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Abstract One of the application fields of multi-
robot systems is cooperative mapping of an un-
known environment. In this article, the problem
of mapping an unknown 3-D environment is formu-
lated through a probabilistic model based on infor-
mation theory. Besides describing how such a map
is updated upon new measurements, we use the
map to estimate a spatial field of entropy and pro-
pose a gradient-based survey strategy which drives
the robot to explore map locations having higher
entropy (uncertainty). The single robot strategy
is extended to a team of such robots which are
committed to cooperate by sharing new acquired
sensory information. We present an entropy-based
measure of information utility which is used by ro-
bots to cooperate on building a 3-D map, with-
out overwhelming communication resources with
redundant or unnecessary information. The pro-
posed framework is validated through its applica-
tion to robots equipped with range sensors mea-
suring distance information. Results from a set of
simulation experiments on building 3-D coverage
maps, with a single robot and with a team of co-
operative robots, are presented.

Keywords Cooperative multi-robot systems, 3-
D mapping, entropy, information utility.

1 Introduction

Multi-robot systems (MRS) have been widely in-
vestigated for the last decade [1, 2, 3]. These sys-
tems employ teams of cooperative robots to carry
out missions that are either inherently distributed

in time, space, or functionality, and cannot be
achieved by a single robot, or where a multi-robot
solution is more efficient, cost effective, reliable and
robust than a single robot solution. Building a 3-D
map of an unknown environment is one of the ap-
plication fields of MRS. Our work studies two main
problems: (i) developing a probabilistic model for
3-D mapping using information theory; and (ii)
sharing information efficiently through communica-
tion in a team of cooperative mobile robots, driven
by the maximization of information utility.

Robotic mapping addresses the problem of ac-
quiring spatial models of physical environments
through mobile robots. Some examples of sensors
used to build maps are cameras, range finders using
sonars, laser or infra-red rays, radars, tactile sen-
sors, etc. As sensors have always limited range, are
subject to occlusions and yield measurements with
noise, mobile robots have to navigate through the
environment and build the map iteratively. Map-
ping can be classified as [4]: whether they are met-
ric or topological – metric maps capture geometric
properties whereas topological maps describe the
connectivity of different places; or whether they
are world-centric or robot-centric – world-centric
maps are represented in a global-coordinate space
and robot-centric are represented in measurement
space. Some key challenges arises from the nature
of measurement noise (sensor modeling problem),
high dimensionality of the entities being mapped
(representation problem), the correspondence or
registration problem (registering measurements on
a common coordinate space), dynamically chang-
ing environments and defining an efficient survey
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strategy to build the map (exploration problem).
Robots can be used to build fastidious maps of in-
door environments [5, 6, 7, 8], but they are par-
ticularly useful on mapping missions of hazardous
environments for human beings, such as abandoned
underground mines [9, 10], where updated maps are
required to prevent future accidents related with in-
undations or collapses, but where humans access is
too risky or even impossible due to difficult access
routes; or nuclear facilities [11], where monitoring
the state of the sarcophagus interior is required by
maintenance procedure, but where humans expo-
sure to radiation must be avoided. Although it is
recognized the potential of MRS on such mapping
missions, current state-of-the-art of robot mapping
is limited to single robot solutions.

Some of the work on robotics for mapping un-
known environments has been restricted to 2-D
maps and applied mainly to indoor environments.
In [12], Moravec et al. developed occupancy grids,
a space representation model, which are discretised
random fields where the probability of occupancy of
each independent cell is maintained. In their semi-
nal work, they built 2-D occupancy grids by using
a robot with sonars. In [5], they extended the oc-
cupancy grid technique for environment mapping
of 3-D grids, using stereo-vision as primary sen-
sor. In [6], a robot equipped with two ultrasonic
sensors was used to build a 2-D occupancy grid
of an indoor environment, where abnormal sensor
measurements were detected and used to adjust a
confidence level for each sensor. Vidal et al. [13]
used 2-D occupancy grids to represent multi-robot
team knowledge about obstacles and evaders within
a pursuit-evasion game. Their work focused on de-
veloping probabilistic pursuit policies for that spe-
cific game theoretical framework. Bourgault et al.
[14] also used occupancy grids to address the sin-
gle robot exploration problem, as a balance of al-
ternative motion actions from the point of view of
information gain (in terms of entropy), localization
quality and navigation cost. Although they include
information gain in their strategy, their formula-
tion is computationally heavy and they were only
able to use it off-line, for a limited number of pro-
posed destinations. In [8], the notion of occupancy
grid was refined to avoid the binary representation
of the cell’s occupancy and to model it as a con-
tinuous value between 0 and 1. They used 2-D
coverage maps to perform indoor exploration tasks

performed by a robot equipped with sonars.
There is some recent work on 3-D mapping with

