communication str
ures for MRS has led to some useful conclusions
esign guidelines, there is no a principled formal

hat can be systematically used to share efficie
ensory data based on information utility assessm
n order to support the efficient use of commun
ion in MRS. As communication is always limite
ither in resources applied to perceive the world

n bandwidth of a communication channel, using
ciently those resources is crucial to scale up co
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erative architectures for teams of many robots, with-
out limiting them to simple reactive and loosely co-
operative systems, with very limited or no awareness.
Current architectures extensively use explicit commu-
nication, not taking care[40,41,33,42,43], giving low
emphasis[37], or using no principled heuristics to
avoid the communication of redundant information.
The work of Grocholsky et al.[15] is an exception
to this trend, because they use entropy to define theo-
retic information measures for predicting the expected
information outcome associated with control actions.
Although it seems to be a rigorous method to model
the information flow within a team of robots, it is
not clear how it can be used to share efficiently sen-
sory data within mapping missions, and it is mainly
focused on coordination. We propose an information-
theoretic measure of information utility which is used
by robots to cooperate through sharing sensory data in
3-D mapping missions, without overwhelming com-
munication resources with redundant or unnecessary
information.

1.3. Notation

This sub-section states some notation that is used
throughout the article, in order to improve its readabil-
ity. Hereafter, vectors are written with bold lowercase
letters; tuples and sets are both written with uppercase
letters, but sets are written in calligraphy. Random vari-
ables (RV) are written with uppercase letters. The en-
t
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is Ys. Every coordinates refer to a global coordinates
frame{W}.

The kth batch of measurements isMk = (xk,Vk),
beingVk a set ofmk applied vectors (measurements), in
the pointxk. The sequence of batches of measurements
up to thekth batch of measurements is the setMk =
{Mi : i ∈ N, i ≤ k}, beingM0 = ∅ the initial empty
sequence. Thekth batch of measurements sent to other
robots isSk = (xk,Uk),Uk ⊆ Vk, beingUk a setsk of
useful measurements. Thekth batch of measurements
received from other robots isRk = (x′k,U

′
k), beingU′k a

set ofuk useful measurements from the sensor of other
robot, whose pose isx′k.

The 3-D workspace is divided into equal sized vox-
els with edgeε, ε ∈ R. The set of all voxels yielded by
such division is the 3-D gridY. The indexl is used for
denoting individual voxels. The functionv : R3→ Y
determines what grid’s voxel a given 3-D point belongs
to. The functionw : Y→ R3 computes the center co-
ordinates of a voxell ∈ Y.1 The set of voxels traversed
by a vector	u when applied in pointa is denoted as
Z(	u, a).

The coverage of a voxell ∈ Y is represented through
the continuous RVCl, taking valuescl ∈ [0,1]. Given
a batchMk, the set of influenced voxels by a measure-
ment 	vk,i ∈ Vk is denoted asZk,i ⊂ Y and the mea-
surement’s information utility is denoted asIk,i. The
information utility of thekth batch of measurements
is denoted asIk. An individual measurement influenc-
ing the coverage estimate of a voxell ∈ Y is the tuple
D he

s
t he set
o te of
a
{
B -
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d -
s
v -
d

o vari-
a e

, i.e.
i

ropy of discrete RVX is H(X) and I(X;Y ) denotes
he mutual information between two RVX andY. The
oint entropy of a set of discrete RVX = {X1, . . . , Xn}
s H(X). The differential entropy of a continuous R

is h(Y ).
The fleet ofn robots is the setF = {1, . . . , n}. The

ndexk ∈ N0 is used for batches of measurements.
et of time instants when measurements are obtain
= {tk : tk ∈ R, k ∈ N0}, with tk−1 ≤ tk, ∀k∈N. The

th batch of measurements is obtained at time ins
= tk ∈ T, beingt = t0 ≤ tk, ∀k∈N the initial time in-
tant, which is associated to indexk = 0. The robot’s
ose isY = (x, a), which includes the sensor’s positi
∈ R3 and its attitudea(t) ∈ R3 (three Euler angles
hose angles are assumed to be positive in the c

erclockwise direction. The robot’s pose when thekth
atch of measurements is obtained isYk = (xk, ak) and

he selected viewpoint (navigation target) for the ro
l
j = (dj, dlj), beingdj ∈ R the distance between t

ensor and the detected obstacle anddlj ∈ R the dis-
ance between the sensor and the voxel’s center. T
f measurements influencing the coverage estima
voxell ∈ Y, afterk batches of measurements, isDlk =
Dlj : j ∈ N, j ≤ nk(l)}, having cardinalitynk(l) ∈ N0.
efore the first batch, i.e. fork = 0, the set of influenc

ng measurements isDl0 = ∅. The coverage probabili
ensity function of a voxell ∈ Y, afterk batches of mea
urements, isp(cl|Mk) = p(cl|Dlk),0 ≤ cl ≤ 1. The
oxel’s entropy is denoted asH(l) = H(Cl) and its gra
ient as	∇H(l).

The 3-D probabilistic coverage map afterk batches
f measurements is the set of coverage random
blesC = {Cl : l ∈ Y} described statistically by th

1 The voxel’s center is a point equidistant to all voxel’s faces
ts geometric center.
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set of pdf’s P(C|Mk) = {p(cl|Mk) : l ∈ Y}, being
P(C|M0) = {p(cl|M0) = p(cl|Dl0) : l ∈ Y} the initial
map. The map’s entropy afterk batches of measure-
ments is denoted asH(C|Mk) or simply asH(tk). The
mission execution time istkmax, being associated to the
last batch of measurements, i.e. thekmaxth batch of
measurements. Given the entropy thresholdHth, it is
the first batch of measurements for whichH(tk) ≤ Hth.
The associated total number of processed measure-
ments ismT, the total number of received measure-
ments form other robots isrT and the traveled distance
by the robot during the mission isdT. The mission ex-
ecution time as a function of the number of robotsn is
tkmax(n).

1.4. Organization of the article

This article is organized as follows. Section2
presents the proposed distributed architecture model
for 3-D mapping, giving an overview of the framework
presented in the following sections. Section3 presents
the theoretical background concerning entropy and mu-
tual information. Section4 presents a probabilistic
model of a 3-D map, which encompasses: updating the
map upon new sensory information based on a Gaus-
sian sensor model of a stereo-vision sensor, using en-
tropy to assess the map’s uncertainty, and using the
map’s entropy field to perform a frontier-based explo-
ration of the environment. At the end of this section, af-
ter briefly describing an experimental setup comprised
o sen-
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ual robots belonging to the multi-robot system might be
heterogeneous in terms of sensory skills and mobility,
all of them follow the same architecture model when
performing the 3-D mapping mission. That is why both
figures refer to an individual robot; nevertheless, the
interaction with other robots is represented through
the communication block and its associated data
flow.

Fig. 1 shows the different parts of the process and
how they interact. The robot’s platform is assumed to
have a sensor, a localization module and an actuator.
The sensor provides new sets of vectorsVk+1 where ob-
stacles are detected from the current sensor’s poseY (t).
The localization module gives the sensor’s poseY (t),
including position and attitude.2 The actuator changes
the sensor’s pose (robot’s pose) accordingly with a new
selected exploration viewpointYs. New data from the
robot’s sensor is associated with its current pose, given
by the localization module, to form a new batch of
measurementsMk+1 = (xk+1,Vk+1). Then, indexk is
incremented and the new batch of measurements be-
comes the current batchMk. The memory of measure-
ments is updated asMk =Mk−1 ∪Mk. The previous
mapP(C|Mk−1) is updated upon the new batch of mea-
surementsMk, which yields the current mapP(C|Mk).
The current map is used to choose a new target pose
Ys which is the reference input to the robot’s actuator.
As part of map updating, it is built a batch of mea-
surementsSk = (xk,Uk) having the most useful data
from sensorUk ⊆ Vk. Those selected measurements
a ica-
t bot
w
o Co-
o uistic
c
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t ions.
A en
t ents,
u s with
o from
o d ac-
c the

s as-
s nates
f

f mobile robots equipped with stereo-vision range
ors, some examples of volumetric maps are sh
ection5 introduces a mutual information-based m
ure of information utility. Robots use this meas
o cooperate through sharing information, by sel
ng and communicating the most useful informat
o their peers. After briefly describing the multi-rob
oftware architecture, Section5 ends with the prese
ation of results that demonstrate the benefit of co
ration through sharing sensory data. The article
ith conclusions and future research guidelines.

