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Abstract—Building cooperatively 3-D maps of unknown

environments is one of the application fields of multi-robot

systems. This article introduces a distributed architecture,

within a probabilistic framework for vision-based 3-D mapping,

whereby each robot is committed to cooperate with other

robots through information sharing. An entropy-based measure

of information utility is defined, which a robot uses for

communicating to its teammates the most useful measurements,

thus preventing the robot to overwhelm communication resources

with redundant information. Experiments with real robots,

equipped with stereo-vision, yielded important conclusions about

the way robots should cooperate on sharing information.

Index Terms—Cooperative multi-robot systems, 3-D mapping,

entropy, information utility, communication.

I. INTRODUCTION

Multi-robot systems (MRS) have been widely investigated

for the last decade [1]. These systems employ teams of

cooperative robots to carry out missions that either cannot be

achieved by a single robot, or where a multi-robot solution is

more efficient, cost effective, reliable and robust than a single

robot. Building a 3-D map of an unknown environment is one

of the application fields of MRS.

Robotic mapping addresses the problem of acquiring spatial

models of physical environments through mobile robots [2],

using range sensors such as cameras or laser range finders. As

sensors have always limited range, are subject to occlusions

and yield measurements with noise, mobile robots have to

navigate through the environment and build the map iteratively.

Robots can be used for building fastidious maps of indoor

environments [3], but they are particularly useful on mapping

missions of hazardous environments for human beings, such as

abandoned underground mines [4] or nuclear facilities [5]. Al-

though it is recognized the potential of MRS on such mapping

missions, most of the current state-of-the-art of robot mapping

is restricted to single robot solutions, with some exceptions

mainly focused on exploration and coordination [6], [7], [8].

Extensive research has been devoted to SLAM (e.g. [4]), i.e.

the problem of building a map and simultaneously tracking

the robot’s position on that map. In this article, it is assumed

that robots are externally localized, so the work here presented

does not fall in the heading of SLAM or localization.

Most of the work in MRS has been devoted to the definition

of different architectures, mostly behavior-based, that rule the

interaction between the behaviors of individual robots [6], [9],

[10], [8]. Communication is a central issue of MRS because it

determines the possible modes of interaction among robots. As

communication is always limited, either in resources applied

to perceive the world or in bandwidth of a communication

channel, using efficiently those resources is crucial to scale

up cooperative architectures for teams of many robots, with-

out limiting them to simple reactive and loosely-cooperative

systems, with very limited or no awareness. Although previous

work on communication structures for MRS has led to some

useful conclusions and design guidelines [11], [12], [13], [14],

there is no a principled formalism that can be systematically

used to share efficiently sensory data based on information

utility assessment. Current architectures extensively use ex-

plicit communication, not taking care [6], [9], giving low

emphasis [8], or using no principled heuristics to avoid the

communication of redundant information. An exception is

[10], where entropy is used to define theoretic information

measures for predicting the expected information outcome

associated with control actions. However, it is mainly focused

on coordination and it is not clear how it can be used to share

efficiently sensory data within mapping missions.

In [15], we refine coverage maps [3] to develop a grid-

based probabilistic model of a 3-D map (see a summary

in section 2), which provides a compact representation of

the coverage (occupancy) of each cell and a straightforward

Bayesian update procedure. In section 3, we use this model to

present a distributed architecture model for 3-D mapping with

a team of cooperative mobile robots. In section 4, we propose

an information-theoretic measure of information utility, which

is used by robots to cooperate through sharing sensory data,

with an efficient use of communication resources. Section 5

presents an experimental setup with cooperative mobile robots

equipped with stereo-vision range sensors, which was used

for carrying out a set of 3-D mapping experiments. Results

yielded by those experiments are used to highlight the benefits

provided by cooperation and the influence of information

selectivity on the team’s performance. The article ends with

conclusions and future work.
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II. PROBABILISTIC FRAMEWORK FOR 3-D MAPS

This section summarizes the probabilistic framework for

3-D maps developed in [15]. Hereafter, vectors are written

with bold lower case letters; tuples and sets are both written

with upper case letters, but sets are written in calligraphy.