a single robot, focusing mainly on the registration
problem. In [15], a mobile mapping system for gen-
erating a 3-D model of an indoor environment is
presented. The proposed solution is designed to
minimize the error propagation due to the registra-
tion of measurements relative to the mobile plat-
form in a global reference frame. In [11], a trinoc-
ular stereoscopic mapping system for use in post-
nuclear accident operations is presented. The idea
is constructing a robot equipped with a 3-D map-
ping system to provide the shelter operators of a
nuclear facility with a means of evaluating the state
of the sarcophagus interior. The work focus on the
processing of surface meshes provided by the vision
sensor and data registration in a global reference
frame. In [16], a method for building 3-D maps of
buried utilities (e.g. gas pipes, power or communi-
cations lines, etc.) is developed to detect and ex-
tract their features. It is based on sensor fusion of
data from an electromagnetic induction sensor and
a ground penetrating radar, which are attached to
digging equipment used for construction, in order
to avoid getting close to already buried utilities. In
[7], a method for 3-D digitalization of indoor en-
vironments using a laser range finder is presented.
The 2-D laser range finder is attached to a servo
motor so as it can sweep a 3-D environment through
multiple scans. Their map’s representation stores
detected lines and polygons through Hough trans-
form and the proposed method focus on planning
the next scan pose as well as the robot’s trajec-
tory. Pose planning is based on three criteria: infor-
mation gain, robot’s accessibility and path length.
Whereas we define an entropy-based measure of in-
formation gain, their measure is based on a geomet-
ric interpretation of the map. Vandapel et al. have
been working on developing methods for modeling
3-D environments. In [9], they describe the prob-
lem of sensing and generating 3-D models of an
underground mine with data gathered from a laser
range finder, focusing on the problem of register-
ing 3-D data sets from different views in a common
coordinate system. Their registration approach is
analogous to assembling a 3-D jigsaw puzzle, with
each view being a piece of the puzzle. Thrun et
al. [10] addresses the problem of building 3-D volu-
metric maps of underground mines with laser range
finders. They approach mine mapping as a simul-
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taneous localization and mapping (SLAM) prob-
lem but, due to cyclic structure of mines, SLAM
yields difficult correspondence problems. To solve
this problem, they use an iterative closest point
algorithm, generating 3-D maps by applying scan
matching to 3-D measurements after a 2-D map-
ping of the mine is complete.

As the 3-D mapping research issue involves dif-
ferent difficult problems, it is not possible to cope
with all of them simultaneously. Most of the pre-
vious research work on 3-D modeling is based on
deterministic models without an explicit represen-
tation of the map’s uncertainty. There are some
exceptions, but whether they are restricted to 2-D
maps with a single robot [8] or cannot cope with
real-time requirements [14]. Our innovative work
within this research topic proposes a 3-D proba-
bilistic representation model and entropy-based ef-
ficient survey stategies based on it, both for a sin-
gle robot and a team of cooperative robots. The
strategies drive robots to the most uncertain and
less explored map locations. As we have validated
our work with experiments on building 3-D cov-
erage maps upon distance measurements, we also
deal with probabilistic modeling of range sensors.

Most of the work in MRS has been devoted
to the definition of different architectures, mostly
behavior-based, that rule the interaction between
the behaviors of individual robots [17, 18]. Com-
munication is a central issue of MRS because it de-
termines the possible modes of interaction among
robots, as well as the ability of robots to build
successfully a world model, which serves as a ba-
sis to reason and coherently act towards a global
system goal. Communication may appear in three
different forms of interaction [1]: (i) via environ-
ment, using the environment itself as the commu-
nication medium (stigmergy); (ii) via sensing, when
an agent knowingly uses its sensing capabilities to
observe and perceive the actions of its teammates;
and (iii) via communication, using a communica-
tion channel to explicitly exchange messages among
the agents, thus compensating perception limita-
tions. Arkin [19] demonstrated that sometimes co-
operation between robotic agents was possible even
in the absence of communication, however this is a
weak form of cooperation and it may me very in-
efficient. Matarić [20] showed that the ability to
distinguish other robots from the rest of other ob-
jects provides sufficient power to overcome interfer-

ence. Balch et al. [21] made simulation studies of
three typical multi-agent tasks, using the three ba-
sic communication types referred above, and found
that communication improves performance signifi-
cantly in tasks with little implicit communication
and that more complex communication strategies
(goal-oriented) offer little benefit over basic com-
munication (state). Within CEBOT framework,
Fukuda et al. [22] studied methods that seek to
reduce communication requirements, by increasing
the awareness level of individual cells. Parker [23]
investigated the impact of awareness on a MRS and
concluded that it improves performance, regardless
of team size. Tambe presented STEAM [24], a gen-
eral model of teamwork, which includes a heuris-
tic that attempts to follow the most cost-effective
method of attaining mutual belief in joint inten-
tions, by managing a tradeoff between communica-
tion and team incoherence costs. Stone and Veloso
[25] proposed a method for inter-agent communica-
tion, which assumes that agents alternate between
periods of limited and unlimited communication.