. Architecture for 3-D mapping with a
ulti-robot system

Figs. 1 and 2depict complementary views of our
hitecture model for 3-D mapping. Although indiv
re shared with other robots through the commun
ion module. This module can also provide the ro
ith batches of measurementsRk = (x′k,U

′
k) given by

ther robots and the map is updated accordingly.
peration among robots arises because of this altr
ommitment to share useful measurements.

Fig. 2depicts a flowchart showing the sequenc
he aforementioned robot’s operations and interact
t the beginning of the mission an initial map is giv

o the robot. Then it gets a new batch of measurem
pdates the map and shares useful measurement
ther robots. Then it might receive measurements
ther robots and, in that case, the map is update
ordingly. Given the new map, a new viewpoint for

2 In this article, the localization problem is not addressed. It i
umed that each robot is able to localize itself in a global coordi
rame.
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Fig. 1. Block diagram showing the relation between different parts of the process and the resources of a given roboti of the fleetF.

sensor is chosen and the robot starts moving itself. Dur-
ing navigation, the robot continues updating the map
whenever new data is received from other robots. When
the robot reaches the new target pose, the process re-
peats itself with a new batch of measurements provided
by the sensor from its new pose.

3. Entropy and mutual information

Entropy is a general measure for the uncertainty of a
belief[53]. When applied to a discrete random variable,
it evaluates to its shortest description, being as high
as the variable’s uncertainty[54]. Being X a discrete
RV over a discrete sample spaceS with probability
distributionp(x) = P(X = x), entropy is defined as the
expected value of log1

p(X) :

H(X) = −
∑
x∈S

p(x) logp(x) = E
[
log

1

p(X)

]
. (1)

Notice thatH(X) ≥ 0, being assumed the continuity
convention 0 log 0= 0. The logarithm’s base deter-
mines the information unit whereby entropy is mea-
sured. Hereafter, we use the base 2 for the logarithm
and, in this case, entropy is measured in bits.

Given two discrete RVX and Y, the entropy def-
inition can be extended to compute the joint en-
tropyH(X, Y ) and the conditional entropyH(X|Y ) or
H(Y |X) [54]. For instance, the entropyH(X|Y ) is the
entropy ofX if Y is given. Thejoint entropy’s chain rule
theorem states

H(X, Y ) = H(X)+H(Y |X), (2)

H(X, Y ) = H(Y )+H(X|Y ), (3)

H(X)−H(X|Y ) = H(Y )−H(Y |X), (4)

which means that joint entropy is the entropy of one
variable plus the conditional entropy of the other.
Given thatX andY are statistically independent RV if
p(x, y) = p(x)p(y), the following inequalities can be
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Fig. 2. Flowchart showing the data flow during the mission of a given roboti of the fleetF.

proved:

H(X, Y ) ≤ H(X)+H(Y ), (5)

H(X|Y ) ≤ H(X), (6)

H(Y |X) ≤ H(Y ). (7)

Equalities occur whenX andY are independent RV.
Mutual information provides a measure of the re-

duction of a RV’s uncertainty due to the knowledge of
another[54] and it can be defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (8)

I(X;Y ) = H(X)+H(Y )−H(X, Y ). (9)

Eq.(8)suggests that mutual information may be viewed
as a measure of the statistical dependence between two
random variables. The definitions provided by Eq.(9)
states that mutual information is the information of a
variable minus its information if the other is given.
Note thatI(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0, where
the equality occurs ifX andY are statistically indepen-
dent RV. SinceI(X;X) = H(X)−H(X|X) = H(X),
entropy is sometimes referred to asself-information.
Theconditional mutual information of two RV X and
Y given another RVZ is defined as

I(X;Y |Z) = H(X|Z)−H(X|Y,Z), (10)

which is a generalization of Eq.(8) to conditional dis-
tributions.
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3.1. Differential entropy

Entropy’s classical definition applies only to dis-
crete RV because it was developed by Shannon as a
measure of information for computer networks. How-
ever, its definition might be generalized for continuous
RV, being denoted asdifferential entropy [54]. Being
f (x) the probability density function of a given contin-
uous RVX with a continuous domainS, it is defined
as

h(X) = −
∫
S

f (x) logf (x) dx. (11)

As probability density functions may evaluate to val-
ues greater that one, differential entropy cannot be
taken as an absolute measure of information or uncer-
tainty because it can be negative. Most of the proper-
ties and theorems of the entropy definition for discrete
RV are also valid for differential entropy. However,
while the latter tends to−∞ when a RV has no uncer-
tainty/information, the former evaluates to zero. The
discrete definition is thus more convenient because it
is always non-negative.

3.2. Sets of discrete random variables

The joint entropy chain rule theorem given by Eq.
(2) can be extended to a set of more than two RV
[54]. The joint entropy of a set of discrete RVX =
{X1, . . . , Xn} with joint pdfp(X) = p(X1, . . . , Xn) is

H
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U

H

w -
d
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ex-
p ots’

knowledge about the environment. As sensors have
limited range, are subject to occlusions and yield noisy
measurements, robots have to navigate through the en-
vironment and build the map iteratively, in order to
reduce the map’s uncertainty. In this section, we pro-
pose agrid-based probabilistic representation of 3-D
maps which enables to model explicitly uncertainty. Al-
though the proposed framework might be used to model
any phenomena spatially distributed, as we have vali-
dated it through experiments with robots equipped with
stereo-vision range sensors providing distance mea-
surements, hereafter we will denote a map as a coverage
map, which is a 3-D representation of the environment
occupancy with obstacles.

4.1. Definition of a volumetric model

One of the most popular space representation mod-
els areoccupancy grids, which are discretised ran-
dom fields wherein the probability of occupancy of
each independent cell is maintained[12,13]. They have
been extensively used in robotics mainly due to their
simplicity and suitability for decision-theoretic ap-
proaches. Some recent examples of their application
are[34,32,55]. The definition of probabilistic map that
we use was first introduced in Ref.[7], wherein the no-
tion of occupancy grid was refined in order to avoid a
strictly binary representation of each cell’s occupancy
(free or occupied), through the notions ofcoverage and
coverage map. Thecoverage of a cell is the portion of
t en 0
a n
g in-
n s the
w e be-
l ive
m

ne
a m
w dge
ε p-
r l is
a lobal
c f
v les
i
t
p ive
(X) = H(X1, . . . , Xn) =
∑
i=1

H(Xi|X1, . . . , Xi−1).

(12)

sing Eq.(6), it can be proved the inequality

(X) ≤ H(X1)+H(X2)+ · · · +H(Xn)

=
n∑
i=1

H(Xi), (13)

herein the equality occurs if all RV inX are indepen
ent.

. Probabilistic volumetric maps

An important resource for robotic mapping and
loration is obviously a map representing the rob
he cell that is covered by obstacles (a value betwe
nd 1). Acoverage map stores for each cell of a give
rid a probabilistic belief about its coverage. Our
ovation on the use of this space representation i
ay we represent and update the voxel’s coverag

ief [56] and using it on 3-D mapping with cooperat
ulti-robot systems[57].
Our volumetric model[56] assumes that we defi

3-D discrete gridY, which divides the robotic tea
orkspace into equally sized voxels (cubes) with e
∈ R and volumeε3. Fig. 3 shows a geometric re

esentation of our model. Any edge of any voxe
ssumed to be aligned with one of the axes of a g
oordinates frame{W}. The portion of the volume o
oxel l ∈ Y which is covered (occupied) by obstac
s modeled through the continuous random variableCl,
aking valuescl in the interval 0≤ cl ≤ 1, and having
(cl) as its probability density function. The object
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Fig. 3. Volumetric discrete grid: (a) the grid divides the workspace into equally sized voxels, whose edges are aligned with one of the axes of
the world coordinates frame{W} and (b) the coverageCl of each voxell ∈ Ywith edgeε, given the sequenceMk of k batches of measurements,
is modeled through a probability density functionp(cl|Mk) (the example is a normal pdfN(µl = 0.4, σl = 0.1)).

of building a map is to obtain for each voxell ∈ Y an
estimate as accurate as possible about its coverageCl.
The advantage of modeling the coverage of a voxel
through a continuous random variable between 0 and
1, instead of a binary representation (e.g. free or oc-
cupied), is to better model the space occupancy. For
example, if a voxel is traversed by an obstacle some-
where in the middle, which divides the voxel into two
halves, its coverage is likely to be 0.5, whereas it would
be considered a fully occupied voxel (coverage equal
to 1) if a binary representation was used.

Let

Mk = (xk,Vk) : k ∈ N, (14)

be thekth batch of measurements, beingxk the sensor’s
position from where measurements are obtained and
Vk the set of measurements belonging to the batch,
provided by the robot’s sensor att = tk, tk ∈ R, k ∈ N.
Let also

Mk = {Mi : i ∈ N, i ≤ k} (15)

be a sequence ofk batches of measurements, gathered
in the time intervalt0 ≤ t ≤ tk, beingt0 the initial time
before any batch of measurements. Fork = 0 (t = t0),
the sequence of batches is the empty setM0 = ∅.

