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Abstract

Building cooperatively 3-D maps of unknown environments is one of the application fields of multi-robot systems. This article
addresses that problem through a probabilistic approach based on information theory. A distributed cooperative architecture mode
is formulated whereby robots exhibit cooperation through efficient information sharing. A probabilistic model of a 3-D map and
a statistical sensor model are used to update the map upon range measurements, with an explicit representation of uncertain
through the definition of the map’s entropy. Each robot is able to build a 3-D map upon measurements from its own range sensor
and is committed to cooperate with other robots by sharing useful measurements. An entropy-based measure of informatior
utility is used to define a cooperation strategy for sharing useful information, without overwhelming communication resources
with redundant or unnecessary information. Each robot reduces the map’s uncertainty by exploring maximum information
viewpoints, by using its current map to drive its sensor to frontier regions having maximum entropy gradient. The proposed
framework is validated through experiments with mobile robots equipped with stereo-vision sensors.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction are either inherently distributed in time, space or func-
tionality, and cannot be achieved by a single robot, or
Multi-robot systems (MRS) have been widely inves- wherein a multi-robot solution is more efficient, cost
tigated for the last decadle-4]. These systems employ effective, reliable and robust than a single robot solu-
teams of cooperative robots to carry out missions that tion. Cooperation has, in general, three main potential
advantages: (i}fficiency—taking advantage from the
"+ Corresponding author. spatial distribution of sensors makes possible to reduce
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(J. Dias), asc@fe.up.pt (A. Carvalho). robot is used; (iiyeliability and robustness—with re-
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dundancy in robots capabilities, the failure of any par- 1.1.1. Grid-based maps
ticular robot does not necessarily compromise the over-  Grid-based mapd 2,13], also known as occupancy
all mission success; (iiiypecialization—robots with grids or certainty grids, are widely used to intuitively
different sensory or motion skills may have comple- represent distributed spatial information, such as occu-
mentary and specialized features that overcome their pancy or, closely related, traversability. They discretise
individual limitations and increase the team’s total util- the workspace being mapped in cells with a given res-
ity. Building a 3-D map of an unknown environmentis olution. For each cell, it is maintained a probabilistic
one of the application fields of MRS. belief about its state (e.g. free or occupied). In Ref.
This article addresses two main issues: (i) develop- [12], Moravec and Elfes developed occupancy grids as
ing a probabilistic model for vision-based 3-D map- a space representation model. In their seminal work,
ping and frontier-based exploration using information they built 2-D occupancy grids by using a robot with
theory and (ii) sharing information efficiently through sonars. In Ref[6], they extended the occupancy grid
communication in a team of cooperative mobile robots, technique for environment mapping of 3-D grids, using

driven by information utility maximization. stereo-vision as primary sensor. Borenstein and Koren
developed the vector field histogrdii], which is a
1.1. Robotic mapping popular obstacle avoidance method based on 2-D oc-

cupancy grids. Grocholsky et al. propose in R&8]

Robotic mapping addresses the problem of acquir- the integration of a decentralized architecture — De-
ing spatial models of physical environments with mo- centralized Data Fusion — with occupancy grids, as a
bile robots, which might be used to safely navigate means to combine observations from multiple robots
within the environment and perform other useful tasks with communication capabilities. In R4f.6], it is de-
(e.g. surveillance). Some examples of sensors used forscribed a blimp project where 3-D space is represented
building maps are cameras, range finders using sonarsthrough digital elevation maps, which are 2-D grids as-
laser or infra-red rays, radars, tactile sensors, etc. As sociating height with each cell. In Rg¥], the notion
sensors have always limited range, are subject to oc- of occupancy grid was refined to avoid the binary rep-
clusions and yield measurements with noise, mobile resentation of the cell's occupancy and to model it as a
robots have to navigate through the environment and continuous value between 0 and 1. They used 2-D cov-
build the map iteratively. Some key challenges arise erage maps to perform indoor exploration tasks with a
from the nature of measurement noise (sensor model-robot equipped with sonars.
ing problem), high dimensionality of the entities be- In this article, we propose a grid-based probabilistic
ing mapped (representation problem), the correspon- model of a 3-D map, which stores for each cell (voxel)
dence or registration problem (registering measure- a coverage belief. Concerning the map’s representation
ments on a common coordinate space), dynamically model, our main contribution is a more compact repre-
changing environments and defining an efficient sur- sentation of this belief than using histograf#§ and
vey strategy to build the map (exploration problem) a straightforward and efficient Bayesian update proce-
[5]. dure. We also develop a method to easily update the

Robots can be used for building fastidious maps map upon new data yielded by range sensors.
of indoor environmentg6,7], but they are particu-
larly useful on mapping missions of hazardous en- [1.1.2. Registration, localization and SLAM
vironments for human beings, such as underground Robot's autonomous localization is tightly related
mines[8—10], where updated maps are required to pre- with mapping, because accurate mapping depends on
vent future accidents related with inundations or col- localization, which in turn relies on tracking the robot’s
lapses, but where humans access is too risky or evenposition to distinguishable landmarks identified in the
impossible due to difficult access routes; or nuclear currentmap, if agloballocalization scheme is not avail-
facilities [11], where monitoring the state of the sar- able. During the mapping process, the robot has to reg-
cophagus interior is required by maintenance proce- ister measurements obtained from different locations,
dures, but where humans exposure to radiation must bewhich requires its ability to localize itself accurately in
avoided. the map. Moreover, in a multi-robot solution, estimat-
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ing accurately the robots’ relative position is required a SLAM-based architectuf@1] to a cliff surface ex-
to register measurements from different robots on a ploration mission with a robot team. Each robot repo-
common coordinate space. There is some recent worksitioned its sensors using an information-theoretic ap-
on 3-D mapping with a single robot, focusing mainly proach so as to fill uncertain regions of the environment
on the registration problefi1,9]. map, based on maximizing the expected new obtained
The problem of building a map and simultaneously information.
tracking the robot’s position on that map is known as In this article, we assume that robots are externally
Simultaneous Localization and Mapping (SLAM). Ex- localized through a global localization system, so the
tensive research has been devoted to SLAM for the pastwork here presented does not fall in the heading of reg-
few years and important progress has been achievedistration, localization and SLANR4,28,25-27,29,30]
[17,10,16,18-22]It is an important issue, because it
provides anintegrated solution of localization and map- 1.1.3. Exploration and active sensing
ping for applications where a global localization sys- When a robot or a team of robots explore an un-
tem is not available and the robot is subject to accu- known environment and build a map, the objective is
mulation of pose errors during mapping. Most of the to acquire as much new information as possible with
proposed solutions are based on the implementation ofevery sensing cycle, so that the time needed to com-
an extended Kalman filter, which correlates localiza- pletely explore it is minimized.
tion estimates relative to different landmarks. Thrunet  Bourgault et al[32] used occupancy grids to ad-
al. [10] approach mine mapping as a SLAM problem dress the single robot exploration problem, as a balance
but, due to cyclic structure of mines, it yields difficult of alternative motion actions from the point of view
correspondence problems. To solve this problem, they of information gain (in terms of entropy), localization
use an iterative closest point algorithm, generating 3-D quality (using SLAM) and navigation cost. Although
maps by applying scan matching to 3-D measurementsthey include information gain in their strategy, their
after a 2-D occupancy grid map of the mine is obtained. formulation is computationally heavy and they are only
In Ref.[18], the variant FastSLAM is presented, which able to use it off-line, for a limited number of proposed
combines a patrticle filter for sampling robot paths and destinations. Yamauchi proposed frontier-based explo-
an extended Kalman filter for representing the map. ration[33] whereby robots are driven towards bound-
The particle filter implements a robust Monte Carlo lo- aries between open space and unexplored regions. He
calization algorithnj23]. This approach is more robust  also proposed a decentralized scheme whereby robots
to data association problems than algorithms based onshared local 2-D occupancy grids, which were fused
maximum likelihood data association. with their own local maps in order to obtain a global
There are also some efforts to develop multi-robot grid. Each robot explores the environment by selecting
localization algorithm§24—27]and SLAM extensions  the closest frontier cell in its neighborhood. Burgard
to multi-robot systemf28-30] Within these methods, et al. developed a technique for coordinating a team
when a robot determines the location of another robot of robots while they are exploring their environment
relative to its own, both robots can refine their internal to build a 2-D occupancy grif34]. Their approach
beliefs based on the other robot’s estimate and improve uses the frontier-cell concept proposed in k&3] and
localization accuracy. Fox et al. introduced a proba- considers a balance between travel cost and utility of
bilistic approach based on Markov localization, which unexplored regions so that robots simultaneously ex-
has been validated through real experiments showing plores different regions. The utility of a region is re-
a drastic improvement in localization speed and accu- duced when a robot selects a target viewpoint whose
racy, when compared to single robot localizatiaa]. visibility range covers it. They do not define an ar-
Roumeliotis and co-workers addressed the determina- chitecture for the team and it is not clear how robots
tion of upper bounds on the position uncertainty accu- should interact and what to communicate to accom-
mulation for a group of robots, by using an extended plish the proposed coordination. In their seminal work
Kalman filter[25,26] Martinelli et al. extended thisap-  reported in Ref[35], they used entropy minimization
proach, by considering the most general relative obser- to actively localize a robot by minimizing the expected
vation between two robof27]. Sujan et al. proposed  future uncertainty.
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In Ref. [36], the problem of merging local maps
from different robots, with unknown start locations,
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which serves as a basis to reason and act coherently
towards a global system goal. Communication may

is addressed. Robots that can communicate with eachappear in three different forms of interactifiti: (i)
other are arranged in exploration clusters. The robots via environment, using the environment itself as the

within each cluster share a common map and coordi-

nate their exploration using an algorithm similar to the
one proposed in Ref34]. Before two robots merge
their local maps, they actively verify their relative lo-
cations, through the implementation of a particle filter

communication medium (stigmergy); (iWa sensing,
when an agent knowingly uses its sensing capabilities
to observe and perceive the actions of its teammates;
and (iii) via communication, using a communication
channel to explicitly exchange messages among the

and a rendezvous strategy. The solution has been ap-agents, thus compensating perception limitations.