Although previous work on communication
structures for MRS has led to some useful conclu-
sions and design guidelines, there is no a principled
formalism that can be systematically used to as-
sess information utility and support the efficient use
of communication in MRS. Current architectures
(e.g. [17, 18]) extensively use explicit communica-
tion, not taking care, giving low emphasis, or using
no principled heuristics to avoid the communica-
tion of redundant information. As communication
is always limited, either in resources applied to per-
ceive the world or in bandwidth of a communication
channel, using efficiently those resources is crucial
to scale up cooperative architectures for teams of
many robots, without limiting them to simple re-
active and loosely-cooperative systems, with very
limited or no awareness. Based on our 3-D proba-
bilistic model of an unknown environment, we pro-
pose an entropy-based measure of information util-
ity which is used by robots to cooperate on building
a 3-D map, without overwhelming communication
resources with redundant or unnecessary informa-
tion.

This article is organized in the following way.
Section 2 presents a probabilistic 3-D volumet-
ric model of an unknown environment and how
to update a 3-D map upon new sensory informa-
tion, based on a Gaussian sensor model. Section 3
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presents how entropy can be used to assess map’s
uncertainty and introduces a measure of informa-
tion utility which is used by robots to select and
communicate the most useful information. Section
4 is devoted to 3-D mapping with a single robot,
being presented a gradient-based survey strategy
which drives the robot to the most uncertain map
locations. Section 5 extends the survey strategy to
a cooperative MRS, proposing a principled method
whereby each robot communicates the most use-
ful information. Both sections 4 and 5 present and
discuss simulation results of experiments with ro-
bots equipped with range sensors and, at the end of
section 5, the benefits provided by cooperation are
presented. The article ends with conclusions and
future work.

2 3-D mapping and sensor
representations

An important resource for mapping missions is, of
course, a representation model for the map. In
this section, we introduce probabilistic maps as a
means of representing how uncertain is the robots
knowledge about the environment. Although the
proposed framework can be a general mathemati-
cal tool to map any phenomena spatially distrib-
uted, as we have validated it through experiments
with robots equipped with range sensors providing
distance measurements (e.g. stereo-vision system,
laser range, sonar, etc.), hereafter we will denote a
map as a coverage map, which is a 3-D representa-
tion of the environment occupancy with obstacles.
For this reason, by the end of this section, we also
present a sensor model and how the coverage map
can be updated upon new measurements from the
robot’s range sensor.

2.1 Volumetric model

One of the most popular space representation mod-
els are occupancy grids, which are discretised ran-
dom fields where the probability of occupancy of
each independent cell is maintained [12]. They
have been extensively used in robotics mainly due
to their simplicity and suitability for decision-
theoretic approaches. Some recent examples of
their application are [14, 13]. The definition of
probabilistic map we use was first introduced in

[8], where the notion of occupancy grid was refined
in order to avoid a strictly binary representation of
each cell’s occupancy (free or occupied), through
the notions of coverage and coverage map. The
coverage of a cell is the portion of the the cell that
is covered by obstacles (a value between 0 and 1).
A coverage map stores for each cell of a given grid
a probabilistic belief about its coverage. Our in-
novation on the use of this space representation is
using it for 3-D mapping with a cooperative multi-
robot system, in mapping missions not restricted
to indoor environments.

Our volumetric model representation model as-
sumes that we define a 3-D discrete grid Y which
divides the robotic team workspace in equally sized
voxels (cubes) with edge vsz and volume vsz3. The
objective of map building is to obtain, for each
voxel l ∈ Y, an estimate as accurate as possible
about its coverage cl. As cl is a random variable
with a domain equal to the the interval [0, 1], we
model our knowledge about the voxel’s coverage
through a probability density function

p(cl), 0 ≤ cl ≤ 1. (1)

As we shall see in the next sections, if the sen-
sor model is assumed to be Gaussian, p(cl) is also
Gaussian with parameters µl and σl. As long as
the map is being built, it is expected to decrease
the dispersion σl. At a given instant time, our 3-D
coverage map is

p(c) =
⋃
l∈Y

p(cl), (2)

where the coverage of each individual voxel is as-
sumed to be independent from the other voxels’
coverage and thus can be independently updated.