The knowledge about the voxel’s coverageCl, after
k batches of measurements, is modeled through the pdf
(probabilistic belief)

p(cl|Mk), 0 ≤ cl ≤ 1. (16)

We define the3-D probabilistic map, afterk batches of
measurements, as the set of random variables

C = {Cl : l ∈ Y}, (17)

containing a coverage random variable for each voxel
l in the 3-D discrete gridY. These random variables
are described statistically through the set of coverage
probability density functions:

P(C|Mk) = {p(cl|Mk) : l ∈ Y}. (18)

The coverage of each individual voxel is assumed to
be independent from the other voxels’ coverage and
thusC is a set of statistically independent random vari-
ables. Themap’s joint pdf p(C|Mk), afterk batches of
measurements, can be written as

p(C|Mk) =
∏
l∈Y
p(cl|Mk). (19)
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Fig. 4. Quantized versionp(c�
l
|Mk) of the voxel’s coverage pdf

p(cl|Mk). The example is a 16 bins histogram built upon the pdf
depicted inFig. 3b, havingH(Cl) = 2.749 bits.

4.2. Map’s entropy

As it was mentioned in Section3.1, the entropy
definition for discrete random variables is generally
preferable to differential entropy. For this reason, al-
though we use a continuous RV to model our knowl-
edge about the voxel’s coverage, we use a quantized
version of the coverage pdf to compute discrete entropy
(Fig. 4). Thus, we discretise the coverage continuous
RV Cl, l ∈ Y with a discrete RVC�

l havingb possible
outcomesc�l ∈ {1, . . . , b}. This discrete RV is an ap-
proximation of the voxels’ coverage pdfp(cl) through a
relative frequency histogramp(c�l ) havingb bins, such
as:

p(c�l = i) =
∫ i

b

i−1
b

p(cl) dcl, i ∈ {1, . . . , b}. (20)

Using the definition of entropy given by Eq.(1), the
voxel’s entropy is

H(Cl) ≡
b∑
i=1

p(c�l = i) logp(c�l = i). (21)

Hereafter, we will always assume that we useb = 128
bins in the computation of Eq.(21), which means that
voxel’s entropy is bounded to the interval 0≤ H(Cl) <
7.

Since the coverage RV of different voxels are as-
sumed to be independent, the map is a set of indepen-
dent RV. Accordingly with Eqs.(12) and (13), and the
map’s joint pdf given by Eq.(19), themap’s joint en-
tropy is just the sum of voxels’ individual entropy

H(C) ≡
∑
l∈Y

H(Cl), (22)

which is a measure of how much uncertainty the map
contains[56].

If our knowledge about the voxels’ coverage is
conditioned to thek previous batches of measure-
mentsMk, Eqs.(20)–(22)can obviously also be used
to compute the voxel’s coverage entropyH(Cl|Mk)
and the map’s joint entropyH(C|Mk) conditioned to
that knowledge, by usingp(cl|Mk) andp(c�l |Mk) in-
stead of usingp(cl)p(c�l ). In order to simplify our
notation, the map’s joint entropyH(C|Mk) after k
batches of measurements will be sometimes denoted as
H(tk).

4.3. Mission execution time

Since discrete entropy is an absolute measure of un-
certainty, the map’s entropy given by Eq.(22) inherits
that property and is an absolute measure of the map’s
uncertainty or quality. This property can be used to de-
fine an important performance measure, which is the
mission execution time. Consider a given environment
t
f ron-
m rent
t asily
c
fi lity
t ping
m
a i.e.
t obot
w n be
d ition

H

T tant
t pre-
d
u per-
o be mapped and its associated discrete gridY. If dif-
erent mapping missions are performed in this envi
ent at different time periods and, perhaps, by diffe

eams of robots, the robots’ performance can be e
ompared if a given map’s entropy thresholdHth is de-
ned. This entropy value is the minimum map’s qua
hat robots must accomplish at the end of the map
ission. The mission execution timetkmax ∈ T, which is
ssociated with thekmaxth batch of measurements,

he last batch of measurements acquired by the r
ith the lowest entropy at the end of the mission, ca
efined as the time instant that verifies the propos

(tkmax) ≤ Hth ∧ ∀k<kmax,k∈N0, H(tk) > Hth. (23)

he mission execution time is thus the first ins
ime when the map’s entropy is reduced below the
efined map’s entropy thresholdHth [56]. It can be
sed as a performance benchmark to compare the
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formance of different mapping missions in the same
environment.

4.4. Voxels traversed by a vector

Consider an applied vector	u ∈ R3 connecting point
a to pointb (Fig. 5a). The set of voxels traversed by	u
can be determined by sampling it so that at least one
sample per traversed voxel is gathered in a set ofw 3-D
points

Q(	u, a) = {qi : i ∈ N, i ≤ w}. (24)

To guarantee this minimum sampling, the vector	u is
divided into segments with maximum length equal to
the voxel’s edgeε, wherein the coordinates of each
sampling point are given by

qi = a + (i− 1)ε
	u
‖	u‖ , i ∈ N, i ≤ w. (25)

The number of sampled points is

w = trunc

(‖	u‖
ε

)
+ 1. (26)

Let

v : R3→ Y (27)

be a function which determines what grid’s voxel a
given point belongs to. The set of voxels traversed by

vector	u when applied in pointa is

Z(	u, a) = {v(qi) : qi ∈ Q(	u, a)} ⊂ Y. (28)

4.5. Voxels influenced by a measurement

A range sensor typically provides batches of dis-
tance measurements from each point where it is located.
Consider a batch of measurementsMk = (xk,Vk), be-
ing xk ∈ R3 the sensor’s position from where measure-
ments are obtained (shared by all measurements in the
batch), and a set

Vk = {	vk,i ∈ R3 : i ∈ N, i ≤ mk} (29)

of mk applied vectors (measurements) connectingxk
to the set of points{xk + 	vk,i : i ∈ N, i ≤ mk} where
obstacles are detected. For each measurement	vk,i ∈
Vk, obtained from the sensor’s locationxk, we need to
determine the set of voxelsZk,i ⊂ Ywhose coverage is
influenced by that measurement. AsFig. 5b suggests,
this set is

Zk,i = Z(	vk,i, xk) ∪ {l′}, (30)

which includes the setZ(	vk,i, xk) of voxels traversed
by 	vk,i plus the voxell′ which is immediately behind

F set of tr ector
u when
c or and near to the
d the bla likely
t

ig. 5. Set of voxels traversed by a vector in a 2-D grid: (a) the
	 when applied in pointa and (b) given a measurement (vector)	vk,i,
ontains the shaded voxels; light grey voxels between the sens
etected obstacle have coverage values between 0 and 1, and

o be fully occupied.
aversed voxelsZ(	u, a) contains the shaded voxels traversed by the v
the sensor is located in the pointxk , the set of influenced voxelsZk,i
the obstacle are more likely to be fully empty, dark grey voxels
ck voxell′, located immediately behind the detected obstacle, is more
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the obstacle. This voxel can be computed as

l′ = v
(

xk +
(

trunc

(‖	vk,i‖
ε

)
+ 1

)
ε
	vk,i
‖	vk,i‖

)
. (31)

and is more likely to be fully occupied[56].