The index k ∈ N0 is used for batches of measurements.

The set of time instants when measurements are obtained is

T = {tk : tk ∈ R, k ∈ N}, with tk−1 ≤ tk, ∀k∈N. The k-th
batch of measurements is obtained at time instant t = tk. The

index k = 0 denotes the initial time instant t = t0 ≤ tk, ∀k∈N,

before any measurements.

A. Batches of measurements

A range sensor, a stereo-vision sensor in our case, typically

provides batches of distance measurements from its location.

The k-th batch of measurements is the tuple Mk = (xk,Vk),
being Vk = {−→v k,i ∈ R

3 : i ∈ N, i ≤ mk} a set of mk

applied vectors (measurements), connecting the 3-D point x k,

where the robot’s sensor is located, to the set of points {xk +
−→
v k,i : i ∈ N, i ≤ mk}, where obstacles are detected. The
index i is the index for measurements within a given batch of
measurements. The sequence of batches of measurements up to

the k-th batch of measurements, corresponding to the period
of time t0 ≤ t ≤ tk, is the set Mk = {Mb : b ∈ N, b ≤
k}. Before any batch of measurements, i.e. for k = 0, the
sequence of batches is the empty set M0 = ∅. The k-th batch
of measurements sent to other robots is Sk = (xk,Uk), Uk ⊆
Vk, being Uk a set sk of useful measurements. The k-th batch
of measurements received from other robots is Rk = (x′

k,U ′
k),

being U ′
k a set of rk useful measurements from the sensor of

other robot, whose pose is x
′
k.

B. 3-D volumetric map

The 3-D workspace is divided into equal sized voxels (cells)

with edge e, e ∈ R, and volume e3. The set of all voxels

yielded by such division is the 3-D grid Y and the index

l is used for denoting individual voxels. The coverage of a

voxel l ∈ Y is the portion of its volume which is covered

(occupied) by obstacles and is represented through the random

variable Cl, taking values cl ∈ [0, 1]. The index j is used for
measurements influencing the coverage estimate of a given

voxel. Given a batch of measurements Mk = (xk,Vk), the set
of influenced voxels by a measurement

−→
v k,i ∈ Vk is denoted

as Zk,i ⊂ Y . An individual measurement influencing the

coverage estimate of a voxel l ∈ Y is the tuple D l
j = (dj , d

l
j),

being dj ∈ R the distance between the sensor and the detected

obstacle and dl
j ∈ R the distance between the sensor and

the voxel’s center. The set of measurements influencing the

coverage estimate of a voxel l ∈ Y , after k batches of

measurements, is Dl
k = {Dl

j : j ∈ N, j ≤ nk(l)} and has

cardinality nk(l) ∈ N0. Before any batch of measurements, the

set of influencing measurements is the empty set D l
0 = ∅. The

coverage probability density function (pdf) of a voxel l ∈ Y ,
after k batches of measurements, is p(cl | Mk) = p(cl |
Dl

k). The 3-D probabilistic coverage map, after k batches

of measurements, is the set of pdf P(C | Mk) = {p(cl |

Mk) : l ∈ Y}, being C = {Cl : l ∈ Y} a set of coverage

random variables having one element for each voxel l ∈ Y .
Before any batch of measurements, the initial map is denoted

as P(C | M0) = {p(cl | M0) = p(cl | D
l
0) : l ∈ Y}.

C. Surveying the environment

The robot’s pose as a function of time is the tuple Y (t) =
(x(t), a(t)), x(t), a(t) ∈ R

3, being x(t) the sensor’s position
and a(t) its attitude (three Euler angles). The robot’s pose for
the k-th batch of measurements is Yk = (xk, ak). The robot
follows an entropy gradient-based survey strategy for selecting

its next viewpoint Y s, given its current map. All coordinates

refer to a global coordinates frame {W}.