2.2 Sensor model

The probability density function (pdf) p(cl | d) rep-
resents a sensor model whereby measured distances
d are converted in estimates of coverage values cl of
a voxel l. We generally don’t know the exact model
of the distribution p(cl | d) but, accordingly with
the central limit theorem1, the normal distribution
is a convenient model if we are mainly interested in

1The central limit theorem states that the mean of any
set of variants, with any distribution, having a finite mean
and variance, tends to the normal distribution.

4



obtaining an unbiased estimate of the voxel’s mean
coverage. As long as new distances are measured,
we can say that the distribution is being sampled
and that respective samples have a normal distribu-
tion with a mean tending to the true mean of voxel’s
coverage. Thus, our sensor model is a Gaussian

p(cl | d) = N(µ(dl, d), σ(d), cl), (3)

where d is the new measured distance and dl the
distance of the voxel to the sensor. The mean of
the Gaussian is given by

µ(dl, d) =




0, (dl − d) < − vsz
2

1
2 + dl−d

vsz , |dl − d| < vsz
2

1, (dl − d) > vsz
2

. (4)

This equation distinguishes three situations: in the
first case, the measured distance does not end in
the voxel l, with dl < d, and thus it is more likely
that the voxel is fully empty (coverage equal to 0);
in the second case, the measured distance ends in
l and the mean of its coverage is inverse propor-
tional to the amount of the voxel covered by d (a
value between 0 and 1); in the third case, the mea-
sured distance does not end in the voxel l, with
dl > d, and thus it is more likely that the voxel is
fully occupied (coverage equal to 1). The standard
deviation is given by

σ(d) = σmin + ζ.d, (5)

i.e. it is at least equal to σmin near to the sensor
and increases linearly with d. This is a typical be-
havior of range sensors because accuracy decreases
with distance. Accordingly with the definition of
coverage pdf given by equation (1), the Gaussian
yielded by the sensor model has to be truncated so
that the cumulative probability over the coverage
domain sums up to one, i.e. P (0 ≤ cl ≤ 1) = 1.
In [8], it is proposed a sensor model based on a
mixture of a Gaussian and an uniform distribution,
where the latter distribution adds some white noise
to ensure a correct normalization when truncating
the Gaussian to the range [0, 1]. We claim that
a better way of normalizing a normal distribution
truncated to that interval is to multiply the pdf by
a normalization factor

γ(µ, σ) =
(∫ 1

0

N(µ, σ, x).dx
)−1

, (6)

which preserves the normal distribution instead of
summing white noise. As we shall see in the next
section, preserving the normal distribution makes
the coverage update upon new measures quite sim-
ple. Our definition of the Gaussian’s mean is also
slightly different from [8], for the second case of
equation (4). Figure 1 shows an example of the
sensor model for a measured distance of d = 60cm
and dl ∈ [0, 100]cm.

Figure 1: Example of a sensor model: d = 60cm,
σmin = 0.08, ζ = 0.0005, vsz = 25cm.

2.3 Operations

Consider a given voxel l ∈ Y and let

Dl
n = {dl

1, . . . , d
l
n} (7)

be the set of all measured distances influencing its
coverage. This section specifies how to update the
coverage probabilistic belief p(cl | Dl

n−1) and de-
termine the new coverage belief p(cl | Dl

n) upon a
new sensor measurement dl

n.

The belief about the voxel’s coverage can be com-
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puted by

p(cl | Dl
n) =

p(Dl
n | cl).p(cl)
p(Dl

n)
= (8)

= β′.p(cl).p(Dl
n | cl) = (9)

= β′.p(cl).
n∏

i=1

p(dl
i | cl) = (10)

= β′.p(cl).
n∏

i=1

p(cl | dl
i).p(d

l
i)

p(cl)
=(11)

= β′.β′′.
n∏

i=1

p(cl | dl
i) = (12)

= β′.β′′.p(cl | dl
n).p(cl | Dl

n−1).(13)

Applying Bayes rule, we obtain (8) and (9). Then,
if we assume that consecutive distances are inde-
pendent given the voxel’s coverage, we obtain (10).
Applying again Bayes rule, we obtain (11). If we
assume that p(dl

i) is constant with i, we finally
obtain (12) and (13). The constants β′ and β′′

are normalization constants ensuring that the left-
hand side sums up to one over all cl. Thus, equa-
tion (13) can be used recursively to update the
belief p(cl | Dl

n) whenever a new influencing dis-
tance dl

n is obtained, by multiplying the current
belief p(cl | Dl

n−1) with the new coverage estimate
p(cl | dl

n), given the new influencing distance, and
applying the normalization factor β′.β′′. But this
recursive procedure requires the specification of the
initial belief p(cl | Dl

0), D
l
0 = ∅.