4.6. Measurements influencing the voxel’s
coverage

Consider a sensor’s positionxk and a sensor’s mea-
surement	vk,i obtained from that position. Ifl ∈ Zk,i,
the sensor’s measurement influences the coverage of
the voxell ∈ Y. Let

w : Y→ R3 (32)

be a function that computes the center coordinates
[xl, yl, zl]T of a voxell ∈ Y. Let the tuple

Dlj = (dj, d
l
j) (33)

be an individual measurement influencing the coverage
estimate of voxell ∈ Y, being

dj = ‖	vk,i‖ (34)

the measured distance (distance between the sensor and
the detected obstacle) and

dlj = ‖(w(l)− xk)‖ (35)

the distance between the sensor and the voxel’s center.
The set ofnk(l) measurements influencing the coverage
e e-
m
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k,i

rwise

The setMk given by Eq.(15) contains all the mea-
surements yielded by the sensor until thekth batch of
measurements, but the measurements which really in-
fluence the coverage of voxell ∈ Y are those measure-
ments contained by the setDlk. For this reason, we have
the important equality

p(cl|Mk) = p(cl|Dlk), ∀l∈Y,k∈N0. (39)

4.7. Sensor Model

The probability density functionp(cl|Dlj) repre-

sents a sensor model whereby measurementsDlj =
(dj, dlj) are converted in estimates of coverage values
Cl = cl of a voxell. We generally do not know the exact
model of the distributionp(cl|Dlj). However, as local-
ization errors and sensor errors can be usually assumed
to follow a Gaussian model, we represent the voxel’s
coverage belief through a Gaussian model

p(cl|Dlj) = N(µ(dj, d
l
j), σ(dj, d

l
j), cl). (40)

wherein, accordingly with the previously defined nota-
tion,dj ∈ R is the distance between the sensor and the
detected obstacle anddlj ∈ R the distance between the
sensor and the voxel’s center[56]. Beingε the voxel’s
edge, the mean of the Gaussian is given by

µ(dj, d
l
j) =




0, (dlj − dj) ≤ − ε2
1
2 +

dl
j
−dj
ε
, |dlj − dj| < ε

2
. (41)

T
5 s not
e e
l l to
0 ds in
a al to
t n
0 to
t not
e e
l ual
t

stimate of a voxell ∈ Y, afterk batches of measur
ents, is

l
k = {Dlj : j ∈ N, j ≤ nk(l)} = {Dl1, . . . , Dlnk(l)},

(36)

aving cardinality

k(l) <
k∑
a=1

ma, nk(l) ∈ N0, (37)

ecause not all measurements yielded by the se
ecessarily influence the voxel’s coverage. Given

nitial empty set of influencing measurementsDl0, the
et of influencing measurements is recursively b
ponMk as

l
k = Dlk−1 ∪

[
mk⋃
i=1

{{‖	vk,i‖, ‖(w(l)− xk)‖
}
, l ∈ Z

∅, othe
}]
. (38)


1, (dlj − dj) ≥ ε

2

his equation distinguishes three situations (seeFig.
b): in the first case, the measured distance doe
nd in the voxell, with dlj < dj, and thus it is mor

ikely that the voxel is fully empty (coverage equa
); in the second case, the measured distance enl
nd the mean of its coverage is inverse proportion

he amount of the voxel covered bydj (a value betwee
and 1); in the third case, which is only applicable

he voxell′ in Eq.(30), the measured distance does
nd in the voxell, with dlj > dj, and thus it is mor

ikely that the voxel is fully occupied (coverage eq
o 1). The standard deviation is given by
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Fig. 6. Example of the coverage standard deviation damping as a
function of the distance between the voxel’s center and the detected
obstacle.

σ(dj, d
l
j) =




σs(dj )
ε
, |dlj − dj| ≤ ε

2

σs(dj )
ε

exp
(
−|d

l
j
−dj |− ε

2

τ

)
, otherwise

,

(42)

wherein

σs(d) = σmin + ζd (43)

is a linear model of the range sensor’s standard devia-
tion. It is at least equal toσmin near to the sensor and
increases linearly with distanced, which is a typical
behavior of range sensors because accuracy decreases
with distance. Eq.(42)states thatσ(dj, dlj) isσs(dj)/ε if
the measured distance does end in the voxel and, given
the damping ratioτ (seeFig. 6), decays exponentially
with |dlj − dj| for voxels farther from the detected ob-
stacle which, intuitively, have less uncertain coverage
estimates.

Accordingly with the definition of coverage pdf
given by Eq.(16), the Gaussian yielded by the sen-
sor model has to be truncated so that the cumulative
probability over the coverage domain sums up to one,
i.e. P(0 ≤ Cl ≤ 1)= 1. In Ref. [7], it is proposed a
sensor model based on a mixture of a Gaussian and
an uniform distribution, wherein the latter distribution
adds some white noise to ensure a correct normaliza-
tion when truncating the Gaussian to the range [0,1].
We claim that a better way of normalizing a normal
distribution truncated to that interval is to multiply the

Fig. 7. Example of a sensor model:dj = 800 mm,σmin = 16 mm,
ζ = 1× 10−2, τ = 2 m,ε = 200 mm.

pdf by a normalization factor

γ(µ, σ) =
(∫ 1

0
N(µ, σ, x) dx

)−1

, (44)

which preserves the normal distribution instead of sum-
ming white noise[56]. Our definition of the Gaussian’s
mean is also slightly different from Ref.[7], for the
second case of Eq.(41). Fig. 7 shows an example of
the sensor model for a detected obstacle at a distance
dj = 800 mm anddlj ∈ [0,1000] mm.

4.8. Updating the map

Updating the 3-D probabilistic coverage map(17)
upon a new batchMk = (xk,Vk), means updating the
coverage pdf(16) of voxels influenced by the mea-
surements contained on it. The new batch contains a
set ofmk measurementsVk = {	vk,i ∈ R3 : i ∈ N, i ≤
mk}, beingZk,i ⊂ Y the set of influenced voxels by
a measurement	vk,i ∈ Vk. Recall also thatDlk is the
set of influencing measurements of a voxell ∈ Y af-
ter thekth batch of measurements, having cardinal-
ity nk(l). Let Dln = {Dl1, . . . , Dln} denote a set ofn
measurements influencing the coverage belief of a
voxel l ∈ Y. Note thatDlk andDlnk(l) are equivalent
notations.

The algorithm for updating the map uponMk can
be written in pseudo-code as:
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Dlk ← Dlk−1,∀l∈Y
nk(l)← nk−1(l),∀l∈Y
for i = 1 . . . mk

forall l ∈ Zk,i
nk(l)← nk(l)+ 1
Compute influencing

measurement Dlnk(l) upon	vk,i
Dlk ← Dlk ∪ {Dlnk(l)}
Update p(cl|Dlnk(l)−1) upon

p(cl|Dlnk(l)) and obtain

p(cl|Dlnk(l))
end forall

end for.

Eqs. (34) and (35) are used to computeDlnk(l)
upon a vector	vk,i yielded by the sensor located in
xk. The sensor model, given by Eq.(40), is used
to convert sensor’s measurements in new coverage
estimates.

4.8.1. Initial map
The initial beliefp(cl|Dl0) = p(cl|M0) represents

prior knowledge about the voxel’s coverage, before any
batch of measurements. Unless there is a previous map
of the environment being mapped, it is usually chosen
to be the less informative, i.e. a pdf with maximum un-
certainty[56]. Applying the differential entropy defini-
t le
X t
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h

I y
b -
t ith
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We are going to state how to update this belief and
determine a new coverage beliefp(cl|Dln) upon a new
measurementDln, which is converted in a new cover-
age estimate through the sensor modelp(cl|Dln), given
by Eq.(40). The belief about the voxel’s coverage can
be computed as[56]:

p(cl|Dln) =
p(Dln|cl)p(cl)

p(Dln)
= β1p(cl)p(Dln|cl) (46)

p(cl|Dln) = β1p(cl)
n∏
j=1

p(Dlj|cl) (47)

p(cl|Dln) = β1p(cl)
n∏
j=1

p(cl|Dlj)p(Dlj)

p(cl)
(48)

p(cl|Dln) = β1β2

n∏
j=1

p(cl|Dlj)

= β1β2p(cl|Dln)p(cl|Dln−1). (49)

Applying Bayes rule, we obtain(46). Then, if we as-
sume that consecutive measurements are independent
given the voxel’s coverage, we obtain(47). Applying
again Bayes rule, we obtain(48). If we assume that
p(Dlj) is constant withj, we finally obtain(49). The
constantsβ1 andβ2 are normalization constants en-
suring that the left-hand side sums up to one over all
cl. Thus, Eq.(49) can be used recursively to update
t is-
t e-
l
g ea-
s
N a-
s elief
p

g
m
o
t ov-
e
b -
a pro-
v
s o the
s nts
ion given by Eq.(11) to a continuous random variab
with a Gaussian pdfN(µ, σ, x), it can be shown tha

ts differential entropy increases with the logarithm
tandard deviationσ as

(X→ N(µ, σ, x)) = log(
√

2πeσ). (45)

t can also be shown that Eq.(45)is a maximum entrop
ound for a pdf with varianceσ2. A convenient ini

ial beliefp(cl|Dl0) is thus a Gaussian distribution w
→+∞, i.e. an uniform distribution. In practice, th
eans choosing a Gaussian withσmuch larger (e.g. 1

imes greater) than the sensor standard deviation
y Eq.(42).

.8.2. Updating the coverage belief of a voxel
Consider a given voxell ∈ Y, the setDln−1 =

Dl1, . . . , D
l
n−1} containingn− 1 measurements infl

ncing its coverage and its coverage beliefp(cl|Dln−1).
he beliefp(cl|Dln) whenever a new influencing d
anceDln is obtained, by multiplying the current b
ief p(cl|Dln−1) with the coverage estimatep(cl|Dln),
iven the sensor model and the new influencing m
urement, and applying the normalization factorβ1β2.
ote that forn = 1, i.e. for the first influencing me
urement, this recursive procedure uses the initial b
(cl|Dl0),Dl0 = ∅.