plied within the Centibots proje¢87], which deploys

Arkin [46] demonstrated that sometimes coopera-

100 robots in unexplored areas to build a map, searchtion between robotic agents was possible even in the

for valuable objects and protect the environment from
intruders. A similar project is presented in RE8],

absence of communication, though it is a weak form of
cooperation, which may me very inefficient. Matari

reporting experiments with a team of 80 heterogeneous [47] showed that the ability to distinguish other robots

robots. In Ref[39], a 2-D grid-based version of Fast-
SLAM [18] algorithm is developed, which generates

from the rest of other objects provides sufficient power
to overcome interference. Balch and Ark#8] made

trajectories to actively close loops during SLAM and simulation studies of three typical multi-agent tasks,
takes into account the uncertainty about the pose of using the three basic communication types referred
the robot during the exploration. Whenever this uncer- above, and found that: communication improves per-

tainty becomes too large, the robot re-visits portions
of the previously explored area. When the localization
uncertainty is low and no loop can be closed, a frontier-
based exploration strated§3] is used.

Our approach to exploration and active sensing is
closely related with frontier-based explorati@3,34],
with two important improvements. Firstly, we ex-
plicitly define a distributed architecture model for
the robots, which restricts the communication among

robots to the minimum necessary to share useful sen-
sory data among robots and to coordinate the explo-

ration. Secondly, we use entropy to explicitly repre-

formance significantly in tasks with little implicit com-
munication; and that more complex communication
strategies (goal-oriented) offer little benefit over ba-
sic communication (state). Within CEBOT framework,
Fukuda and Sekiyanjd9] studied methods that sought
to reduce communication requirements, by increasing
the awareness level of individual cells. Parf&d] in-
vestigated the impact of awareness on a MRS and con-
cluded thatitimproves performance, regardless of team
size. Tambe presented STEAM1], a general model

of teamwork, which includes a heuristic that attempts
to follow the most cost-effective method of attaining

sent uncertainty in the grid-based probabilistic map, as mutual belief in joint intentions, by managing a trade-

ameans to define a formal information-theoretic back-

off between communication and team incoherence

ground to reason about the mapping and exploration costs. Stone and Velog62] proposed a method for

process.

1.2. Communication in cooperative multi-robot
systems (MRS)

Most of the work in MRS has been de-
voted to the definition of different architectures
[40,41,33,42,43,15,37] mostly  behavior-based
[44,45] that rule the interaction between the behaviors
of individual robots. Communication is a central

inter-agent communication, which assumes that agents
alternate between periods of limited and unlimited
communication.

Although previous work on communication struc-
tures for MRS has led to some useful conclusions and
design guidelines, there is no a principled formalism
that can be systematically used to share efficiently
sensory data based on information utility assessment,
in order to support the efficient use of communica-
tion in MRS. As communication is always limited,

issue of MRS because it determines the possible either in resources applied to perceive the world or

modes of interaction among robots, as well as the
ability of robots to build successfully a world model,

in bandwidth of a communication channel, using ef-
ficiently those resources is crucial to scale up coop-
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erative architectures for teams of many robots, with- is Y*. Every coordinates refer to a global coordinates
out limiting them to simple reactive and loosely co- frame{W}.

operative systems, with very limited or no awareness.  The kth batch of measurements A, = (x, Vi),
Current architectures extensively use explicit commu- beingV a set ofn; applied vectors (measurements), in
nication, not taking carf10,41,33,42,43]giving low the pointx;. The sequence of batches of measurements
emphasis[37], or using no principled heuristics to  up to thekth batch of measurements is the ddf, =
avoid the communication of redundant information. {M;:i e N,i < k}, being Mo = @ the initial empty
The work of Grocholsky et alf15] is an exception  sequence. Thith batch of measurements sent to other
to this trend, because they use entropy to define theo-robots isS; = (xk, Uy), U < Vi, beingl; a sets; of
retic information measures for predicting the expected useful measurements. Thth batch of measurements
information outcome associated with control actions. received from other robots & = (x;, i), beinglf, a
Although it seems to be a rigorous method to model set ofu; useful measurements from the sensor of other
the information flow within a team of robots, it is  robot, whose pose is,.

not clear how it can be used to share efficiently sen-  The 3-D workspace is divided into equal sized vox-
sory data within mapping missions, and it is mainly els with edge, € € R. The set of all voxels yielded by
focused on coordination. We propose an information- such division is the 3-D gri¢p. The index is used for
theoretic measure of information utility which is used denoting individual voxels. The function: R® — Y

by robots to cooperate through sharing sensory data indetermines what grid’s voxel a given 3-D point belongs
3-D mapping missions, without overwhelming com- to. The functionw : ) — R3 computes the center co-
munication resources with redundant or unnecessary ordinates of a voxel € ).1 The set of voxels traversed

information. by a vectoru when applied in poina is denoted as
Z(u, a).
1.3. Notation The coverage of avoxék Yisrepresented through

the continuous R\(y, taking valueg; € [0, 1]. Given
This sub-section states some notation that is useda batchM,, the set of influenced voxels by a measure-

throughout the article, in order to improve its readabil- mentv,; € V; is denoted asZ;; C Y and the mea-
ity. Hereafter, vectors are written with bold lowercase surement’s information utility is denoted dg;. The
letters; tuples and sets are both written with uppercase information utility of thekth batch of measurements
letters, but sets are written in calligraphy. Random vari- is denoted ag;. An individual measurement influenc-
ables (RV) are written with uppercase letters. The en- ing the coverage estimate of a voxet ) is the tuple
tropy of discrete RVX is H(X) and I(X; Y) denotes D’j (d;, db), beingd; € R the distance between the

the mutual information betWeen two WandY. The sensor ]andj the detected 0bstac|e ar é R the dis_
jointentropy of aset of discrete RV = {X1, ..., X} tance between the sensor and the voxel’s center. The set
is H(X). The differential entropy of a continuous RV of measurements influencing the coverage estimate of
Yish(Y). avoxell € Y, afterk batches of measurementsfis =

The fleet ofn robots is the seF = {1, ,n}. The {Dl j€ N, j< nk(l)} hav|ng Card|na||tylk(l) e Np.

indexk € No is used for batches ofmeasurements The Before the first batch, i.e. fdr= 0, the set of influenc-
set of time instants when measurements are obtained ising measurementsﬁl = ). The coverage probability

T={tx . tx € R,k € No}, with 141 < t;, Vien. The density function of avoxéle ), afterk batches of mea-
kth batch of measurements is obtained at time instant syrements, isp(c;|M;) = p(c|DL),0 < ¢ < 1. The
t =1 €7, beingt = 1o < 1, Yien theinitial timein-  yoxel's entropy is denoted d@(/) = H(C;) and its gra-
stant, which is associated to index= 0. The robot’s dient asv H().
poseisy’ = (x, a), whichincludes the sensor's position  The 3-D probabilistic coverage map aftebatches

x € R? and its attituden(r) € R® (three Euler angles),  of measurements is the set of coverage random vari-

whose angles are assumed to be positive in the coun-gples¢ = {C; : 1 € )} described statistically by the
terclockwise direction. The robot’s pose when tie

batch of measurements is obtainedijis= (x, a;) and 1 The voxel's center is a point equidistant to all voxel's faces, i.e.
the selected viewpoint (navigation target) for the robot its geometric center.
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set of pdf's P(CIMy) = {p(c;IMy) : 1 € V}, being
P(CIMo) = {p(cilMo) = p(ci|Dh) : 1 € Y} the initial
map. The map’s entropy aftérbatches of measure-
ments is denoted a3 (C|My) or simply asH (#). The
mission execution time ig,,,,, being associated to the
last batch of measurements, i.e. thgaxth batch of
measurements. Given the entropy threshilg it is
the first batch of measurements for whilfr;) < Hip.

The associated total number of processed measure-

ments ismT, the total number of received measure-
ments form other robots i and the traveled distance
by the robot during the mission é&. The mission ex-
ecution time as a function of the number of robeis

tkmax(n)'
1.4. Organization of the article

This article is organized as follows. Sectich
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ual robots belonging to the multi-robot system might be
heterogeneous in terms of sensory skills and mobility,
all of them follow the same architecture model when

performing the 3-D mapping mission. That is why both

figures refer to an individual robot; nevertheless, the
interaction with other robots is represented through
the communication block and its associated data
flow.