The initial belief p(cl | Dl
0) represents prior

knowledge about the voxel’s coverage and it is usu-
ally chosen to be the less informative, i.e. a pdf
with maximum uncertainty. Entropy is a general
measure for the uncertainty of a belief [26]. Its
classical definition applies only to discrete random
variables, as it was developed by Shannon as a mea-
sure of information for computer networks. How-
ever, its definition might be generalized for contin-
uous random variables and, although some care is
needed in using it, a number of theorems of entropy
apply to both continuous and discrete distributions
[27]2. The continuous version of entropy is called
differential entropy. If f(x) is the pdf of a given

2As probability density functions might evaluate to val-
ues greater that one, differential entropy cannot be taken as
an absolute measure of information or uncertainty because
it can be negative. However, it provides a relative measure
for those properties.

continuous random variable with domain S, it is
defined as the expected value of log 1

f(x) , which is
given by

h(f(x)) = −
∫

S

f(x) log f(x)dx. (14)

The base of the logarithm determines the informa-
tion unit whereby entropy is measured. We are
going to use the base 2 for the logarithm and, in
this case, the entropy is measured in bits. Applying
the entropy definition to a normal distribution, it
can be shown that its differential entropy increases
with the logarithm of standard deviation as

h(N(µ, σ, x)) = log2(
√

2πe) + log2(σ). (15)

It can also be shown that the normal distribution
is the maximum entropy pdf given the first two
moments. Therefore, equation (15) is a maximum
entropy bound for a pdf with variance σ2. A con-
venient initial belief p(cl | Dl

0) is thus a normal
distribution with σ → +∞, i.e. an uniform distrib-
ution. In practice this means choosing a Gaussian
with σ much larger (e.g. ten times greater) than the
sensor standard deviation given by equation (5).

At the beginning of the map building process,
each voxel has an associated coverage pdf given
by a Gaussian with high entropy. As our sensor
model (3) is also a Gaussian, when the first mea-
sure dl

1 comes, equation (13) involves the multi-
plication of two Gaussians. If the resultant pdf is
also a Gaussian, this process repeats itself whenever
new measures are gathered. In fact, it can be eas-
ily shown that given two Gaussians p(cl | Dl

n−1) =
N(µ1, σ1) and p(cl | dl

n) = N(µ2, σ2), their product
yields a Gaussian multiplied by a constant:

p(cl | Dl
n−1).p(cl | dl

n) =
1
β
.N(µ, σ), (16)

µ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

, (17)

σ =
σ1σ2√
σ2

1 + σ2
2

, (18)

β =
√

2π(σ2
1 + σ2

2) exp

[
(µ1 − µ2)2

2(σ2
1 + σ2

2)

]
. (19)

Comparing equations (13) and (16) we conclude
that: updating the coverage belief of a voxel is
as simple as computing the parameters of a new
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Gaussian through equations (17) and (18); and the
normalization constant is β′.β′′ = β, with β given
by equation (19). This simplicity of computation
is a consequence of the Gaussian nature of sensor
model and our careful choice of an initial cover-
age belief. Although Gaussians’ domain is not re-
stricted to the interval [0, 1], accordingly with equa-
tions (4) and (17), we can conclude that 0 ≤ µl ≤ 1.
In practice, truncating the Gaussian to that inter-
val is not critical to update the coverage belief but,
if for some purpose we have to do it, we apply
the normalization factor (6)3. Although the mean
of the truncated Gaussian is different from µl, its
mode mode is equal to µl and might be taken as a
good estimate of the voxel’s coverage, because that
difference tends to zero provided that σl → 0.

Figure 2 shows an example of the aforementioned
update procedure. The differential entropy value
of depicted pdf’s are H(p(cl | Dl

n−1)) = −1.911,
H(p(cl | dl

n)) = −1.496 and H(p(cl | Dl
n)) =

−2.233. While in [8] the coverage belief of a cell

Figure 2: Example of the coverage belief update
procedure: p(cl | Dl

n−1) = N(0.35, 0.075), p(cl |
dl

n) = N(0.4, 0.1) and p(cl | Dl
n) = N(0.368, 0.06).

was represented through histograms with b bins (b
is typically more than 10), in our case we represent
the voxel’s coverage belief as a Gaussian, which is
fully characterized by just two parameters: µl and
σl. Thus, in the map (2) we have to store only
two values for each voxel, which is a much more

3For example, the purpose might be computing a cumu-
lative probability such as P (0 ≤ cl ≤ 0.3).

compact representation than a histogram. More-
over, the aforementioned procedure for updating
the coverage belief is very simple and we can still
build histograms upon the pdf with an arbitrary
number of bins.