Consider Eq.(36) giving the set of influencin
easurements of voxell ∈ Y up to the kth batch
f measurements. LetDlk−1 = {Dl1, . . . , Dlnk−1(l)} be

he set ofnk−1(l) measurements influencing the c
rage estimate of a voxell ∈ Y until the (k − 1)th
atch of measurements. Letp(cl|Dlk−1) the associ
ted voxel’s coverage belief. When the sensor
ides thekth batch of measurementsMk at t = tk,
ome measurements are eventually appended t
etDlk−1, which yields a new set of measureme
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Dlk = {Dl1, . . . , Dlnk−1(l)+1, . . . , D
l
nk(l)
} having cardi-

nality nk(l) > nk−1(l). The voxel’s coverage belief af-
ter thekth batch of measurements can be computed by
using recursively Eq.(49)for all these new influencing
measurements, as

p(cl|Dlk) = β3


 nk∏
j=nk−1+1

p(cl|Dlj)

p(cl|Dlk−1),

(50)

beingβ3 a normalization constant ensuring that the left-
hand side sums up to one over allcl. Note that ifnk(l)−
nk−1(l) = 0, i.e. if there are no new influencing mea-
surements provided by thekth batch of measurements,
Dlk = Dlk−1 and, obviously,p(cl|Dlk) = p(cl|Dlk−1).
Note also that, accordingly with the equality given
by Eq. (39), we havep(cl|Mk−1) = p(cl|Dlk−1) and
p(cl|Mk) = p(cl|Dlk).

4.8.3. Special case of updating Gaussians
At the beginning of a mapping mission, each voxel

has an associated coverage belief modeled through a
Gaussian, usually having high entropy. As the sensor
model (40) also yields Gaussian beliefs, Eq.(49) in-
volves the multiplication of two Gaussians when the
first influencing measurementDl1 is obtained. If the re-
sultant pdf is also a Gaussian, this process repeats itself
whenever new measures are gathered.

two
G
N ant
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p

β

w qua-
t

µ

σ

Comparing Eqs.(49) and (51)we conclude that: updat-
ing the coverage belief of a voxel, between consecutive
influencing measurements, is as simple as computing
the parameters of a new Gaussian through Eqs.(53) and
(54); and the normalization constant isβ1β2 = β, with
β given by Eq.(52). This simplicity of computation is
a consequence of the Gaussian nature of sensor model
and our careful choice of an initial coverage belief. It
is easy to conclude from Eq.(54) that the standard de-
viation σ of the Gaussian yielded by the product of
two Gaussians with standard deviationσ1 andσ2, re-
spectively, always verifies the conditionσ < σ1 ∧ σ <
σ2, i.e. the new voxel’s coverage belief has always
lower standard deviation and, accordingly with Eq.
(45), lower differential entropy and uncertainty.Fig. 8
shows an example of the aforementioned update proce-
dure. The differential entropy values of depicted pdf’s
are h(Cl|Dln−1) = −1.690, h(Cl|Dln) = −1.275 and
h(Cl|Dln) = −2.012. The entropy values of the quan-
tized versions areH(Cl|Dln−1) = 5.312, H(Cl|Dln) =
5.726 andH(Cl|Dln) = 4.991.

Although Gaussians’ domain is not restricted to the
interval [0,1], accordingly with Eqs.(41) and (53), we
can conclude that 0≤ µl ≤ 1. In practice, truncating
the Gaussian to that interval is not critical to update the
coverage belief but, if for some purpose we have to do

us-
In fact, it can be easily shown that the product of
aussiansp(cl|Dln−1) = N(µ1, σ1) and p(cl|Dln) =
(µ2, σ2) yields a Gaussian multiplied by a const

56]

(cl|Dln−1)p(cl|Dln) =
1

β
N(µ, σ), (51)

=
√

2π(σ2
1 + σ2

2) exp

[
(µ1− µ2)2

2(σ2
1 + σ2

2)

]
, (52)

hose parameters are given by the closed-form e
ions

= µ1σ
2
2 + µ2σ

2
1

σ2
1 + σ2

2

, (53)

= σ1σ2√
σ2

1 + σ2
2

. (54)
 Fig. 8. Example of the coverage belief update procedure with Ga
sians: p(cl|Dln−1) = N(0.35,0.075), p(cl|Dln) = N(0.4,0.1) and

p(cl|Dln) = N(0.368,0.06).
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it,3 we apply the normalization factor(44). Although
the mean of the truncated Gaussian is different from
µl, its mode is equal toµl and might be taken as a
good estimate of the voxel’s coverage, because that
difference tends to zero provided thatσl → 0.

While in Ref. [7] the coverage belief of a cell was
represented through histograms withb bins (b is typ-
ically more than 10), in our case we represent the
voxel’s coverage belief as a Gaussian, which is fully
characterized by justtwo parameters:µl andσl. Thus,
in the set of pdf given by Eq.(18), we have to store
only two values for each voxel, which is a much more
compact representation than a histogram. Moreover,
the aforementioned procedure for updating the cover-
age belief is very simple and we can still build his-
tograms upon the pdf with an arbitrary number of
bins.

4.9. Entropy gradient-based exploration

In order to gradually reduce the map’s entropy, the
robots have to explore the environment so as to mea-
sure it from different viewpoints. In an exploration mis-
sion, the objective is to acquire as much new infor-
mation about the environment as possible with every
sensing cycle. When a robot has to select a new view-
point for acquiring data through its sensor, we claim
that the robot’s sensor should be directed to regions
having higher magnitudes of entropy gradient and low
e bot.
T ox-
e ions,
s can
b of
f -
c
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r t on
g o-
o ’s
m
a e in

prob-
a

a room). For this reason, voxels near to that plane are
preferable to be explored. Consider the current robot’s
poseY = (x, a), beingx ∈ R3 its current position and
a = [θ, φ, ψ]T its orientation. Given a robot’s coordi-
nates frame{R}, which is obtained from the global (ab-
solute) coordinates frame{W} after translation and ro-
tation, the robot’s motion planeΓ is defined by two
orthogonal axes: a longitudinal axiŝp′ = [1,0,0]T,
which is the unitary vector alongxx axis, and a trans-
verse axiŝq′ = [0,1,0]T, which is the unitary vector
alongyy axis; for example, for a UAV,̂p would be the
axis between tail and head, andq̂ would be the axis
connecting the wings. It can be shown that the robot’s
axes can be expressed in the global coordinates frame
{W} as

p̂ = [cos θ · cosφ, sin θ · cosφ, − sin φ]T, (55)

q̂ =




cosθ · sin φ · sin ψ − sin θ · cosψ

sin θ · sin φ · sin ψ + cosθ · cosψ

cosφ · sin ψ


 . (56)

The anglesθ, φ andψ are the yaw angle, the pitch angle
and the roll angle, respectively, and are assumed to be
positive in the counterclockwise direction. Note that
axis p̂ can also be viewed as the robot’s sensor gaze
direction. Any vector	u can be projected on the robot’s
motion planeΓ as

proj
Γ

	u = (	u · p̂)p̂+ (	u · q̂)q̂, (57)
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his strategy drives the robot’s sensor to frontier v
ls between more explored and less explored reg
o that the information gain of new acquired data
e maximized[56]. This strategy is a reformulation

rontier-based exploration [33] using the entropy con
ept.

.9.1. Subset of voxels in the robot’s neighborhood
Although our method can be applied to a 6 DOF

obot, we have been mainly interested on using i
round mobile robots with 3 DOF – two position c
rdinatesx andy and orientationθ – whose sensor
otion is instantaneously restricted to a planeΓ par-
llel to the robot’s motion plane (e.g. the floor plan

3 For instance, the purpose might be computing a cumulative
bility, such asP(0 ≤ Cl ≤ 0.3).
herein (·) denotes the internal product of two vecto
Let denote the applied vector connecting the rob

ensor positionx ∈ R3 to the center of voxell as
	(x, l) = w(l)− x. Given a neighborhood around t
urrent robot’s sensor position with radiusε, its new
osition is selected as the center of a voxel belon

o the set of voxels

Γ (x, ε) = {l ∈ Y, ‖	u(x, l)‖ ≤ ε, l = v(proj
Γ

w(l))}.