Fig. 1 shows the different parts of the process and
how they interact. The robot’s platform is assumed to
have a sensor, a localization module and an actuator.
The sensor provides new sets of vecidrs; where ob-
stacles are detected from the current sensor’s p@rde
The localization module gives the sensor’s p&ga,
including position and attitudeThe actuator changes
the sensor’s pose (robot’s pose) accordingly with a new
selected exploration viewpoint®. New data from the
robot’s sensor is associated with its current pose, given

presents the proposed distributed architecture modelby the localization module, to form a new batch of

for 3-D mapping, giving an overview of the framework
presented in the following sections. Sectbpresents

the theoretical background concerning entropy and mu-

tual information. Sectiord presents a probabilistic

measurementdfy ;1 = (Xk+1, Vik+1)- Then, index is
incremented and the new batch of measurements be-
comes the current bateil,. The memory of measure-
ments is updated ast; = My_1 U M. The previous

model of a 3-D map, which encompasses: updating the mapP(C| M;_1) is updated upon the new batch of mea-

map upon new sensory information based on a Gaus-
sian sensor model of a stereo-vision sensor, using en-

surementd4;, which yields the current map(C| My).
The current map is used to choose a new target pose

tropy to assess the map’s uncertainty, and using the Y* which is the reference input to the robot’s actuator.

map’s entropy field to perform a frontier-based explo-
ration of the environment. At the end of this section, af-
ter briefly describing an experimental setup comprised
of mobile robots equipped with stereo-vision range sen-

sors, some examples of volumetric maps are shown.

Section5 introduces a mutual information-based mea-
sure of information utility. Robots use this measure
to cooperate through sharing information, by select-
ing and communicating the most useful information
to their peers. After briefly describing the multi-robot
software architecture, Secti@ends with the presen-
tation of results that demonstrate the benefit of coop-

As part of map updating, it is built a batch of mea-
surementsS; = (x, Ux) having the most useful data
from sensorf; € Vi. Those selected measurements
are shared with other robots through the communica-
tion module. This module can also provide the robot
with batches of measuremerRg = (x;, U,) given by
other robots and the map is updated accordingly. Co-
operation among robots arises because of this altruistic
commitment to share useful measurements.

Fig. 2depicts a flowchart showing the sequence of
the aforementioned robot’s operations and interactions.
At the beginning of the mission an initial map is given

eration through sharing sensory data. The article endsto the robot. Then it gets a new batch of measurements,

with conclusions and future research guidelines.
2. Architecture for 3-D mapping with a
multi-robot system

Figs. 1 and 2lepict complementary views of our ar-
chitecture model for 3-D mapping. Although individ-

updates the map and shares useful measurements with
other robots. Then it might receive measurements from
other robots and, in that case, the map is updated ac-
cordingly. Given the new map, a new viewpoint for the

2 In this article, the localization problem is not addressed. It is as-
sumed that each robot is able to localize itself in a global coordinates
frame.
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Fig. 1. Block diagram showing the relation between different parts of the process and the resources of a giver tftebfieet?.

sensor is chosen and the robot starts moving itself. Dur- Notice thatH(X) > 0, being assumed the continuity

ing navigation, the robot continues updating the map convention Olog Q= 0. The logarithm’s base deter-

whenever new data is received from other robots. When mines the information unit whereby entropy is mea-

the robot reaches the new target pose, the process resured. Hereafter, we use the base 2 for the logarithm

peats itself with a new batch of measurements provided and, in this case, entropy is measured in bits.

by the sensor from its new pose. Given two discrete R\WX andY, the entropy def-
inition can be extended to compute the joint en-
tropy H(X, Y) and the conditional entropsf (X|Y) or

3. Entropy and mutual information H(Y|X) [54]. For instance, the entropy (X|Y) is the
entropy ofX if Yis given. Thgoint entropy’s chain rule

Entropy is a general measure for the uncertainty ofa theorem states
belief[53]. When applied to a discrete random variable,

it evaluates to its shortest description, being as high H(X,Y) = H(X) + H(Y|X), @
as the variable’s uncertainf4]. Being X a discrete H(X,Y) = H(Y) + H(X|Y), ©)
RV over a discrete sample spaSewith probability

distributionp(x) = P(X = x), entropyisdefinedasthe H(X)— H(X|Y) = H(Y) — H(Y|X), 4

expected value of Iog(17):
which means that joint entropy is the entropy of one

variable plus the conditional entropy of the other.
} @ Given thatX andY are statistically independent RV if
p(x, y) = p(x)p(y), the following inequalities can be

1

HX) =~ Y p()log plx) = E [Iog "

xe$S
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Fig. 2. Flowchart showing the data flow during the mission of a given robbthe fleetF.

H(X,Y) < H(X)+ H(Y),

H(X|Y) = H(X),

H(Y|X) < H(Y).

®)
(6)
@)

Equalities occur wheX andY are independent RV.

Mutual information provides a measure of the re-
duction of a RV’s uncertainty due to the knowledge of

anotherf54] and it can be defined as

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) (8)

I(X;Y) = H(X) + H(Y) — H(X, Y). 9)

Eq.(8)suggests that mutual information may be viewed
as a measure of the statistical dependence between two
random variables. The definitions provided by E3).
states that mutual information is the information of a
variable minus its information if the other is given.
Note that/(X;Y) = I(Y; X) and I(X; Y) > O, where

the equality occurs ik andY are statistically indepen-
dent RV. Sincel(X; X) = H(X) — H(X|X) = H(X),
entropy is sometimes referred to @gf-information.

The conditional mutual information of two RV X and

Y given another R\Z is defined as
I(X;Y|Z) = H(X|Z) — H(X|Y, Z), (10)
which is a generalization of E¢B) to conditional dis-
tributions.
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3.1. Differential entropy knowledge about the environment. As sensors have
_ L . . limited range, are subject to occlusions and yield noisy
Entropy’s classical definition applies only to dis-  measurements, robots have to navigate through the en-
crete RV because it was developed by Shannon as ayjronment and build the map iteratively, in order to
measure of information for computer networks. How- (edquce the map’s uncertainty. In this section, we pro-
ever, its definition might be generalized for continuous pose agrid-based probabilistic representation of 3-D
RV, being denoted adifferential entropy [54]. Being maps which enables to model explicitly uncertainty. Al-
f(x) the probability density function of a given contin- though the proposed framework might be used to model
uous RVX with a continuous domais, it is defined any phenomena spatially distributed, as we have vali-

as dated it through experiments with robots equipped with
h(X) = —/f(x) log f(x) d. (11) stereo-vision range sensors providing distance mea-
S surements, hereafter we will denote amap as a coverage

map, which is a 3-D representation of the environment

As probability density functions may evaluate to val- .
occupancy with obstacles.

ues greater that one, differential entropy cannot be
taken as an absolute measure of information or uncer-
tainty because it can be negative. Most of the proper-
ties and theorems of the entropy definition for discrete
RV are also valid for differential entropy. However,
while the latter tends te-oo when a RV has no uncer-
tainty/information, the former evaluates to zero. The
discrete definition is thus more convenient because it
is always non-negative.

4.1. Definition of a volumetric model

One of the most popular space representation mod-
els areoccupancy grids, which are discretised ran-
dom fields wherein the probability of occupancy of
each independent cell is maintairjé&,13] They have
been extensively used in robotics mainly due to their
simplicity and suitability for decision-theoretic ap-
proaches. Some recent examples of their application
are[34,32,55] The definition of probabilistic map that

The joint entropy chain rule theorem given by Eq. We use was firstintroduced in R§T], wherein the no-

(2) can be extended to a set of more than two RV tion of occupancy grid was refined in order to avoid a
[54]. The joint entropy of a set of discrete RW = strictly binary representation of each cell’s occupancy
{X1, ..., X,} with joint pdf p(X) = p(X1, ..., X,) s (free or occupied), through the notionsceberage and
coverage map. Thecoverage of a cell is the portion of

3.2. Sets of discrete random variables

n
H(X)= H(X1,...,X,) = Z H(Xi|X1, ..., Xi_1). the cell that is covered by obstacles (a value between 0
i1 and 1). Acoverage map stores for each cell of a given
(12) grid a probabilistic belief about its coverage. Our in-
novation on the use of this space representation is the
Using Eq.(6), it can be proved the inequality way we represent and update the voxel's coverage be-

lief [56] and using it on 3-D mapping with cooperative
multi-robot system§57].
- Our volumetric mode]56] assumes that we define
- Z H(Xi), (13) a 3-D discrete gridy, which divides the robotic team
i=1 workspace into equally sized voxels (cubes) with edge
wherein the equality occurs if all RV iy are indepen- ¢ € R and volumec®. Fig. 3 shows a geometric rep-
dent. resentation of our model. Any edge of any voxel is
assumed to be aligned with one of the axes of a global
coordinates framéW}. The portion of the volume of
4. Probabilistic volumetric maps voxell € Y which is covered (occupied) by obstacles
is modeled through the continuous random varighle
An important resource for robotic mapping and ex- taking values; in the interval 0< ¢; < 1, and having
ploration is obviously a map representing the robots’ p(c;) as its probability density function. The objective

H(X) < H(X1) + H(X2) + - + H(X,)
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Fig. 3. Volumetric discrete grid: (a) the grid divides the workspace into equally sized voxels, whose edges are aligned with one of the axes of
the world coordinates fram@V} and (b) the coverag€g, of each voxel € Y with edgeg, given the sequenckt; of kK batches of measurements,
is modeled through a probability density functip(c;| M) (the example is a normal pd(;; = 0.4, o; = 0.1)).