2.3.1 Influenced voxels by a set of measure-
ments

Whenever the robot’s sensor gets a new measure-
ment (distance), we need to determine the set of
voxels whose occupancy is influenced by that mea-
surement, and add one more element to the respec-
tive set of influencing distances represented through
(7). We assume that the output of the robot’s range
sensor at t = tk, k ∈ N, is the k-th set of measure-
ments

Vk = {
−→
vk
1 , . . . ,

−−→
vk

mk
}, (20)

which is a set of mk 3-D vectors. Each vector
−→
vk

i ∈
R

3 connects the robot’s sensor to a 3-D point where
an obstacle has been detected. The magnitude of
the vectors belonging to the set Vk is the set

Dk = {dk
1 , . . . , d

k
mk
} = {‖

−→
vk
1‖, . . . , ‖

−−→
vk

mk
‖}, (21)

containing distances between the robot’s sensor and
the set of points where obstacles have been de-
tected. Each distance dk

i is used to update the
coverage’s belief of the set of voxels Ck

i ; this set con-
tains all the voxels which are traversed by a a pro-
jective ray collinear with the respective vector

−→
vk

i

and with origin at sensor’s position. The set Ck
i can

be easily determined by sampling that projective
ray, so that at least one sample per traversed voxel
is gathered in a set of s 3-D points P = {p1, . . . , ps}.
To guarantee this minimum sampling, the projec-
tive ray is divided into segments with maximum
length equal to the voxel’s edge vsz, where the co-
ordinates of each sampling point are given by

pj = posk + (j − 1).vsz.

−→
vk

i

dk
i

, 1 ≤ j ≤ s, (22)

being s the sample size and posk ∈ R
3 the sensor’s

position at t = tk
4. Let voxel : R

3 → Y be a
4In this paper, we does not address the robot’s localiza-

tion issue. It is assumed that the robot can localize itself
(its sensor) through some accurate localization scheme and,
thus, measurements are automatically well registered in a
global coordinates frame.
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function that determines what grid’s voxel a given
point belongs to. We can determine Ck

i by comput-
ing this function to all points in the set P :

Ck
i =

s⋃
j=1

voxel(pj). (23)

The set of all voxels influenced by the set of mea-
surements (20) is

Ck =
m⋃

i=1

Ck
i . (24)

The algorithm for updating the map upon the set
of measurements (20) might be written in pseudo-
code as:

for i = 1 . . .mk

forall l ∈ Ck
i

n← n+ 1

Dl
n ← Dl

n−1 ∪ {dk
i }

Update p(cl | Dl
n−1) upon p(cl | dl

n = dk
i )

and obtain p(cl | Dl
n)

end forall
end for.

3 Entropy and information

utility

Whenever a robot gets a new set of measurements
as (20), we can say that this event has an associated
information utility, which can be measured in terms
of a decrease of the map’s entropy. Let H(tk) be
the map’s entropy at t = tk, which can be explicitly
computed as

H(tk) =
∑
l∈Y

h(pk(cl)), (25)

where pk(cl) denotes the coverage pdf of voxel
l after updating the map with the set (20) and
h(pk(cl)) its differential entropy computed through
equation (14). The map’s entropy is a measure of
the map’s uncertainty and its decrease within a pe-
riod of time is a measure of the information utility
of the measurements gathered within the same pe-
riod of time, in terms of their utility on improving
the map’s accuracy.

Consider again the sets (20) and (24), represent-
ing a set of measurements and the respective set
of influenced voxels. Each measurement

−→
vk

i ∈ Vk

influences the coverage of the set of voxels Ck
i ⊆ Ck

and thus it has also an associated information util-
ity. Let l ∈ Ck

i be a voxel whose coverage is in-

fluenced by the measure
−→
vk

i ; for the same voxel,
let also p(cl) and p′(cl) be the coverage belief, re-
spectively, before and after the new measurement is
integrated. The information utility associated with
that measurement is

Ik
i =

∑
l∈Ck

i

h(p(cl))− h(p′(cl)), (26)

which is the respective decrease of coverage entropy.
For example, the information utility of the mea-
surement depicted in figure 2 is 0.322. If both cov-
erage beliefs p(cl) and p′(cl) are Gaussians, having
standard deviations σl and σ′

l respectively, accord-
ingly with (15), the information utility associated
with the measurement might be computed as

Ik
i =

∑
l∈Ck

i

log2

(σl

σ′
l

)
. (27)