(58)

.9.2. Entropy gradient
The 3-D gridY discretises the 3-D spaceR3 at

iscrete pointsw(l), l ∈ Y, equally spaced byε (the
oxel’s edge). The 3-D map enables us to asso
ith each of these points an entropyH(l) = H(Cl)
iven by Eq.(21). Therefore, a continuous entropy fie
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H : R3→ R is sampled along the voxels’ centers be-
longing to the gridY. Our volumetric model assumes
that each edge of any voxell ∈ Y is aligned with one of
the axes of the global coordinates frame{W} (seeFig.
3a). Let lΘ− denote the contiguous voxel tol in the
negative direction of axisΘ. A reasonable (first order)
approximation to the entropy gradient at the center of
a voxell is

	∇H(l) ≈ 1

ε
[H(l)−H(lx−), H(l)

−H(ly−), H(l)−H(lz−)]T. (59)

The projection of the voxel’s entropy gradient on the
robot’s sensor motion planeΓ is

	∇HΓ (l) = proj
Γ

	∇H(l), (60)

with magnitude‖ 	∇HΓ (l)‖.

4.9.3. Exploration strategy
Our exploration strategy drives the robot’s sensor to

regions in the neighborhood of the robot having higher
magnitudes of entropy gradient	∇H , and that are more
likely unoccupied. If the center of a voxell ∈ NΓ (x, ε)
is selected to be the next robot’s selected positionxs,
our method selects the robot’s gaze directiona(l), de-
fined by the unitary vector

p̂(l) =
	∇HΓ (l)

, 	∇HΓ (l) �= 	0. (61)
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with mobile robots in our laboratory. The mobile robots
(seeFig. 9a) are Scout robots from Nomadic Technolo-
gies, having differential kinematics, odometry sensing
and sonars. Each robot has inside an embedded com-
puter running a Linux operating system, which is based
on a Pentium 133 MHz processor. We mounted on the
top of both robots a stereo-vision sensor and a mo-
dem radio providing wireless TCP/IP communication.
Each stereo-vision sensor (see bottom ofFig. 9a) is a
small, compact, low-cost analog stereo rig from Videre
Design, with resolution 160× 120 pixels. For comput-
ing range data from stereo images, we use the Small-
Vision System (SVS) v2.3c[58], a stereo engine from
SRI International, which implements an area correla-
tion algorithm for computing range from stereo im-
ages, and supports camera calibration, 3-D reconstruc-
tion and effective filtering. SeeFig. 9b for an example
of a depth map yielded by the SVS engine. Each robot
has a ring of 16 Polaroid 6500 sonar ranging modules,
which were used for avoiding obstacles when moving
the platform, and for preventing the robot to acquire
stereo image pairs below a given distance threshold
to obstacles. The sensor model given by Eq.(43) was
properly calibrated for these stereo-vision sensors. The
valuesσmin = −0.06 mm andζ = 3.75× 10−3 were
found. Note that our stereo-vision sensors cannot mea-
sure distances below roughly 1 m and, althoughσmin
might be negative, Eq.(43) always yields a positive
value ford > 1000 mm. The damping parameter used
in Eq.(42)was empirically tuned to the valueτ = 2 m.

4
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ccordingly with our exploration strategy, beingE(Cl)

he expected coverage of a voxell ∈ Y, and given th
et of voxelsNΓ (x, ε) in the robot’s neighborhood, th
obot’s sensor is directed to the voxel

s = argmax
l∈NΓ (x,ε)

(‖ 	∇HΓ (l)‖[1− E(Cl)]). (62)

ith a gaze on arrival defined by the unitary vec
ˆ (ls). If the gradient-based criteria is not conclus
he robot should wander randomly until that condit
s not verified.

.10. Mobile robots equipped with stereo-vision
ensors

The 3-D mapping framework presented in previ
ections has been used for carrying out experim
.11. Results

Fig. 10shows Virtual Reality Modeling Langua
VRML) models of a volumetric map at different i
tant times along a mission, which was obtained
single robot. Each voxel is represented throu

iven color which depends on its coverage and
overage belief uncertainty (entropy). The map’s
lution is ε = 0.1 m and covers a parallelepiped w
.9 m in length, 4.2 m in width and 0.8 m in heig
hich was represented through a 3-D discrete
ith size 39× 42× 8 voxels. The robot started t
ission with a maximum entropy map for whi
(0)= 103.488× 103 bits, wherein each voxel b

onging to the grid had an entropy value equal t
its (b = 128 bins for the histogram). Then, it explo
radually the environment until the map’s entropy
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Fig. 9. Robots used in the experiments: (a) Scout mobile robots (top), equipped with stereo-vision sensors (bottom) and (b) a stereo image pair
(top) and its associated disparity (bottom-left) and depth map (bottom-right).

reduced below the thresholdHth = 500 bits (see the
final map on the bottom-left ofFig. 10). The robot
neededtkmax = 9146 s to accomplish the mission. The
total number of measurementsmT gathered by a robot
along the mission might be computed as

mT =
kmax∑
k=1

mk. (63)

The robot gathered a total ofkmax= 303 batches of
measurements, with an average size ofmk = 9049
measurements, which yielded a total ofmT = 2.742×
106 measurements.

Fig. 11presents the final (best) 3-D map obtained
by the robot at the end of the mission, from different
viewpoints.

5. Information utility

Whenever a robot gets a new batch of measurements
Mk, we can say that this event has an associated infor-
mation utility, which can be measured in terms of a
decrease of the map’s joint entropyH(C). Let H(tk)
be the map’s joint entropy att = tk, computed through
Eq. (22). The map’s joint entropy is a measure of the
map’s uncertainty and its decrease within a period of
time is a measure of the information utility of the mea-
surements gathered within the same period of time, in
t cy
[

Consider again a batch of measurementsMk =
(xk,Vk). Each measurement	vk,i ∈ Vk influences
the coverage of the set of voxelsZk,i and thus
it has also an associated information utility. Let
l ∈ Zk,i be a voxel whose coverageCl is influ-
enced by the new measurement	vk,i; for the same
voxel, let alsop(cl|Dln−1) = p(cl|Dl1, . . . , Dln−1) and
p(cl|Dln) = p(cl|Dl1, . . . , Dln) be the coverage belief,
respectively, before and after voxell is updated with the
new influencing measurementDln = (dn, dln), through
Eq.(49). Using the conditional mutual information def-
inition given by Eq.(10), the information utility asso-
ciated with the measurement	vk,i ∈ Vk is [57]

Ik,i =
∑
l∈Zk,i

H(Cl|Dl1, . . . , Dln−1)

−H(Cl|Dl1, . . . , Dln) =
∑
l∈Zk,i

Ilk,i. (64)

Recall the definition of conditional mutual information
given by Eq.(10). Each termIlk,i in Eq.(64)measures

the mutual information betweenp(cl|Dln) andp(cl),
conditioned to the past historyDln−1, i.e. the contri-
bution of each influencing measurementDln to reduce
the voxel’s uncertainty. For instance, the information
utility of the influencing measurement depicted inFig.
8 is equal to 0.321.

Although differential entropy cannot be used as an
absolute measure of entropy, it is a valid relative mea-
s ffer-
e tion
erms of their utility on improving the map’s accura
57].
ure of entropy, i.e. both discrete entropy and di
ntial entropy can be used to compute the varia
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Fig. 10. Map’s evolution along a 3-D mapping mission. Each snapshot shows the robot’s map registered in the global reference frame{W}, at a
different instant timetk and entropy levelH(C|Mk). The map’s resolution isε = 0.1 m. The pictures’ scale is such that each represented arrow
is equivalent to a real length of 1 m.

(difference) between two entropy values and this differ-
ence is equal for both. Eq.(45)provides a very conve-
nient procedure for computing the differential entropy
of a Gaussian, because it is a closed-form equation.
Instead, computing the discrete entropy through Eq.