of building a map is to obtain for each voxe¢ ) an The knowledge about the voxel's coveragg after
estimate as accurate as possible about its coverage & batches of measurements, is modeled through the pdf
The advantage of modeling the coverage of a voxel (probabilistic belief)

through a continuous random variable between 0 and

1, instead of a binary representation (e.g. free or oc- p(c/|Mi), 0<¢ <1 (16)
cupied), is to better model the space occupancy. For

example, if a voxel is traversed by an obstacle some- We define the-D probabilistic map, afterk batches of
where in the middle, which divides the voxel into two Measurements, as the set of random variables

halves, its coverage is likely to be 0.5, whereas it would

be considered a fully occupied voxel (coverage equal ¢ = {Ci : 1 € V}, a7
to 1) if a binary representation was used. " )
Let containing a coverage random variable for each voxel
[ in the 3-D discrete gridy. These random variables
My = (x¢, Vi) : k e N, (14) are described statistically through the set of coverage

robability density functions:
be thekth batch of measurements, bekghe sensor’s P y y

position from where measurements are obtained a”dP(Cle) = (plcllMy) i 1€ V). (18)

Vi the set of measurements belonging to the batch,

provided by the robot's sensorat 7., 1 € R, k € N. The coverage of each individual voxel is assumed to

Letalso be independent from the other voxels’ coverage and
. . thusC is a set of statistically independent random vari-

={M;:ieN,i<k 15

Mi={MiiieN.i=k (15) ables. Thenap’s joint pdf p(C|My), afterk batches of

be a sequence afbatches of measurements, gathered measurements, can be written as

in the time intervaly <t < 1, beingr the initial time

before any batch of measurements. Fet 0 (¢ = 1), pCIMi) = [ ] plal My). (19)

the sequence of batches is the empty A¢y = 7. ley
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Fig. 4. Quantized versiop(c;*|M;) of the voxel's coverage pdf
plc/|My). The example is a 16 bins histogram built upon the pdf
depicted inFig. 3b, havingH (C;) = 2.749 bits.

4.2. Map'’s entropy

As it was mentioned in Sectio8.1, the entropy

definition for discrete random variables is generally

R. Rocha et al. / Robotics and Autonomous Systems 53 (2005) 282-311

Since the coverage RV of different voxels are as-
sumed to be independent, the map is a set of indepen-
dent RV. Accordingly with Eqs(12) and (13)and the
map’s joint pdf given by Eq(19), themap’s joint en-
tropy is just the sum of voxels’ individual entropy

H(Q) =) H(C),
ey

(22)

which is a measure of how much uncertainty the map
containg56].

If our knowledge about the voxels’ coverage is
conditioned to thek previous batches of measure-
mentsMy, Egs.(20)-(22)can obviously also be used
to compute the voxel's coverage entropf(C;| M)
and the map'’s joint entropy (C| M) conditioned to
that knowledge, by using(c;| M) and p(c}* | M) in-
stead of usingp(c;)p(cf*). In order to simplify our
notation, the map’s joint entropy! (C|M;) after k
batches of measurements will be sometimes denoted as

H (t).
4.3. Mission execution time

Since discrete entropy is an absolute measure of un-

preferable to differential entropy. For this reason, al- certainty, the map’s entropy given by §82) inherits

though we use a continuous RV to model our knowl- that property and is an absolute measure of the map’s
edge about the voxel's coverage, we use a quantizedyncertainty or quality. This property can be used to de-
version of the coverage pdfto compute discrete entropy fine an important performance measure, which is the
(Fig. 4). Thus, we discretise the coverage continuous mjssjon execution time. Consider a given environment

RV C;, 1 € Y with a discrete RWC/* havingb possible
outcomes:f € {1,...,b}. This discrete RV is an ap-
proximation of the voxels’ coverage pgdec;) through a
relative frequency histogram(c;*) havingb bins, such
as:

5
plet =i)=/7l ple)de;, ie{l, ..., b}

b

(20)

Using the definition of entropy given by El), the
voxel’s entropy is

b
H(C) =) plef =i)log p(cf = i).
i=1

(21)

Hereafter, we will always assume that we b4se 128
bins in the computation of E¢21), which means that
voxel's entropy is bounded to the intervakOH(C)) <
7.

to be mapped and its associated discrete yrid dif-
ferent mapping missions are performed in this environ-
ment at different time periods and, perhaps, by different
teams of robots, the robots’ performance can be easily
compared if a given map’s entropy threshaéig is de-
fined. This entropy value is the minimum map’s quality
that robots must accomplish at the end of the mapping
mission. The mission executiontimg,, € 7, whichis
associated with thinaxth batch of measurements, i.e.
the last batch of measurements acquired by the robot
with the lowest entropy at the end of the mission, can be
defined as the time instant that verifies the proposition

H(tkmax) < ch A Vk<kmax,k€Noa H(tk) > ch- (23)

The mission execution time is thus the first instant
time when the map’s entropy is reduced below the pre-
defined map’s entropy thresholdy, [56]. It can be
used as a performance benchmark to compare the per-
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formance of different mapping missions in the same vectoru when applied in poina is
environment.
Z(u, a) = {v(q;) : q; € Qu,a)} C V. (28)

4.4. Voxels traversed by a vector

Consider an applied vectire R3 connecting point ~ 4.5. Voxels influenced by a measurement
a to pointb (Fig. 52). The set of voxels traversed iy
can be determined by sampling it so that at least one A range sensor typically provides batches of dis-

sample per traversed voxel is gathered in a set&D tance measurements from each pointwhereitis located.
points Consider g batch of measurememts = (xx, Vi), be-

. . . ingx; € R°the sensor’s position from where measure-
Q. a) ={g; 7 € N.i < wh. (24) ments are obtained (shared by all measurements in the
To guarantee this minimum sampling, the veaids batch), and a set
divided into segments with maximum length equal to
the voxel's edges, wherein the coordinates of each Vi = {vy; € R3:jieN,i< my} (29)
sampling point are given by

i of my applied vectors (measurements) conneckpg
g=a+({—1e—=, ieN, i<w. (25) to the set of pointgx; + Vi, : i € N, i < my} where
] o obstacles are detected. For each measuremgnt
The number of sampled points is V), obtained from the sensor’s locatigp, we need to
I determine the set of voxel, ; ¢ Y whose coverage is
w = UU”C(6> +1 (26) influenced by that measurement. Aig. 5b suggests,
this set is
Let
VR3S Y (27) Zi = Z(Vki, xi) U{I'Y, (30)

be a function which determines what grid’s voxel a which includes the se£(vy ;, x¢) of voxels traversed
given point belongs to. The set of voxels traversed by by v, ; plus the voxel’ which is immediately behind

— —

] T T\ ] o s

‘| A\ e ANPEd
b e l x}g"’vki |

P / (gbstacle) 7 /

| e [ - /
/ D L P \

| | RN
Lk 2% Ja) | %] | ZVho%d) || ] |
\ i I P A
(W . BB S W B il b i [

(a) (b)

Fig. 5. Setof voxels traversed by a vector in a 2-D grid: (a) the set of traversed xels) contains the shaded voxels traversed by the vector

u when applied in poina and (b) given a measurement (vectéy), when the sensor is located in the poipt the set of influenced voxels; ;

contains the shaded voxels; light grey voxels between the sensor and the obstacle are more likely to be fully empty, dark grey voxels near to the
detected obstacle have coverage values between 0 and 1, and the bla¢k lapaed immediately behind the detected obstacle, is more likely

to be fully occupied.
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the obstacle. This voxel can be computed as The setM; given by Eq.(15) contains all the mea-
Vel Vi surements yielded by the sensor until tile batch of _
I'=v (xk + (trunc( - > 1) €—o > . (31) measurements, but the measurements which really in-
Vil fluence the coverage of voxe€ ) are those measure-
and is more likely to be fully occupief®6]. ments contained by the @ﬁ. For this reason, we have
the important equality

4.6. Measurements influencing the voxel’s
coverage plelMi) = p(alDy).  Vieykens: (39)

Consider a sensor's positian and a sensor's mea- 47/~ Sensor Model

surementv, ; obtained from that position. ffe Z; ;, . . . ;

the sensor's measurement influences the coverage of 'he Probability density functionp(c;|D;) repre-

the voxell € ). Let sents a sensor model whereby measuremaf)t&—

Wiy R3 (32) (d;, dé-) are converted in estimates of coverage values

C; = ¢; of avoxell. We generally do not know the exact

be a function that computes the center coordinates model of the distributiorp(c;lD’j). However, as local-

[x1, v, z1]" of avoxell € Y. Let the tuple ization errors and sensor errors can be usually assumed

D = (d.d)) (33) to follow a Ggussian model, we represent the voxel's
J— %Yy coverage belief through a Gaussian model

plalD}) = N(u(d;. d). o(d;. d5). c). (40)

wherein, accordingly with the previously defined nota-
tion,d; € Ris the distance between the sensor and the
the measured distance (distance between the sensor andetected obstacle aml? € R the distance between the

be an individual measurement influencing the coverage
estimate of voxel € ), being

dj = Vil (34)

the detected obstacle) and sensor and the voxel's cenf@6]. Beinge the voxel's
edge, the mean of the Gaussian is given b
d' = |(w()) - xg)] (35) 9 genby
. , 0, (d\—dj) < -5
the distance between the sensor and the voxel's center. J Y 2
The set ofi, (/) measurements influencing the coverage (4, d') = { 1 di—dj g€ . (41)
. I 5+ =, |dj dj| < 2
estimate of a voxel € Y, afterk batches of measure- ’ .
ments, is 1 (@d;—dj) =35
Dh={(D.:jeN,j<m)}={D ....,D ) This equation distinguishes three situations (B&g
k j-J v J =k Lo Py . : i
(36) 5b): in the first case, the measured distance does not

end in the voxel, with d. < d;, and thus it is more
having cardinality likely that the voxel is fully empty (coverage equal to
0); in the second case, the measured distance erids in
and the mean of its coverage is inverse proportional to
the amount of the voxel covered by (a value between