III. DISTRIBUTED ARCHITECTURE FOR 3-D MAPPING

In this section, we introduce a distributed architecture for

performing 3-D mapping missions with a cooperative multi-

robot system. Figures 1 and 2 depict complementary views of

the architecture. Although individual robots belonging to the

multi-robot system might be heterogeneous in terms of sensory

skills and mobility, all of them follow the same architecture

model when performing the 3-D mapping mission. That’s

why both figures refer to an individual robot; nevertheless,

the interaction with other robots is represented through the

communication block and its associated data flow.

Figure 1 shows the different parts of the process and how

they interact. The robot’s platform is assumed to have a sensor,

a localization module and an actuator. The sensor provides

new sets of vectors Vk+1 where obstacles are detected from

the current sensor’s pose Y (t). The localization module gives
the sensor’s pose Y (t), including position and attitude. The

actuator changes the sensor’s pose (robot’s pose) accordingly

with new survey targets Y s. New data from the robot’s sensor

is associated with its current pose, given by the localization

module, to form a new batch of measurements Mk+1 =
(xk+1,Vk+1). Then, index k is incremented and the new batch

of measurements becomes the current batch Mk. The memory

of measurements is updated as Mk = Mk−1 ∪ Mk. The

previous map P(C | Mk−1) is updated upon the new batch of

measurements Mk, which yields the current map P(C | Mk).
The current map is used to choose a new target pose Y s which

is the reference input to the robot’s actuator. As part of map

updating, it is built a batch of measurements Sk = (xk,Uk)
having the most useful data from sensor Uk ⊆ Vk. Those

selected measurements are shared with other robots through

the communication module. This module can also provide the

robot with batches of measurements Rk = (x′
k,U ′

k) given by
other robots and the map is updated accordingly. Cooperation

among robots arises because of this altruistic commitment to

share useful measurements.

Figure 2 depicts a flowchart showing the sequence of the

aforementioned robot’s operations and interactions. At the

beginning of the mission, an initial map is given to the robot.

Then it gets a new batch of measurements, updates the map

and shares useful measurements with other robots. Then it

might receive measurements from other robots and, in that
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Fig. 1. Block diagram showing the relation between different parts of the

process and robot’s resources.

case, the map is updated accordingly. Given the new map,

a new target pose for the sensor is chosen and the robot

starts moving itself. During navigation, the robot continues

updating the map whenever new data is received from other

robots. When the robot reaches the new target pose, the process

repeats itself with a new batch of measurements provided by

the sensor from its new pose.

IV. ENTROPY AND INFORMATION UTILITY

Entropy is a general measure for the uncertainty of a belief

[3]. As it was developed by Shannon to be a measure of

information for computer networks, its classical definition ap-

plies only to discrete random variables. However, its definition

might be generalized for continuous random variables and, in

that case, it is denoted as differential entropy. Given a pdf

f(x) of a continuous random variable with domain S, it is
defined as the expected value of log 1

f(x) , which is given by

h(f(x)) = −

∫
S

f(x) log f(x)dx. (1)

It cannot be taken as an absolute measure of information or

uncertainty, because it can be negative when a pdf evaluates

to values greater than one. However, it provides a relative

measure of uncertainty.

Whenever a robot gets a new batch of measurements Mk,

we can say that this event has an associated information utility,

which can be measured in terms of a decrease of the map’s

entropy. Let h(tk) be the map’s entropy at t = tk, which can

be explicitly computed as

h(tk) =
∑
l∈Y

h(p(cl | Mk)) =
∑
l∈Y

h(Cl | Mk), (2)

where p(cl | Mk) denotes the coverage pdf of voxel l after
integrating in the map the sequence of batches of measure-

ments Mk up to t = tk, and h(p(cl | Mk)) its differential
entropy computed through equation (1). The decrease of the

map’s entropy within a period of time is a measure of the
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Fig. 2. Flowchart showing the robot’s data flow during the mission.