(21) is computationally heavier. For each influenced
voxel l ∈ Zk,i in Eq. (64), let the Gaussiansp(cl) and
p′(cl), having standard deviationσl andσ′l , be its cov-
erage belief before and after the new measurement is
integrated, having differential entropyh(l) and h′(l)
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Fig. 11. Different views of the volumetric map’s VRML model at the end of a 3-D mapping mission. The world reference frame is represented
through the red axes.

and discrete entropyH(l) andH ′(l), respectively.4 Let
Ilδk,i = h(l)− h′(l) be the measurement’s information
utility for that voxels, computed through Eq.(45), and
Il�k,i = H(l)−H ′(l) the same utility computed upon the
pdf’s quantized version using discrete entropy. It can
be shown that

Ilk,i ≈ Ilδk,i = log

(
σl

σ′l

)
. (65)

Eq. (65) states thatIlk,i is approximately equal for
Gaussian pairs with the same standard deviation ra-

4 Recall that we compute discrete entropy of a continuous pdf
through a histogram derived from it havingb = 128 bins.

tio σl/σ′l . Fig. 12comparesIl�k,i andIlδk,i as a function of
σl, whenσl/σ′l = 1/0.99, i.e. when the new measure-
ment yields a decrease of 1% in the standard deviation
of the voxel’s Gaussian coverage. It shows that: for
σl > 0.3, we cannot use the differential entropy-based
estimate because it neglects the pdf’s truncation to the
interval 0≤ Cl ≤ 1 and the normalization introduced
by Eq. (44); and, forσl < 3× 10−3, we cannot use
the discrete entropy-based estimate, because the his-
togram’s bins have not sufficient resolution to model
pdf’s with a smaller standard deviation. However, for
3× 10−3 ≤ σl ≤ 0.3, which encompasses most of the
situations with our stereo-vision sensors, both esti-
mates are approximately equivalent. This conclusion
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Fig. 12. Computation of the information utilityIl
k,i

of a measure-
ment for a given influenced voxell. Beingσl andσ′

l
= 0.99σl the

standard deviation of the voxel’s coverage Gaussian before and after
the measurement, respectively, the graph plots the computed values
of Il

k,i
as a function ofσl, using either the histogram’s discrete en-

tropyIl�
k,i

(histogram withb = 128 bins) or the approximated voxel’s

coverage differential entropyIlδ
k,i
= 1.45× 10−2.

is roughly the same for other values of the ratioσl/σ′l ,
though it is not explicitly shown herein due to lack of
space. For this reason, we generally use Eq.(65) in the
computation of Eq.(64).

The information gain due to thekth batch of mea-
surements is given by

Ik =
mk∑
i=1

Ik,i = H(tk−1)−H(tk), (66)

which measures the mutual information between the
current map and the new acquired batch of measure-
ments, i.e. the contribution of this batch to reduce the
map’s uncertainty. As Eq.(22) requires the computa-
tion of the entropy function forevery voxel l ∈ Y, it
represents a time-consuming computation if it is used
at each time step, whenever a new batch of measure-
ments is gathered. But, as Eq.(66)suggests, the map’s
joint entropy can be recursively updated asH(tk) =
H(tk−1)− Ik, which is a much more efficient computa-
tion procedure because it is only computed the Eq.(64)
for each measurement	vk,i ∈ Vk belonging to the batch
Mk = (xk,Vk). Thus, Eq.(22)is only required for com-
puting the maps’s initial entropyH(0)= H(C|M0).

5.1. Cooperation through sharing useful
information

In this section, we describe how a team of such
robots, populating the 3-D environment being mapped,
can be cooperative on building a 3-D map, through
sharinguseful measurements. Accordingly with the ar-
chitecture model shown inFigs. 1 and 2, we assume
that, besides being able to build and update its own
local 3-D map based on information from its own sen-
sor, each robot is also committed to share new acquired
sensory information with its teammates through com-
munication[57]. Whenever a given robot gets a batch of
measurementsMk = (xk,Vk), it sends to other robots
a sub-set of measurementsSk = (xk,Uk). The set

Uk = {	uk,1, . . . , 	uk,sk } ⊆ Vk (67)

containssk measurements selected to be communi-
cated. The sensor’s positionxk from where those mea-
surements were gathered is also sent, since it is required
for registering those measurements in the local map of
other robots.5

Different communication topologies can be used,
depending on the capacity and range of the available
communication channel. When possible, the robot act-
ing as information provider should send data to all
robots in the team, so that all of them can take advantage
of new sensory information; otherwise, the communi-
cation is restricted to a team’s subset, such as the near-
est robots to the information provider. When a robot
r nts
R re-
m sor
w
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s m its
o
s
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i ted
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I til-
i

able
t s.
eceives a batch ofuk communicated measureme
k = (x′k,U

′
k), it updates its local map as if measu

entsU′k would have been gathered by its own sen
hen located at positionx′k.
As communication channels have always limited

acity, when a robot is acting as information provid
t has to limit the amount of communicated data
elect the most useful measurements gathered fro
wn sensors. On doing it, the robot uses Eq.(64)to as-
ess the information utility of measurements	vk,i ∈ Vk
nd classifies them by utility. Let defineskmax as be

ng the maximum number of allowable communica
easurements at a given time instant. Let also d

min as being the minimum allowable information u
ty for a communicated measurement. The set(67) is

5 As it was already mentioned, we assume that each robot is
o localize itself and correctly register its sensor measurement
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built in such a way that the proposition

(sk ≤ skmax ∧ sk < skmax

⇒ ∀	vk,z∈Vk\Uk , Ik,z < Imin ∧ ∀	uk,j∈Uk , Ik,j
≥ Imin ∧ ∀	vk,w∈Vk\Uk , Ik,w ≤ Ik,j) (68)

is true. This proposition is true, i.e. the set of communi-
cated measurements is valid, if the following conditions
are met: (a) the size of the set is not greater thanskmax;
(b) the size of the set is less thanskmax only if it includes
all measurements in the setVk having an information
utility not less thanImin; (c) the information utility of
communicated measurements is at leastImin and all
not communicated measurements have lower or equal
utility than those that are selected to be communicated.

Accordingly with Eq.(64), the sender robot assesses
the measurement’s utility by assuming that if the mea-
surement is useful for itself it is equally useful for its
teammates. Although different robots may have differ-
ent maps, as we shall see in Section5.3, typically the
robots’ maps are just slightly different and, thus, the
assumption remains valid.

5.2. Implementation in mobile robots

The robots presented in Section4.10were used for
carrying out cooperative 3-D mapping experiments, us-
ing the architecture model shown inFig. 1and the co-
operation scheme described in Section5.1 for sharing
useful sensory data[57]. Fig. 13shows a diagram of the
software that was programmed on the robots in order to
implement the distributed architecture model ofFig. 1.
It is intrinsically scalable to a team having an arbitrary
number of robots.

Fig. 13a shows the interaction between the team of
robots and a host PC, which was used for supervision.
Using this computer, the user can control the mission
execution through the moduleMASTERCTR (e.g. start,
pause, restore, stop, etc.), get access to robots’ data
through the moduleMAPCOLLECT (e.g. robots’ indi-
vidual maps, log data, etc.), and visualize VRML mod-
els of the maps through the moduleVISUALIZ (see
some examples inFig. 11). The host PC is also re-
sponsible for providing global localization to the team
of robots through the moduleLOCALIZSRV, using a
color segmentation algorithm that detects and tracks

F : (a) int supervising
3 al cam
ig. 13. Diagram of the software implemented in mobile robots
-D mapping missions and localizing the robots through a glob
eraction between the team of robots and the host PC used for
era and (b) software modules running locally on each robot.
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the colored markers on the top of the robots’ platforms
(seeFig. 9a).

Each robot is able to build autonomously a volu-
metric map on its own, storing and maintaining locally
the grid-based map on a shared memory area, which is
shared by the different modules running concurrently in
the robot (seeFig. 13b). The mutual exclusive access to
the map’s shared memory is ruled through a semaphor
provided by the Linux kernel. There is also a shared
memory area for storing and sharing the robot’s state
among those modules. Each robot runs locally three
software modules:SLAVECTR—receives commands
from the moduleMASTERCTR running remotely in
the host PC, which determine the current robot’s state;
MAPPROVID—sends incrementally data to to the host
PC’s moduleMAPCOLLECT during the mission ex-
ecution, so as to synchronize the map’s copy stored
in the host PC with the robot’s own copy, whenever
the robot updates the map upon new measurements;
3DMAPPING—performs most of the robot’s compu-
tation burden, including acquiring stereo image pairs,
computing range data from stereo images, updating
the map upon new measurements, selecting new ex-
ploration viewpoints and controlling the motion of the
robot’s platform.

5.3. Results and discussion

This section presents results obtained within exper-
iments carried out with a team of two cooperative mo-
b c-
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to any team size. The fourth column shows the ra-
tio between the mission execution timetkmax(2) with
two robots and with one robottkmax(1). Given that our
voxels’ coverage beliefs were always Gaussians, the
values used forImin, {0,0.00723,0.01450,0.07400,
0.15200,0.32193}, meant an average reduction on the
standard deviation of the influenced voxels by a mea-
surement of at least{0%,0.5%,1%,5%,10%,20%},
respectively. Recall that when a robot acquired a new
batch ofmk measurementsMk = (xk,Vk) through its
own sensor, it might sent to the other robot a batch
of sk useful measurementsSk = (xk,Uk), with sk ≤
mk ∧ sk ≤ skmax ∧ uk = 0. Conversely, akth batch of
mk measurementsMk = (xk,Vk) might not be acquired
from its own sensor and thus might be a batch ofuk
useful measurements sent (shared) by the other robot
Mk = Rk = (x′k,U

′
k), with uk = mk ≤ skmax ∧ sk = 0.