0 and 1); in the third case, which is only applicable to
because not all measurements yielded by the sensorthe voxel’ in Eq.(30), the measured distance does not
necessarily influence the voxel's coverage. Given the end in the voxel, with d' > d;j, and thus it is more
initial empty set of influencing measurememg, the likely that the voxel is fully occupied (coverage equal
set of influencing measurements is recursively built to 1). The standard deviation is given by

uponM; as

eIVl ITW () — X)) L€ Zii
V) : :
Di=Di U [U { @, otherwise( | (38)

i=1

k
m(l) <Y ma,  ni(l) € No, (37)
a=1
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Fig. 6. Example of the coverage standard deviation damping as a Fig. 7. Example of a sensor model; = 800 mm,omin = 16 mm,
function of the distance between the voxel's center and the detected ¢ = 1 x 1072, r = 2m, e = 200 mm.

obstacle.
o(d;) ) —dj| < S pdf by a normalization factor
o(d;. d ‘ Loy
(). d}) = “‘(‘1) ex p( %) . otherwise 1 -1
Yooy = ( [ Woeonar) (44)
(42) 0

wherein which preserves the normal distribution instead of sum-
ming white noisg56]. Our definition of the Gaussian’s

o5(d) = omin + ¢d (43) mean is also slightly different from Ref7], for the

second case of E¢41). Fig. 7 shows an example of
the sensor model for a detected obstacle at a distance
dj = 800 mm and?} € [0, 1000] mm.

is a linear model of the range sensor’s standard devia-

tion. It is at least equal temi, near to the sensor and

increases linearly with distaneg which is a typical

behavior of range sensors because accuracy decreases

with distance. Eq42)states that(d;, %) isos(d;) /€ if 4.8. Updating the map

the measured distance does end in the voxel and, given

the damping ratia (seeFig. 6), decays exponentially Updating the 3-D probabilistic coverage meiy)

with |d’; — d;| for voxels farther from the detected ob- UPON & new batcii/y = (xi, Vx), means updating the

stacle WhICh intuitively, have less uncertain coverage coverage pd{16) of voxels influenced by the mea-

estimates. surements contained on it. The new batch contains a
Accordingly with the definition of coverage pdf ~Set ofm; measurementy) = (V;; e R3:i e N,i <

given by Eq.(16), the Gaussian yielded by the sen- m«}, being Zi; C Y the set of influenced voxels by

sor model has to be truncated so that the cumulative @ Measurement; ; € V. Recall also thaD) is the

probability over the coverage domain sums up to one, set of influencing measurements of a vokel Y af-

i.e. P(0< C; <1)=1. In Ref.[7], it is proposed a ter thekth batch of measurements, having cardinal-

sensor model based on a mixture of a Gaussian andity (). Let D}, = {D}...., D} denote a set of

an uniform distribution, wherein the latter distribution Mmeasurements lnfluencmg the coverage belief of a

adds some white noise to ensure a correct normaliza-Voxel . € Y. Note thatD and D, , are equivalent

tion when truncating the Gaussian to the rangel]0 notations.

We claim that a better way of normalizing a normal ~ The algorithm for updating the map upa#, can

distribution truncated to that interval is to multiply the ~ be written in pseudo-code as:
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pi - Di—ls Viey We are going to state how to update this belief and
ni(l) < ng_1(1), Viey determine a new coverage beliﬁﬁclmﬁl) upon a new
fori=1...my measuremend! , which is converted in a new cover-
forallle 2, age estimate through the sensormqnieHDﬁ,), given
’ by Eq.(40). The belief about the voxel's coverage can
mll) < m() +1 be computed af56]:
Compute influencing '
measurement Dizk(l) upon P(D£,|CI)P(CZ)

Vi plalD,) = = Bip(e)p(Dilc))  (46)

'Dl
Update P(CI|ID£,k(1)71) upon / - !

: Dy = D' a7
p(c1|Df1k([)) and obtain rlal n) Arpler) J:l_Ilp( J|Cl) “n

p(cl|Df1k(l)) n ( |Dl) (Dl)

plc|L;)p(D;
end_forall p(c| D)) = Brp(er) H R e i (48)

end_for. J=1 ple)

Egs. (34) and (35)are used to computeDflk(l) "

upon a vector ; yielded by the sensor located in 1D = 182 T plail DY)
xt. The sensor model, given by E0), is used " 11 !
to convert sensor's measurements in new coverage 1 1
estimates. = B1Bap(cil Dy,) pleil Dy _q)- (49)

Applying Bayes rule, we obtai(¥6). Then, if we as-
sume that consecutive measurements are independent
given the voxel's coverage, we obtaih7). Applying
again Bayes rule, we obtai@8). If we assume that
pp(D’j) is constant withy, we finally obtain(49). The
constants8; and 82 are normalization constants en-
suring that the left-hand side sums up to one over all
¢;. Thus, Eq.(49) can be used recursively to update
the beliefp(c,|Dﬁ,) whenever a new influencing dis-
tance D!, is obtained, by multiplying the current be-
lief p(c;|D!,_;) with the coverage estimate(c;| D),
given the sensor model and the new influencing mea-
h(X — N(u, 0, x)) = |og(J2_7Teg), (45) surement, and applying the normalization fag@gs..

) ) Note that forn = 1, i.e. for the first influencing mea-
Itcan also be shown that E@5)is amaximumentropy  gyrement, this recursive procedure uses the initial belief

J=1

4.8.1. Initial map

The initial belief p(c;|D}) = p(ci| Mo) represents
prior knowledge about the voxel's coverage, before any
batch of measurements. Unless there is a previous ma
of the environment being mapped, it is usually chosen
to be the less informative, i.e. a pdf with maximum un-
certainty[56]. Applying the differential entropy defini-
tion given by Eq(11)to a continuous random variable
X with a Gaussian pdW(u, o, x), it can be shown that
its differential entropy increases with the logarithm of
standard deviation as

bound for a pdf with variance?. A convenient ini- p(c1|D), Dl = 0.

tial beliefp(c1|D6) is thus a Gaussian distribution with Cor?sider Eq.(36) giving the set of influencing

o — +00, i.e. an uniform distribution. In practice, this  ,easurements of voxdle Y up to thekth batch

means choosing a Gaussian witmuch larger (€.9.10 55 measurements. '—dpi—l _ {Dzl, D o) be

times greater) than the sensor standard deviation givenine set ofi_1(l) measurements influencnilﬁ_é the cov-

by Eq.(42). erage estimate of a voxéle Y until the & — 1)th

batch of measurements. Le{c;|D,_;) the associ-

4.8.2. Updating the coverage belief of a voxel ated voxel's coverage belief. When the sensor pro-
Consider a given voxel € ), the setD)_; = vides thekth batch of measurement¥®; at r = #,

{D}..... D,_,}containing: — 1 measurementsinflu-  some measurements are eventually appended to the

encing its coverage and its coverage bqi:i(zflﬂ)ﬁl_l). set ch—r which yields a new set of measurements



R. Rocha et al. / Robotics and Autonomous Systems 53 (2005) 282-311 297

D\, ={D},..., D! YT D! )} having cardi- Comparing Eq949) and (51We conclude that: updat-

k— n . . .
nality ni(l) > ni_1(0). The voxel’s coverage belief af-  ing the coverage belief ofavc_)xel, bgtween consecutive
ter thekth batch of measurements can be computed by influencing measurements, is as simple as computing

using recursively Eq{49)for all these new influencing ~ the parameters of a new Gaussian through g5§.and
measurements, as (54); and the normalization constantdsf, = 8, with

B given by Eq.(52). This simplicity of computation is

: 1k ; : a consequence of the Gaussian nature of sensor model
pD)=ps| [ plalD))| plalDi_y). and our careful choice of an initial coverage belief. It
j=ng-1+1 is easy to conclude from E{p4) that the standard de-

(50) viation o of the Gaussian yielded by the product of
two Gaussians with standard deviatienandoy, re-
beingBs a normalization constant ensuring that the left- spectively, always verifies the conditien< o1 A o <
hand side sums up to one overallNote that ifng (/) — o2, i.e. the new voxel's coverage belief has always
ni—1() = 0, i.e. if there are no new influencing mea- lower standard deviation and, accordingly with Eq.
surements provided by th¢h batch of measurements, (45), lower differential entropy and uncertaingig. 8
D, = D,_, and, obviously,p(c/|DL) = p(ci/| D). shows an example of the aforementioned update proce-
Note also that, accordingly with the equality given dure. The differential entropy values of depicted pdf’s
by Eq. (39), we havep(c/|My—1) = p(ci|D;_;) and are h(C|D,_;) = —1.690, h(C/|D!) = —1.275 and

plellMy) = p(ei|DL). h(Cy|D) = —2.012. The entropy values of the quan-
tized versions aréf(C;|D,_;) = 5.312 H(C)|D,) =
4.8.3. Special case of updating Gaussians 5.726 andH (C,|D,) = 4.991.