information utility of the measurements gathered within the

same period of time, in terms of their utility on improving

the map’s accuracy. Consider a given batch of measurements

Mk = (xk,Vk). Each measurement
−→
v k,i ∈ Vk influences

the coverage of the set of voxels Zk,i and thus it has also

an associated information utility. Let l ∈ Zk,i be a voxel

whose coverage is influenced by the measurement
−→
v k,i; for

the same voxel, let also p(cl | D
l
n−1) = p(cl | Dl

1 . . . Dl
n−1)

and p(cl | Dl
n) = p(cl | Dl

1 . . .Dl
n) be the coverage belief,

respectively, before and after voxel l is updated with the new
influencing measurement D l

n = (dn, dl
n). The information

utility associated with measurement −→v k,i ∈ Vk is

Ik,i =
∑

l∈Zk,i

h(Cl | Dl
1 . . . Dl

n−1) − h(Cl | Dl
1 . . . Dl

n), (3)

where each term measures the mutual information between

p(cl | Dl
n) and p(cl), conditioned to the past history D l

n−1.

The total decrease of the map’s entropy due to measurements

gathered at t = tk can be computed through

Ik =

mk∑
i=1

Ik,i = h(tk−1) − h(tk). (4)

Equation (4) can be recursively used for updating the map’s

entropy as h(tk) = h(tk−1) − Ik. Thus, equation (2) is only

required for computing the maps’s initial entropy h(0).

A. Cooperation through sharing useful information

Cooperation has, in general, three main potential advan-

tages: (i) efficiency – taking advantage from the spatial
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distribution of sensors makes possible to reduce the map’s

uncertainty more quickly than if a single robot is used; (ii)

reliability and robustness – with redundancy in robots capa-

bilities, the failure of any particular robot does not necessarily

compromise the overall mission success; (iii) specialization

– robots with different sensory or motion skills may have

complementary and specialized features that overcome their

individual limitations and increase the team’s total utility.

We assume that each robot, besides being able to build and

update its own local 3-D map based on information from

its own sensors, is also committed to share new acquired

sensory information with its teammates through communica-

tion. Whenever a given robot gets a batch of measurements

Mk = (xk,Vk), it sends to the other robots a sub-set of

measurements Sk = (xk,Uk). The set

Uk = {−→u k,1, . . . ,
−→
u k,sk

} ⊆ Vk (5)

is a set of sk communicated measurements and xk the sensor’s

position when those measurements were gathered, which is

required for registering those measurements in the local map of

other robots. When a robot receives a batch of communicated

measurements Rk = (x′
k,U ′

k), it updates its local map as if
measurements U ′

k would have been gathered by its own sensor

when located at position x
′
k .

As communication channels have always limited capacity,

when a robot is acting as information provider, it has to limit

the amount of communicated data and select the most useful

measurements gathered from its own sensors. On doing it,

the robot uses equation (3) to assess the information utility

associated with the measurements Vk and classifies them by

utility. Let define max(sk) as being the maximum number

of allowable communicated measurements at a given time

instant. Let also define Imin as being the minimum allowable

information utility for a communicated measurement. The set

(5) is built in such a way that the proposition

sk ≤ max(sk) ∧

sk < max(sk) ⇒ ∀−→
v k,z∈Vk\Uk

, Ik,z < Imin ∧

∀−→
u k,j∈Uk

, Ik,j ≥ Imin ∧ ∀−→
v k,w∈Vk\Uk

, Ik,w ≤ Ik,j) (6)

is true. The proposition is true (the set of communicated

measurements is valid) if the following conditions are met:

(a) the size of the set is not greater than max(sk); (b) the
size of the set is less than max(sk) only if it includes all

measurements in the set Vk having an information utility not

less than Imin; (c) the information utility of communicated

measurements is at least Imin and all not communicated

measurements have lower or equal utility than those which

are selected to be communicated.

V. EXPERIMENTS WITH REAL ROBOTS

The 3-D mapping architecture depicted in figure 1 was used

for carrying out a set of experiments in our lab with two

Scout robots (see figure 3-a), equipped with a stereo-vision

sensor, sonars and wireless communication. Sonars were used

for detecting obstacles when moving the platform, and for

preventing a robot to acquire stereo image pairs below a given

distance threshold to obstacles. The stereo-vision sensor (see

figure 3-b) is a low-cost analog stereo rig, with resolution

160x120 pixels.