The set of information utilities of measurements in
the set (20) is

Ik = {Ik
1 , . . . , I

k
m} (28)

and

Ik =
m∑

i=1

Ik
i = H(tk−1)−H(tk) (29)

measures the total decrease of the map’s entropy
due to measurements gathered at t = tk. Equa-
tion (25) is a time-consuming computation if it is
used at each time step, whenever a new set of mea-
surements is gathered. But, as equation (29) sug-
gests, the map entropy can be recursively updated
as H(tk) = H(tk−1)− Ik, which is a much more ef-
ficient computation method because it is only com-
puted the entropy of the voxels l ∈ Ck, whose cov-
erage has just been influenced by the set of mea-
surements Vk. Thus, equation (25) is only used to
compute the maps’s initial entropy H(0).
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4 3-D maps with a single ro-

bot

Accordingly with equation (2), our 3-D map is a
set of probability density functions, one for each
voxel belonging to the 3-D discrete grid Y which
divides the workspace being mapped. For each
voxel l ∈ Y, the map stores a coverage probabil-
ity density function p(cl) which, accordingly with
our sensor model, is always Gaussian and thus can
be represented through the mean µl and the stan-
dard deviation σl. This section describes how a
single robot can be controlled on using such a 3-
D map to gather new measurements from regions
with higher uncertainty (entropy), and thus to re-
duce the map’s entropy (25) as fast as possible.

Let coord : Y → R
3 be a function that computes

the 3-D coordinates [xl, yl, zl]T of the central point
of a voxel l ∈ Y. The 3-D grid Y discretises the 3-D
space R

3 at discrete points coord(l), l ∈ Y, equally
spaced by vsz (voxel size). The 3-D map enables
us to associate with each of these points a differen-
tial entropy h(l) = h(p(cl)) given by equation (14),
therefore we might say that a continuous differen-
tial entropy field h : R

3 → R is sampled along the
voxels’ centers belonging to the grid Y. The survey
strategy we propose claims that the robot’s sensor
should be directed to regions having higher mag-
nitudes of entropy gradient

−→∇h and low expected
coverage (regions more likely unoccupied), in the
neighborhood of the robot. Let assume that each
edge of any voxel l ∈ Y is aligned with one of the
axes (xx, yy or zz) of the global coordinates frame
{W}, and let lΘ− denote the contiguous voxel to l
in the negative direction of axis Θ. A reasonable
approximation to the entropy gradient at the center
of a voxel l is

−→∇h(l) ≈ 1
vsz


 h(l)− h(lx−)
h(l)− h(ly−)
h(l)− h(lz−)


 . (30)

Let denote the vector connecting the point P ∈ R
3

to the center of voxel l as

�τ (P, l) =
−−−−−−−−−−→
(coord(l) − P ). (31)

Let pos ∈ R
3 be the robot’s position and η(pos, ξ)

be the set of voxels at a distance ξ > 0 from the
current robot’s position pos, i.e.

∀l∈η(pos,ξ)⊆Y , ‖�τ(pos, l)‖ ≤ ξ. (32)

Accordingly to the survey strategy we propose,
given a neighborhood around the current robot’s
voxel with radius ξ and the expected coverage
E(p(cl)) = µl, the robot is directed to the voxel

lnext = argmax
l∈η(pos,ξ)

(∥∥∥−→∇h(l)
∥∥∥.[1 − E(p(cl))]

)
(33)

with a gaze on arrival defined by the unitary vector

p̂next =
−→∇h(lnext)∥∥∥−→∇h(lnext)

∥∥∥ ,
−→∇h(lnext) �= �0. (34)

If
−→∇h(lnext) = �0, the gradient-based criteria is not

conclusive and the robot should wander until that
condition is not verified.

4.1 Coping with robot’s kinematic
restrictions

Equations (33) and (34) do not cope with robot’s
kinematic restrictions, assuming that it is able to
move freely in the 3-D space. For example, this is
suitable for an unmanned aerial vehicle (UAV) but
it isn’t viable for a ground mobile robot. In or-
der to avoid this assumption, we extend the survey
strategy so that new velocity directions near to the
robot’s motion plane are preferable.

Let pose = (pos, orient) be the current robot’s
pose, being comprised of three absolute position
(translation) coordinates pos and three rotation
angles orient = {θ, φ, ψ}, measured in the clock-
wise direction and representing the robot’s atti-
tude. Given a robot’s coordinates frame {Rtr},
equal to the global (absolute) coordinates frame
{W} after translation and rotation, the robot’s mo-
tion plan Γ is defined by two orthogonal axes: a
longitudinal axis p̂′ = [1, 0, 0]T , which is the uni-
tary vector along xx axis, and a transverse axis
q̂′ = [0, 1, 0]T , which is the unitary vector along
yy axis; for example, for an UAV, p̂ would be the
axis between tail and head, and q̂ would be the
axis connecting the wings. It can be shown that
robot’s axes can be expressed in a robot’s coordi-
nates frame {Rt}, equal to {W} after translation
and without rotation, as

p̂ = [cos θ. cosφ,− sin θ. cosφ, sinφ]T , (35)