The fifth column shows the total number of mea-
surementsmT gathered by a robot along the mis-
sion, which is given by Eq.(63). The sixth col-
umn shows the total number of received measure-
ments from the other robotuT, which is computed
through

uT =
kmax∑
k=1

uk. (69)

In each experiment (line of the table), the results refer
to the robot that first attained the entropy thresholdHth,
i.e. the robot having the best map at the end of the mis-
s ined
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t of
ile robots (seeFig. 9a), which were programmed a
ordingly with the software architecture shown inFig.
3. These experiments aimed at studying the influe
f the information sharing parametersImin and skmax

n the team’s performance, by comparing the mis
xecution timetkmax with different values for those p
ameters[57]. As in the experiments reported in Sect
.11, the robots started each experiment with a m
um entropy map and used the entropy gradient-b
ethod described in Section4.9 for exploring the en

ironment until the entropy thresholdHth = 500 was
ttained.

The environment, the initial map and the stopp
riteria were fixed for all the experiments.Table 1
ummarizes the obtained results with the team of
obots, which are however extensible and can be
ralized to teams having an arbitrary number of rob
ecause the robots’ program is intrinsically scala
ion.Fig. 14presents an example of the maps obta
y the two robots along a 3-D mapping mission.
e can observe, robot 2 held the best map for th
tant times represented in the figure, which means
obot 2 reachedHth first. The timetk(1) that a single
obot would need to obtain the represented maps is
hown, so as to better understand the reduction o
ission execution time yielded by a team of coop

ive mobile robots.

.3.1. Advantages provided by cooperation
The graph on the left ofFig. 15compares the map

ntropyH(t) for the single robot case and for the fas
xperiment with two robots (fourth row ofTable 1).
t shows a non-linear increase of the mission ex
ion time with a decrease of the map’s entropy. It a
hows that robots’ cooperation accelerated the re
ion of the map’s entropy and led to a reduction
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Fig. 14. Maps’ evolution along a 3-D mapping mission with two robots. Each row shows a snapshot of the map of each robot registered in the
global reference frame{W}, at a different instant timetk and entropy levelH(C|Mk). In every rows, the best map was held by robot 2 (maps
shown on the right). The timetk(1) that a single robot would need to obtain a map with the same entropy is shown on the bottom-right of the
maps of robot 2. The map’s resolution isε = 0.1 m. The pictures’ scale is such that each represented arrow is equivalent to a real length of 1 m.
For the presented case, the parametersskmax = 2500 andImin = 0.1520 were used.

28% in tkmax. As robots shared useful measurements
through communication, each robot was able to inte-
grate in its map a greater number of measurements per
time unit and achieved a faster reduction of its map’s

entropy. The graph on the right ofFig. 15shows that
although the two values ofmT were similar, measure-
ments were obtained within time intervalstkmax quite
different.
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Fig. 15. Comparison of a 3-D mapping mission using a single robot or two robots: entropy of the map along the mission (left) and cumulative
number of processed measurements along the mission (right). For the presented case, the parameters’ valuesImin = 0.0145 andskmax = 2500
were used.

Besides enabling cooperation and its aforemen-
tioned benefits, the coexistence of several robots in the
same workspace and the communication among robots
also yield some pitfalls contributing for the degrada-
tion of the team’s overall performance: (a) robots must
share the workspace which leads to some mutual in-
terference; (b) the time spent on communicating mea-
surements to other robots sometimes delays operations;
(c) the time required for processing received measure-
ments through communication and updating the map
upon them might not be negligible. While the two latter
problems depend mostly on the communication band-
width and the robots’ computation power, minimizing
the interference among robots is an interesting future
extension of the framework proposed herein.

Table 1
Results obtained within experiments with two robots and different
parameters ruling the information sharing

skmax Imin tkmax

tkmax(2)

tkmax(1)
mT uT Percent

500 0.01450 8483 0.94 2795351 74729 3
1000 0.01450 8387 0.93 2726837 135661 5
1750 0.01450 7332 0.81 2447091 184550 8
2500 0.01450 6530 0.72 2375273 207636 9
5000 0.01450 7955 0.88 2643728 271612 10

20000 0 9450 1.04 3192788 1134455 36
20000 0.00723 7563 0.84 2453021 457390 19
20000 0.01450 6571 0.73 2345844 332270 14
20000 0.07400 7007 0.77 2676612 128345 5
20000 0.15200 7301 0.81 2595398 59499 2
20000 0.32193 7727 0.85 2930155 27323 1

5.3.2. Influence of communication selectivity
Fig. 16 presents a graph oftkmax as a function

of the parameterImin and curves of the cumulative
sum

∑
uk of received measurements from the other

robot along the mission, for different values ofImin.
For this figure, the maximum number of allowable
communicated measurements at a given time instant
wasskmax = 20,000. Since the number of measurements
yielded by the sensor was about 104 measurements,
in this situation,skmax did not restrict the communica-
tion for any acquired batch of measurements, because
mk < skmax,1≤ k ≤ kmax. The graph on the left ofFig.
16shows that decreasingImin from 0.32193 to 0.01450
led to smaller mission execution times. However, for
Imin < 0.01450, the graph oftkmax presents a remark-
able inflection, which led to a fast degradation of the
team’s performance. This observation puts on evidence
the importance of selecting the most useful information
to be communicated. If the selection is too weak, most
of the communicated information becomes redundant
and the time spent on communicating and processing
that superfluous information becomes very significant
[57]. The curves on the right ofFig. 16show that the
first derivative is the same at the beginning of the mis-
sion, becauseskmax is common to all of them. However,
as long as the mission is executed, the derivative de-
creases to an extent which depends on the selectivity
introduced byImin.

The graph on the right ofFig. 17shows that reduc-
ing the communication bandwidthsk always led to
max
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Fig. 16. Influence of the information selectivity – parameterImin – on the mission execution time with two robots, usingskmax = 20,000: mission
execution time (left) and cumulative number of received measurements from the other robot along the mission (right).

Fig. 17. Influence of the maximum number of communicated measurements – parameterskmax – on the mission execution time with two robots,
usingImin = 0.01450: mission execution time (left) and cumulative number of received measurements from the other robot along the mission
(right).

an increase oftkmax and a poorer team’s performance
[57]. As cooperation in a 3-D mapping mission relies
completely on explicit communication, restricting it
also restricts the extent of cooperation. However, in
the case ofImin, being selective to some extent is bene-
ficial in order to select the most useful information and
to avoid the communication of redundant information.
The curves on the right ofFig. 17show that the first
derivative by the end of the mission is the same, be-
causeImin is common to all of them; and that it is as
high asskmax at the start, since this parameter configures
a bandwidth limitation.

These results yield some guidelines for developing
communication schemes aiming at fostering cooper-

ation [57]. While skmax is imposed by the communi-
cation channel capacity,Imin has to be tuned in an
intelligent way, whereby its selective power is ben-
eficial for the robotic team’s performance. It should
be selective enough to avoid communicating redun-
dant information, and not too selective so as to enable
efficient information sharing and cooperation among
robots.

6. Conclusion

Most of the previous research on building maps has
been restricted to models without an explicit represen-
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tation of the map’s uncertainty. This article presents in-
novative work related with developing a probabilistic
model for 3-D mapping, by using information theory to
formally represent uncertainty. The advantages of this
probabilistic approach include: a very compact repre-
sentation of 3-D grid-based coverage maps; a straight-
forward method for updating the map upon new range
measurements, which is based on a Bayes filter; and
an entropy-based formulation of frontier-based explo-
ration, which was demonstrated to converge nicely to
maps with lower uncertainty.

Furthermore, a distributed architecture model for
a team of cooperative mobile robots was proposed,
whose main feature is to foster cooperation through
sharing useful information. With this purpose, a for-
mal entropy-based measure of information utility was
proposed in order to endow robots with the ability
of selecting purposively useful information. Experi-
mental results demonstrated that teams of cooperative
robots are able to build a map in less time than a single
robot.

Possible future extensions of the approach presented
in this article include a method to coordinate the explo-
ration with multiple robots, a hierarchy of maps’ repre-
sentations and the integration of cooperative localiza-
tion schemes. The former extension would take maxi-
mum advantage from the cooperation among robots,
yielding a more significant speedup from one robot
to two robots, by minimizing their interference (e.g.
avoiding the situation wherein more than one robot
s ions
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