Fig. 3. Mobile robots used on the 3-D mapping experiments: (a) Scout mobile

robots from Nomadic Technologies; (b) stereo-vision sensors from Videre

Design mounted on the robots. Both robots have colored markers on the top,

in order to compute their pose in a global reference frame {W}, through a
RGB camera covering the robots’ workspace and color segmentation.

A. Building 3-D maps with a single robot

In this section, we present and discuss results obtained

within a 3-D mapping mission using a single robot. The

3-D mapping experiment was carried out until the map’s

entropy, computed through (2), had been reduced below a

given predefined threshold hth. This stopping criteria has an

important associated performance measure of the 3-D mapping

mission, which is the first time instant tkmax
when it is

achieved. This time instant verifies the proposition

h(tkmax
) ≤ hth ∧ ∀k<kmax

, h(tk) > hth (7)

and is associated with the kmax-th set of measurements. In

our study, we used an initial map where every voxels l ∈ Y
had an initial Gaussian p(cl | Dl

0) with σl = 10.0 which,

given the workspace parameters for which the maps were built,

corresponded to an initial map’s entropy h(0) = 9.922× 104.

The stopping criteria hth = 0 was used, which corresponded,

for example, to a final map having Gaussians with σ l = 0.242
for the coverage belief of every voxels l ∈ Y .
The robot needed tkmax

= 9053 s to accomplish the

mission. The robot gathered a total of kmax = 303 batches

of measurements, with an average size of mk = 9049
measurements. Figure 4 shows the graph of the map’s entropy

h(t) along the mission. The symmetric of its first derivative
measures information gain, therefore the graph shows that

measurements obtained by the beginning of the mission are

the most informative (useful) and that measurements’ utility

decreases as long as the mission is executed. The curve also

shows that a decrease of the threshold hth has a strong impact

in tkmax
. Dashed lines in figure 4 show an example where

tkmax
increased 914.4%.

B. Building 3-D maps with a team of cooperative robots

This section presents experiments carried with a team of

two cooperative mobile robots (see Figure 3), using different

values for the information sharing parameters max(sk) and

Imin. Figure 5 depicts an example of each robot’s map at

the end of a 3-D mapping mission. Table I summarizes the

results obtained with the two cooperative mobile robots. The
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Fig. 4. Map’s entropy along a 3-D mapping mission with a single robot.

Fig. 5. Map of each robot at the end of a 3-D mapping mission with two

cooperative mobile robots. For the presented case, the parameters max(sk) =
20000 and Imin = 0.1520 were used. The best map is the one on the right

of the figure, which means that the respective robot reached hth = 0 first.

4th column shows the ratio between the mission execution

time tkmax with two robots and with one robot t1
kmax. Given

that our voxels’ coverage belief were always Gaussians, the

values used for Imin, {0, 0.00723, 0.01450, 0.07400, 0.15200,
0.32193}, mean an average reduction on the standard deviation
of the influenced voxels by a measurement of at least {0%,
0.5%, 1%, 5%, 10%, 20%}, respectively. Recall that when
a robot acquires a new batch of mk measurements Mk =
(xk,Vk) through its own sensor, it might sent to the other

robot a batch of sk useful measurements Sk = (xk,Uk), with
sk ≤ mk∧sk ≤ max(sk)∧rk = 0. Conversely, a k-th batch of
mk measurements Mk = (xk,Vk) might not be acquired from
its own sensor and thus might be a batch of rk measurements

sent (shared) by the other robot Mk = Rk = (x′
k,U ′

k), with
rk = mk ≤ max(sk) ∧ sk = 0. The 5th column is the total
number of measurements mT gathered by a robot along the

mission, which is given by

mT =

kmax∑
k=1

mk. (8)

The last column shows the total number of received measure-

ments from other robot(s) rT , which is computed through

rT =

kmax∑
k=1

rk. (9)

1) Advantages provided by cooperation: The graph on the

left of figure 6 compares the map’s entropy h(t) for the

single robot case and for the fastest experiment with two

robots (4th row of table I). The cooperation between the

TABLE I

RESULTS OBTAINED WITHIN THE EXPERIMENTS WITH TWO ROBOTS.