At the beginning of a mapping mission, each voxel Although Gaussians’ domain is not restricted to the
has an associated coverage belief modeled through ainterval [0, 1], accordingly with Eqs(41) and (53)we
Gaussian, usually having high entropy. As the sensor can conclude that & x; < 1. In practice, truncating
model (40) also yields Gaussian beliefs, E@9) in- the Gaussian to that interval is not critical to update the
volves the multiplication of two Gaussians when the coverage belief but, if for some purpose we have to do
firstinfluencing measuremenY, is obtained. If the re-
sultant pdf is also a Gaussian, this process repeats itself

whenever new measures are gathered. —ple | DL_y) plea | DY)  — pla | DY)
Infact, it can be easily shown that the product of two /\
Gaussiansp(c/|D,_;) = N(u1, 01) and p(c| D) = 6
N(u2, 02) yields a Gaussian multiplied by a constant
[56] 5
/ ! 1 , \
p(Clan_l)p(C]|Dn) = EN(M’O—)’ (51) # /’ \\
3 |
(n1 — p2)? ’
B = 1/27(c? + o2) exp { , (52) |
PP T 26 + o) 2
whose parameters are given by the closed-form equa- / / \
tions ! J/ \M
2 2 .
= %, (53) 0o 01 02 03 04 05 06 07 08 09 1
o1+ 03 C
_ 0102 (54) Fig. 8. Example of the coverage belief update procedure with Gaus-

o2 4 02. sians: p(¢|D,_;) = N(0.35,0.075) p(c;|D}) = N(0.4,0.1) and
Vo1 2 ple| D)) = N(0.368 0.06).
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it,3 we apply the normalization fact¢d4). Although a room). For this reason, voxels near to that plane are
the mean of the truncated Gaussian is different from preferable to be explored. Consider the current robot's
11, its mode is equal ta; and might be taken as a  POseY = (x, a), beingx € R? its current position and
good estimate of the voxel's coverage, because thata = [0, ¢, ¥]" its orientation. Given a robot’s coordi-

difference tends to zero provided that— O. nates fram¢R}, which is obtained from the global (ab-
While in Ref.[7] the coverage belief of a cell was so!ute) coordinates framéV } after Franslgtion and ro-
represented through histograms witlbins ¢ is typ- tation, the robot's motion plan€' is defined by two

ically more than 10), in our case we represent the orthogonal axes: a longitudinal axjg = [1,0, 0],
voxel's coverage belief as a Gaussian, which is fully Which is the unitary vector alongr axis, and a trans-
characterized by justvo parametersy; andoy. Thus,  verse axisy’ = [0, 1, 0]", which is the unitary vector

in the set of pdf given by Eq18), we have to store  alongyy axis; for example, for a UA would be the
only two values for each voxel, which is a much more axis between tail and head, afdvould be the axis
compact representation than a histogram. Moreover, connecting the wings. It can be shown that the robot’s
the aforementioned procedure for updating the cover- axes can be expressed in the global coordinates frame
age belief is very simple and we can still build his- {W}as

tograms upon the pdf with an arbitrary number of

bins p=[cos6-cose, sind-cos¢, —sing]",  (55)
CosH -sin ¢ - siny — sin 6 - cos ¥
4.9. Entropy gradient-based exploration g=|sin6-sing-siny +cosd - cosy | . (56)

In order to gradually reduce the map’s entropy, the CoS¢-sinyr

robots have to explore the environment so as to mea- The angles, ¢ andy are the yaw angle, the pitch angle
sure it from different viewpoints. Inan exploration mis- - and the roll angle, respectively, and are assumed to be
sion, the objective is to acquire as much new infor- positive in the counterclockwise direction. Note that
mation about the environment as pOSSible with every axisﬁ can also be viewed as the robot’s sensor gaze

sensing cycle. When a robot has to select a new view- direction. Any vectoii can be projected on the robot’s
point for acquiring data through its sensor, we claim motion planel” as

that the robot’'s sensor should be directed to regions
having higher magnitudes of entropy gradient and low proj u = (u - p)p + (u - §)q, (57)
expected coverage, in the neighborhood of the robot.
This strategy drives the robot’s sensor to frontier vox- wherein () denotes the internal product of two vectors.
els between more explored and less explored regions, Let denote the applied vector connecting the robot’s
so that the information gain of new acquired data can sensor positiorx € R3 to the center of voxel as
be maximized56]. This strategy is a reformulation of  u(x, 7) = w(l) — x. Given a neighborhood around the
frontier-based exploration [33] using the entropy con-  current robot’s sensor position with radiesits new
cept. position is selected as the center of a voxel belonging
to the set of voxels

4.9.1. Subset of voxels in the robot’s neighborhood . .

Although our method can be applied & 6 DOF Nr(x, &) ={le Y ux )l <el= v(pﬁojw(l))}'
robot, we have been mainly interested on using it on
ground mobile robots with 3 DOF — two position co- (58)
ordinatesx andy and orientatioré — whose sensor’s
motion is instantaneously restricted to a pldn@ar-
allel to the robot’s motion plane (e.g. the floor plane in

4.9.2. Entropy gradient

The 3-D grid) discretises the 3-D spade® at
discrete pointsw(l), ! € ), equally spaced by (the
voxel's edge). The 3-D map enables us to associate

3 Forinstance, the purpose might be computing a cumulative prob- With each of these points an entrop(l) = H(C))
ability, such asP(0 < C; < 0.3). given by Eq(21). Therefore, a continuous entropy field
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H :R® — R is sampled along the voxels’ centers be-
longing to the gridy. Our volumetric model assumes
that each edge of any voxe€ ) is aligned with one of
the axes of the global coordinates frafi¥€} (seeFig.
3a). Let/g_ denote the contiguous voxel fan the
negative direction of axi®. A reasonable (first order)

with mobile robots in our laboratory. The mobile robots
(seeFig. 9a) are Scout robots from Nomadic Technolo-
gies, having differential kinematics, odometry sensing
and sonars. Each robot has inside an embedded com-
puter running a Linux operating system, which is based
on a Pentium 133 MHz processor. We mounted on the

approximation to the entropy gradient at the center of top of both robots a stereo-vision sensor and a mo-

avoxell is
VHE ~ TH) ~ H(), HO)

— H(ly-), H() = H({-)T™ (59)

The projection of the voxel's entropy gradient on the
robot’s sensor motion plang is

VHr(l) = proj VH(), (60)
r
with magnitude|V Hr(0)].

4.9.3. Exploration strategy

Our exploration strategy drives the robot’s sensor to
regions in the neighborhood of the robot having higher
magnitudes of entropy gradie¥itd, and that are more
likely unoccupied. If the center of a voxet N (x, &)
is selected to be the next robot's selected positign
our method selects the robot's gaze directi¢h), de-
fined by the unitary vector

_ VHF())
IVHFO)I

Accordingly with our exploration strategy, bei#fC;)

the expected coverage of a voxet ), and given the

set of voxels\Vr(x, &) in the robot’s neighborhood, the
robot’s sensor is directed to the voxel

p() VHr(l) # 0. (61)

I = argmax(||VHrOII[1 — E(C)]). (62)
leNT(x,€)

with a gaze on arrival defined by the unitary vector

p(*). If the gradient-based criteria is not conclusive,

the robot should wander randomly until that condition

is not verified.

4.10. Mobile robots equipped with stereo-vision
sensors

The 3-D mapping framework presented in previous

dem radio providing wireless TCP/IP communication.
Each stereo-vision sensor (see bottonfrigf. 9a) is a
small, compact, low-cost analog stereo rig from Videre
Design, with resolution 16& 120 pixels. For comput-
ing range data from stereo images, we use the Small-
Vision System (SVS) v2.3[58], a stereo engine from
SRI International, which implements an area correla-
tion algorithm for computing range from stereo im-
ages, and supports camera calibration, 3-D reconstruc-
tion and effective filtering. Sekig. 9 for an example

of a depth map yielded by the SVS engine. Each robot
has a ring of 16 Polaroid 6500 sonar ranging modules,
which were used for avoiding obstacles when moving
the platform, and for preventing the robot to acquire
stereo image pairs below a given distance threshold
to obstacles. The sensor model given by &®) was
properly calibrated for these stereo-vision sensors. The
valuesomin = —0.06 mm and¢ = 3.75 x 1023 were
found. Note that our stereo-vision sensors cannot mea-
sure distances below roughly 1 m and, althougl,
might be negative, Eq43) always yields a positive
value ford > 1000 mm. The damping parameter used
in Eq.(42)was empirically tuned to the value= 2 m.

4.11. Results

Fig. 10shows Virtual Reality Modeling Language
(VRML) models of a volumetric map at different in-
stant times along a mission, which was obtained with
a single robot. Each voxel is represented through a
given color which depends on its coverage and its
coverage belief uncertainty (entropy). The map’s res-
olution ise = 0.1 m and covers a parallelepiped with
3.9m in length, 4.2m in width and 0.8 m in height,
which was represented through a 3-D discrete grid
with size 39x 42 x 8 voxels. The robot started the
mission with a maximum entropy map for which
H(0) = 103488 10° bits, wherein each voxel be-
longing to the grid had an entropy value equal to 7
bits (¢ = 128 bins for the histogram). Then, it explored

sections has been used for carrying out experimentsgradually the environment until the map’s entropy was
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Fig. 9. Robots used in the experiments: (a) Scout mobile robots (top), equipped with stereo-vision sensors (bottom) and (b) a stereo image pai
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(b)

(top) and its associated disparity (bottom-left) and depth map (bottom-right).

reduced below the thresholdy, = 500 bits (see the
final map on the bottom-left oFig. 10. The robot
neededy, ,, = 9146 s to accomplish the mission. The
total number of measurements gathered by a robot
along the mission might be computed as

kmax

mr= m.
k=1

The robot gathered a total éfnax = 303 batches of
measurements, with an average sizengf= 9049
measurements, which yielded a totahof = 2.742 x
10° measurements.

Fig. 11 presents the final (best) 3-D map obtained
by the robot at the end of the mission, from different
viewpoints.