max(sk) Imin tkmax

tkmax

t1
kmax

mT rT

500 0.01450 8483 0.94 2795351 74729 3 %

1000 0.01450 8387 0.93 2726837 135661 5 %

1750 0.01450 7332 0.81 2447091 184550 8 %

2500 0.01450 6530 0.72 2375273 207636 9 %

5000 0.01450 7955 0.88 2643728 271612 10 %

20000 0 9450 1.04 3192788 1134455 36 %

20000 0.00723 7563 0.84 2453021 457390 19 %

20000 0.01450 6571 0.73 2345844 332270 14 %

20000 0.07400 7007 0.77 2676612 128345 5 %

20000 0.15200 7301 0.81 2595398 59499 2 %

20000 0.32193 7727 0.85 2930155 27323 1 %

two robots accelerated the reduction of the map’s entropy

and led to a reduction of 28% in tkmax
. As robots share

useful measurements through communication, each robot is

able to integrate in its map a greater number of measurements

per time unit (see the graph on the right of the figure 6)

and achieves a faster reduction of its maps’ entropy. The

graph on the right of figure 6 shows that although the two

values of mT were similar, measurements were obtained

within time intervals tkmax
quite different. Besides enabling

Fig. 6. Comparison of a 3-D mapping mission using a single robot or

two robots: (a) map’s entropy along the mission; (b) number of integrated

measurements into the map. For the presented two robots case, max(sk) =
2500 and Imin = 0.0145.

cooperation and its aforementioned benefits, the coexistence of

several robots in the same workspace and the communication

among robots also yield some pitfalls contributing for the

degradation of the team’s overall performance: (a) robots must

share the workspace which leads to some mutual interference;

(b) the time spent on communicating measurements to other

robots sometimes delays operations; (c) the time required

for processing received measurements through communication

and updating the map upon them might not be negligible.

Minimizing the aforementioned undesirable effects is a key

factor for taking the maximum advantage from the cooperation

among robots and this is the main issue we will pursue in our

future research work.

2) Influence of communication selectivity: Figure 7

presents graphs of the ratio tkmax/t1kmax and the amount

of received measurements
∑

rk , for different values of Imin

and different values of max(sk). In figure 7-a, the maximum
number of allowable communicated measurements at a given
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time instant was max(sk) = 20000. As the number of mea-
surements yielded by the sensor is about 104 measurements,

in this situation, max(sk) did not restrict the communication
for any acquired batch of measurements, because mk <
max(sk), 1 ≤ k ≤ kmax. The graph on the top of figure 7-a

shows that decreasing Imin from 0.32193 to 0.01450 leads

to smaller mission execution times. However, for Imin <
0.01450, the graph of tkmax

presents an important inflection,

which leads to a fast degradation of the team’s performance

and puts on evidence the importance of selecting the most

useful information to be communicated. If this selection is

too weak, most of the communicated information becomes

redundant and the time spent on communicating and process-

ing that superfluous information becomes very significant. The

curves on the bottom of figure 7-a shows that the derivative

at the beginning of the mission is the same because max(sk)
is common to all of them. However, as long as the mission is

executed, the derivative decreases to an extent which depends

on the selectivity introduced by the parameter Imin.

In figure 7-b, the minimum allowable information utility for

a communicated measurement is Imin = 0.01450. The graph
on the top of figure 7-b shows that reducing the communica-

tion bandwidth max(sk) always leads to an increase of tkmax

and a poorer team’s performance. As cooperation in a 3-D

mapping mission relies completely on explicit communication,

restricting it also restricts the extent of cooperation. However,

in the case of Imin, being selective to some extent is beneficial

in order to select the most useful information and to avoid the

communication of redundant information. The curves on the

bottom of figure 7-b shows that the derivative by the end of

the mission is the same, because Imin is common to all of

them, and that it is as high as max(sk) at the start.

Fig. 7. Influence of Imin and max(sk) on the ratio tkmax/t1
kmax

(top)

and on
∑

rk (bottom): (a) different values of Imin and max(sk) = 20000;
(b) different values of max(sk) and Imin = 0.01450.