(63)

5. Information utility

Consider again a batch of measurememfs =
(xx, Vx). Each measurementy; € V; influences
the coverage of the set of voxel§;; and thus
it has also an associated information utility. Let
l e Z,; be a voxel whose coverag€; is influ-
enced by the new measurement;; for the same
voxel, let alsop(c;|D,_;) = p(ci|DY, ..., D! _;) and
p(a|D)) = p(a|DY, ..., D\) be the coverage belief,
respectively, before and after voxéd updated with the
new influencing measuremenX, = (d,, d’), through
Eqg.(49). Using the conditional mutual information def-
inition given by Eq.(10), the information utility asso-
ciated with the measuremew; € Vy is [57]

Ii= Y H(C/ID}..... D), y)
€2y ;
—H(CI|Dy. ... D)= > I (64)
lEZkyi

Recall the definition of conditional mutual information

. l -
Whenever arobot gets a new batch of measurementsdiven by Eq:(lo). Ea?h termy; ; in Eq. (64) measures
M, we can say that this event has an associated infor-the mutual information betweep(c;| D!,) and p(c)),

mation utility, which can be measured in terms of a
decrease of the map’s joint entrop¥(C). Let H(t)

be the map’s joint entropy at= #;, computed through
Eq. (22). The map’s joint entropy is a measure of the

conditioned to the past histoﬂyﬁl_l, i.e. the contri-

bution of each influencing measureméjj to reduce
the voxel's uncertainty. For instance, the information
utility of the influencing measurement depictedHig.

map’s uncertainty and its decrease within a period of 8is equal to 0.321.

time is a measure of the information utility of the mea-

Although differential entropy cannot be used as an

surements gathered within the same period of time, in absolute measure of entropy, it is a valid relative mea-
terms of their utility on improving the map’s accuracy sure of entropy, i.e. both discrete entropy and differ-
[57]. ential entropy can be used to compute the variation
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Coverage

1,=177 s, H(C | M,)=82970 bits 1,=455 s, H(C | M,)=55321 bits

i

£,=973 s, H(C | M,)=41367 bits

£=1502s, H(( | M,)=23354 bits

1,=2929 s, H(C | AL)=7903 bits 1,=9146 s, H(C | AL, )=443 bits

Fig. 10. Map’s evolution along a 3-D mapping mission. Each snapshot shows the robot’s map registered in the global referdiit fihee
different instant time;, and entropy leveH (C|My). The map’s resolution is = 0.1 m. The pictures’ scale is such that each represented arrow
is equivalent to a real length of 1 m.

(difference) between two entropy values and this differ- (21) is computationally heavier. For each influenced
ence is equal for both. E¢45) provides a very conve-  voxell € Z; ; in Eq. (64), let the Gaussiang(c;) and
nient procedure for computing the differential entropy p’(¢;), having standard deviatian ando, be its cov-

of a Gaussian, because it is a closed-form equation. erage belief before and after the new measurement is
Instead, computing the discrete entropy through Eq. integrated, having differential entropgy() and 4'(()
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Fig. 11. Different views of the volumetric map’s VRML model at the end of a 3-D mapping mission. The world reference frame is represented
through the red axes.

and discrete entropf (/) and H' (), respectivelyt Let tio 07/0;. Fig. 12compare§,lﬁ. andI,lfl. as a function of

I,lji = h(l) — h'(l) be the measurement’s information ¢;, wheno;/o; = 1/0.99, i.e. when the new measure-
utility for that voxels, computed through E@5), and ment yields a decrease of 1% in the standard deviation
I,lfi = H(l) — H'(I) the same utility computed uponthe of the voxel's Gaussian coverage. It shows that: for
pdf's quantized version using discrete entropy. It can o; > 0.3, we cannot use the differential entropy-based

be shown that estimate because it neglects the pdf’s truncation to the
1 s o) interval 0< C; < 1 and the normalization introduced
I~ Ii; = log (;) . (65) by Eq. (44);, and, fore; < 3 x 1073, we cannot use
I

the discrete entropy-based estimate, because the his-
Eq. (65) states thatl} ; is approximately equal for ~ togram’s bins have not sufficient resolution to model

Gaussian pairs with the same standard deviation ra- pdf’s with a smaller standard deviation. However, for
3 x 1073 < ¢; < 0.3, which encompasses most of the

4 Recall that we compute discrete entropy of a continuous pdf Situations with our stereo-vision sensors, both esti-
through a histogram derived from it havihg= 128 bins. mates are approximately equivalent. This conclusion
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Fig. 12. Computation of the information utilityw. of a measure-
ment for a given influenced voxél Beingo; ando; = 0.99; the
standard deviation of the voxel's coverage Gaussian before and after

the measurement, respectively, the graph plots the computed values

of Ii_l. as a function oby, using either the histogram’s discrete en-
tropyI,’c,A,. (histogram withb = 128 bins) or the approximated voxel's
coverage differential entrop§f’, = 1.45 x 1072,

is roughly the same for other values of the ratigo,
though it is not explicitly shown herein due to lack of
space. For this reason, we generally use(E§)in the
computation of Eq(64).

The information gain due to thigh batch of mea-
surements is given by

my
L= Iri = H(i-1) — H(#),
i=1

(66)

which measures the mutual information between the
current map and the new acquired batch of measure-
ments, i.e. the contribution of this batch to reduce the
map’s uncertainty. As Eq22) requires the computa-
tion of the entropy function foevery voxell € ), it
represents a time-consuming computation if it is used
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5.1. Cooperation through sharing useful
information

In this section, we describe how a team of such
robots, populating the 3-D environment being mapped,
can be cooperative on building a 3-D map, through
sharinguseful measurements. Accordingly with the ar-
chitecture model shown iRigs. 1 and 2we assume
that, besides being able to build and update its own
local 3-D map based on information from its own sen-
sor, each robot is also committed to share new acquired
sensory information with its teammates through com-
municatior{57]. Whenever a given robot gets a batch of
measurementd?;, = (xk, Vi), it sends to other robots
a sub-set of measuremeris= (x, U;). The set

U = (g1, ..., 0k} C Wk (67)

containss;y measurements selected to be communi-
cated. The sensor’s positiap from where those mea-
surements were gathered is also sent, since itis required
for registering those measurements in the local map of
other robots

Different communication topologies can be used,
depending on the capacity and range of the available
communication channel. When possible, the robot act-
ing as information provider should send data to all
robots inthe team, so that all of them can take advantage
of new sensory information; otherwise, the communi-
cation is restricted to a team’s subset, such as the near-
est robots to the information provider. When a robot
receives a batch af; communicated measurements
R = (x;, U}), it updates its local map as if measure-
mentsl{, would have been gathered by its own sensor
when located at positioxy,.

As communication channels have always limited ca-
pacity, when a robot is acting as information provider,
it has to limit the amount of communicated data and
select the most useful measurements gathered from its
own sensors. On doing it, the robot uses (64, to as-
sess the information utility of measuremeits € V

at each time step, whenever a new batch of measure-5n4 classifies them by utility. Let defing, _, as be-

ments is gathered. But, as E§6) suggests, the map’s
joint entropy can be recursively updated Héz;) =
H(tx—1) — I, whichis amuch more efficient computa-
tion procedure because itis only computed the(E4)
for each measurement; € Vx belonging to the batch
My = (x¢, Vi)- Thus, Eq(22)is only required for com-
puting the maps'’s initial entrop¥f (0) = H(C| My).

ing the maximum number of allowable communicated
measurements at a given time instant. Let also define
Imin @s being the minimum allowable information util-
ity for a communicated measurement. The (&&) is

5 As it was already mentioned, we assume that each robot is able
to localize itself and correctly register its sensor measurements.
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built in such a way that the proposition

(Sk < Skmax A Sk < Skmax

= V5 .evther Tkz < Imin A Vi, ety Ik, j

> Imin A Vf’k'wEVk\Mkﬂ Ik,w =< Ik,j) (68)

is true. This propositionis true, i.e. the set of communi-
cated measurementsis valid, if the following conditions
are met: (a) the size of the set is not greater than;

(b) the size of the set is less thap,, only if itincludes

all measurements in the sgt having an information
utility not less thaninin; (c) the information utility of
communicated measurements is at lelagt and all
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5.2. Implementation in mobile robots

The robots presented in SectiériOwere used for
carrying out cooperative 3-D mapping experiments, us-
ing the architecture model shownhiig. 1and the co-
operation scheme described in Sectiohfor sharing
useful sensory datfp7]. Fig. 13shows a diagram of the
software that was programmed on the robots in order to
implement the distributed architecture modekaj. 1
Itis intrinsically scalable to a team having an arbitrary
number of robots.

Fig. 13 shows the interaction between the team of
robots and a host PC, which was used for supervision.
Using this computer, the user can control the mission

not communicated measurements have lower or equalexecution through the modu#aSTERCTR (e.g. start,

utility than those that are selected to be communicated.

Accordingly with Eq(64), the sender robot assesses
the measurement’s utility by assuming that if the mea-
surement is useful for itself it is equally useful for its
teammates. Although different robots may have differ-
ent maps, as we shall see in Sectto8 typically the
robots’ maps are just slightly different and, thus, the
assumption remains valid.

pause, restore, stop, etc.), get access to robots’ data
through the modulelAPCOLLECT (e.g. robots’ indi-
vidual maps, log data, etc.), and visualize VRML mod-
els of the maps through the modul&@ SUALIZ (see
some examples ifrig. 11). The host PC is also re-
sponsible for providing global localization to the team
of robots through the moduleOCALIZSRV, using a
color segmentation algorithm that detects and tracks

HOST PC ROBOT i
TCPAP
“I.server
VISUALIZ SLAVECTR 3DMAPPING
Visualization Slave Controller
MAPCOLLECT
Map Collector 2 client o
| diserver STEREOPROC
MEASRCV i 4clent| | Stereo Processing
MASTERCTR LOCALIZSRV Measurements
Master Controller Localization Server Receiver mAPUUEg_
ap Updating
T ctent j MEASPROVID
2,server Measurements
Provider
MAPPROVID
TCP/IP . T
Map Provider » gl?r\zygonﬁrtl
3,clier
"I Ll PLATCTRL
Platform Control

\ ROBOT 1 |

ROBOT i |‘ ROBOT n \
=

————

(@)

Fig. 13. Diagram of the software implemented in mobile robots: (a) interaction between the team of robots and the host PC used for supervising

3-D mapping missions and localizing the robots through a global camera and (b) software modules running locally on each robot.
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the colored markers on the top of the robots’ platforms to any team size. The fourth column shows the ra-
(seeFig. 9). tio between the mission execution timeg,,(2) with
Each robot is able to build autonomously a volu- two robots and with one robeg_ . (1). Given that our
metric map on its own, storing and maintaining locally voxels’ coverage beliefs were always Gaussians, the
the grid-based map on a shared memory area, which isvalues used foryin, {0, 0.00723 0.0145Q 0.0740Q
shared by the different modules running concurrentlyin 0.1520Q 0.32193, meant an average reduction on the
the robot (se€ig. 13). The mutual exclusive accessto standard deviation of the influenced voxels by a mea-
the map’s shared memory is ruled through a semaphorsurement of at leag0%, 0.5%, 1%, 5%, 10% 20%},
provided by the Linux kernel. There is also a shared respectively. Recall that when a robot acquired a new
memory area for storing and sharing the robot’s state batch ofm; measurementd?;, = (xk, Vi) through its
among those modules. Each robot runs locally three own sensor, it might sent to the other robot a batch
software modulessLAVECTR—receives commands  of s; useful measurement$, = (xi, Uy), with s <
from the moduleMASTERCTR running remotely in  mg A sp < Sk A Uk = 0. Conversely, ath batch of
the host PC, which determine the current robot’s state; m; measurement¥; = (x;, Vx) mightnotbe acquired
MAPPROVID—sends incrementally data to to the host from its own sensor and thus might be a batch:pf
PC’s moduleMAPCOLLECT during the mission ex-  useful measurements sent (shared) by the other robot
ecution, so as to synchronize the map’s copy stored My = Ry = (x}, Uy,), With uy = my < s A sk = 0.
in the host PC with the robot's own copy, whenever The fifth column shows the total humber of mea-
the robot updates the map upon new measurements;surementsnt gathered by a robot along the mis-
3DMAPPING—performs most of the robot’'s compu- sion, which is given by Eq(63). The sixth col-
tation burden, including acquiring stereo image pairs, umn shows the total number of received measure-
computing range data from stereo images, updating ments from the other robaty, which is computed
the map upon new measurements, selecting new ex-through
ploration viewpoints and controlling the motion of the K

robot’s platform.
P ut = Z U. (69)
k=1

5.3. Results and discussion
In each experiment (line of the table), the results refer
This section presents results obtained within exper- to the robot that first attained the entropy threshidjg
iments carried out with a team of two cooperative mo- i.e. the robot having the best map at the end of the mis-
bile robots (seig. 9), which were programmed ac- sion.Fig. 14presents an example of the maps obtained

cordingly with the software architecture showrHig. by the two robots along a 3-D mapping mission. As
13. These experiments aimed at studying the influence we can observe, robot 2 held the best map for the in-
of the information sharing parametekgin and s, stant times represented in the figure, which means that

on the team’s performance, by comparing the mission robot 2 reachedi, first. The timer(1) that a single
execution timey,,, with different values for those pa-  robotwould need to obtain the represented maps is also
rameterg57]. As in the experiments reportedin Section shown, so as to better understand the reduction of the
4.11, the robots started each experiment with a maxi- mission execution time yielded by a team of coopera-
mum entropy map and used the entropy gradient-basedtive mobile robots.
method described in Secti@gh9 for exploring the en-
vironment until the entropy thresholy, = 500 was 5.3.1. Advantages provided by cooperation
attained. The graph on the left dfig. 15compares the map’s
The environment, the initial map and the stopping entropyH(r) for the single robot case and for the fastest
criteria were fixed for all the experiment$able 1 experiment with two robots (fourth row dfable 1.
summarizes the obtained results with the team of two It shows a non-linear increase of the mission execu-
robots, which are however extensible and can be gen-tion time with a decrease of the map’s entropy. It also
eralized to teams having an arbitrary number of robots, shows that robots’ cooperation accelerated the reduc-
because the robots’ program is intrinsically scalable tion of the map’s entropy and led to a reduction of
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Fig. 14. Maps’ evolution along a 3-D mapping mission with two robots. Each row shows a snapshot of the map of each robot registered in the
global reference framgW}, at a different instant timg. and entropy leveH (C|My). In every rows, the best map was held by robot 2 (maps
shown on the right). The timg (1) that a single robot would need to obtain a map with the same entropy is shown on the bottom-right of the
maps of robot 2. The map’s resolutiorkis= 0.1 m. The pictures’ scale is such that each represented arrow is equivalent to a real length of 1 m.
For the presented case, the paramelgs = 2500 and/min = 0.1520 were used.

28% int,,,,. As robots shared useful measurements entropy. The graph on the right &fg. 15shows that
through communication, each robot was able to inte- although the two values aft were similar, measure-
grate in its map a greater number of measurements perments were obtained within time intervals,_, quite
time unit and achieved a faster reduction of its map’s different.
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Fig. 15. Comparison of a 3-D mapping mission using a single robot or two robots: entropy of the map along the mission (left) and cumulative
number of processed measurements along the mission (right). For the presented case, the parametégs vali@d45 andsy,,,, = 2500

were used.

Besides enabling cooperation and its aforemen- 5.3.2. Influence of communication selectivity

tioned benefits, the coexistence of several robots in the

Fig. 16 presents a graph of,,, as a function

same workspace and the communication among robotsof the parameteli, and curves of the cumulative

also yield some pitfalls contributing for the degrada-

sum Y u; of received measurements from the other

tion of the team’s overall performance: (a) robots must robot along the mission, for different values Bi,.
share the workspace which leads to some mutual in- For this figure, the maximum number of allowable
terference; (b) the time spent on communicating mea- communicated measurements at a given time instant
surements to other robots sometimes delays operationswassy,,,, = 20,000. Since the number of measurements
(c) the time required for processing received measure- yielded by the sensor was about*1feasurements,
ments through communication and updating the map in this situation,s,,,, did not restrict the communica-

upon them might not be negligible. While the two latter

tion for any acquired batch of measurements, because

problems depend mostly on the communication band- my < sk, 1 < k < kmax. The graph on the left dfig.

width and the robots’ computation power, minimizing

16shows that decreasirg,, from 0.32193 to 0.01450

the interference among robots is an interesting future led to smaller mission execution times. However, for

extension of the framework proposed herein.

Table 1
Results obtained within experiments with two robots and different
parameters ruling the information sharing

Skmax Irmin Tkmax Z::g; mr uT Percent
500 0.01450 8483 0.94 2795351 74729 3
1000 0.01450 8387 0.93 2726837 135661 5
1750 0.01450 7332 0.81 2447091 184550 8
2500 0.01450 6530 0.72 2375273 207636 9
5000 0.01450 7955 0.88 2643728 271612 10

20000 O 9450 1.04 3192788 1134455 36

20000 0.00723 7563 0.84 2453021 457390 19

20000 0.01450 6571 0.73 2345844 332270 14

20000 0.07400 7007 0.77 2676612 128345 5

20000 0.15200 7301 0.81 2595398 59499 2

20000 0.32193 7727 0.85 2930155 27323 1

Imin < 0.01450, the graph of,,,, presents a remark-
able inflection, which led to a fast degradation of the
team’s performance. This observation puts on evidence
the importance of selecting the most useful information
to be communicated. If the selection is too weak, most
of the communicated information becomes redundant
and the time spent on communicating and processing
that superfluous information becomes very significant
[57]. The curves on the right dfig. 16 show that the
first derivative is the same at the beginning of the mis-
sion, because,,,, is common to all of them. However,
as long as the mission is executed, the derivative de-
creases to an extent which depends on the selectivity
introduced bylmin.

The graph on the right dfig. 17shows that reduc-
ing the communication bandwidth__ always led to

max
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an increase ofy,,, and a poorer team’s performance
[57]. As cooperation in a 3-D mapping mission relies
completely on explicit communication, restricting it
also restricts the extent of cooperation. However, in
the case ofin, being selective to some extent is bene-
ficial in order to select the most useful information and
to avoid the communication of redundant information.
The curves on the right dfig. 17 show that the first
derivative by the end of the mission is the same, be-
causelmin is common to all of them; and that it is as
high ass,,,,, atthe start, since this parameter configures
a bandwidth limitation.

These results yield some guidelines for developing
communication schemes aiming at fostering cooper-

ation [57]. While s, is imposed by the communi-
cation channel capacityynin has to be tuned in an
intelligent way, whereby its selective power is ben-
eficial for the robotic team’s performance. It should
be selective enough to avoid communicating redun-
dant information, and not too selective so as to enable
efficient information sharing and cooperation among
robots.

6. Conclusion

Most of the previous research on building maps has
been restricted to models without an explicit represen-
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