These results yield some guidelines for developing com-

munication schemes aiming at fostering cooperation. While

max(sk) is imposed by the communication channel capacity,
Imin has to be tuned in an intelligent way, whereby its se-

lective power is beneficial for the robotic team’s performance.

It should be either selective enough to avoid communicating

redundant information and not too selective, enabling efficient

information sharing and cooperation among robots.

VI. SUMMARY AND CONCLUSIONS

This article presented a 3-D mapping distributed architec-

ture, which enables to share efficiently sensory data in a

team of cooperative mobile robots, using an entropy-based

measure of information utility. Experimental results of 3-D

mapping experiments with real robots, equipped with on-board

stereo-vision, were presented and discussed. We showed that

a cooperative multi-robot system allows to accomplish the

mission in less time. Obtained results also yielded important

guidelines for future development of communication schemes

within multi-robot systems. Future work will focus on extend-

ing current robots’ cooperation framework with an exploration

coordination method for minimizing the robots’ interference.

REFERENCES

[1] T. Arai, E. Pagello, and L. Parker. Special issue on advances in

multirobot systems. IEEE Tr. on Rob. and Autom., 18(5):655–864, 2002.
[2] S. Thrun. Robotic mapping: a survey. In G. Lakemeyer and B. Nebel,

editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

[3] C. Stachniss and W. Burgard. Mapping and exploration with mobile

robots using coverage maps. In Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS’2003), pages 467–472, 2003.

[4] S. Thrun, D. Hahnel, D. Ferguson, M. Montermelo, R. Riebwel, W. Bur-

gard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system

for volumetric robotic mapping of underground mines. In Proc. of IEEE
Int. Conf. on Robotics and Automation (ICRA’03), 2003.

[5] M. Maimone, L. Matthies, J. Osborn, E. Rollins, J. Teza, and S. Thayer.

A photo-realistic 3-D mapping system for extreme nuclear environ-

ments: Chernobyl. In Proc. of IEEE/RSJ Int. Workshop on Intelligent
Robots and Systems (IROS’98), volume 3, pages 1521–1527, 1998.

[6] B. Yamauchi. Frontier-based exploration using multiple robots. In Proc.
of 2nd Int. Conf. on Autonomous Agents, pages 47–53, 1998.

[7] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collabo-

rative multi-robot exploration. In Proc. of IEEE Int. Conf. on Robotics
and Automation (ICRA’00), volume 1, pages 476–481, 2000.

[8] K. Konolige, D. Fox, C. Ortiz, A. Agno, M. Eriksen, B. Limketkai,

J. Ko, B. Morisset, D. Schutz, B. Stewart, and R. Vincet. Centibots:

very large scale distributed robotic teams. In Proc. of Int. Symp. on
Experimental Robotics, Singapore, 2004.

[9] L. Parker. ALLIANCE: An architecture for fault-tolerant multi-robot

cooperation. IEEE Tr. on Rob. and Automation, 14(2):220–240, 1998.
[10] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte. Information-

theoretic coordinated control of multiple sensor platforms. In Proc. of
Int. Conf. on Intelligent Robots and Systems, pages 1521–1526, 2003.

[11] R. Arkin. Cooperation without communication: Multi-agent schema

based robot navigation. Journal of Robotic Systems, 9(3):351–364, 1992.
[12] T. Balch and R. Arkin. Communication in reactive multiagent robotic

systems. Autonomous Robots, 1(1):27–52, 1994.
[13] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence

Research, 7:83–124, 1997.
[14] P. Stone and M. Veloso. Task decomposition, dynamic role assignment,

and low-bandwidth communication for real-time strategic teamwork.

Artificial Intelligence, 110(2):241–273, 1999.
[15] R. Rocha, J. Dias, and A. Carvalho. Entropy-based 3-D map-

ping with teams of cooperative mobile robots: a simulation study.

Technical report, ISR, University of Coimbra, Portugal, Feb. 2004.

http://thor.deec.uc.pt/∼rprocha/publications/040209 techReport2.pdf.

389