q̂ =


 cos θ. sinφ. sinψ + sin θ. cosψ
− sin θ. sinφ. sinψ + cos θ. cosψ

− cosφ. sinψ


 , (36)
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where the angles have the following definition: an-
gle θ is the robot’s yaw angle, being a rotation angle
about zz axis; angle φ is the robot’s pitch angle,
being a rotation angle about yy axis; angle ψ is
the robot’s roll angle, being a rotation angle about
xx axis. Note that axis p̂ can also be viewed as
the robot’s gaze direction. Consider again the set
of voxels η(pos, ξ) satisfying condition (32). Our
redefined survey strategy projects any gradient or
candidate vector �v on the robot’s motion plan Γ as

proj
Γ

�v = (�v · p̂)p̂+ (�v · q̂)q̂, (37)

where (·) denotes the internal product of two vec-
tors. Equations (33) and (34) are thus rewritten
as

lnext = argmax
l∈η(pos,ξ)

(
ρ(pos, l).

∥∥∥proj
Γ

−→∇h(l)
∥∥∥.[1−E(p(cl))]

)
(38)

and

p̂next =
proj

Γ

−→∇h(l)∥∥∥proj
Γ

−→∇h(l)
∥∥∥ , proj

Γ

−→∇h(l) �= �0, (39)

where

ρ(pos, l) =




∥∥proj
Γ

�τ(pos,l)
∥∥

‖�τ(pos,l)‖ , pos �= coord(l)

1, otherwise
(40)

weights the reachability of a voxel with a value
between 0 and 1. For instance, if �τ (pos, l) ⊥ Γ,
the voxel is considered absolutely unreachable and
ρ(pos, l) = 0.

4.2 Results and discussion

The proposed survey strategy was used to under-
take simulation experiments on 3-D mapping with
mobile robots. With that purpose, a simulation en-
vironment for a 3-D mapping mission was built in
MATLAB. The main parameters of the simulator
and their respective values are presented in table 1.
When measuring with the range sensor, it was as-
sumed that it was able to measure distances within
a neighborhood {∆θ, ∆φ} of the current sensor’s
orientation {θ, φ}, given by (35). The sensor yield
measurements for angles {θ′, φ′} within that neigh-
borhood, through an angular sampling step equal
to pi/90 rad.

Table 1: Main parameters of the 3-D mapping sim-
ulator.

Parameters Values
Workspace
Length x Width x Height 10 m x 10 m x 4 m
Voxel size (vsz) 0.25 m
Mobile Robots

Velocity (maximum) 0.25 m.s−1

Acceleration (linear) 0.25 m.s−2

Local search radius for navigation (ξ) 0.5 m
Range Sensor
σmin 0.08
ζ 0.006
Coverage, {∆θ, ∆φ} (π/6, π/12) rad
Angular sampling step pi/90 rad

In this section, we present and discuss results ob-
tained with the simulator for a single robot. Each
simulated 3-D mapping mission was carried out un-
til the map’s entropy, computed through (25), was
reduced below a given predefined threshold Hth.
This stopping criteria has an important associated
performance measure for the 3-D mapping mission,
which is the instant time tmission = tkmax when it is
achieved. This instant time verifies the proposition

H(tmission) = H(tkmax) ≤ Hth∧∀k<kmax , H(tk) > Hth,
(41)

which states that the kmax-th set of measurements
is the first one for which the map’s entropy is re-
duced below the threshold. In this study, we have
used an initial map where every voxels l ∈ Y have
an initial Gaussian p(cl | Dl

0) with σl = 30.0 which,
accordingly with (15) and the workspace parame-
ters in table 1, corresponds to an initial map’s en-
tropy H(0) = 1.987.105. The stopping criteria we
have used assumed a threshold Hth = −8.6068.104,
which corresponds, for example, to a final map hav-
ing Gaussians with σl = 0.03 for the coverage belief
of every voxels l ∈ Y.

The 3-D mapping mission was simulated for a
single robot over 10 trials. For each trial, a different
starting pose for the robot was chosen. On average,
the robot needed tmission = 2142 s to accomplish
the mission and gathered a total of kmax = 1211
sets of measurements, with an average size of mk =
128 measurements, which yielded a total of 155136
measurements.

Figure 3 shows the graph of the map’s entropy
H(t) along one of the simulation trials. As the re-
duction of the map’s entropy means information
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gain, the symmetric of the derivative of H(t) mea-
sures information gain. Therefore, the graph shows
that measurements obtained by the beginning of
the mission are the most informative (useful) and
that measurements’ utility decreases as long as the
mission is being executed. This agrees with our
intuitive expectation that the utility of a measure-
ment decreases as long as knowledge about the en-
vironment increases, or as long as uncertainty (en-
tropy) decreases. And this happens because prior
knowledge obtained before a given measurement is
consequence of the integration of a set of previous
measurements and, as long as the size of this set
increases, the contribution for that knowledge of
an individual (new) measurement is less significant.
The curve also shows that a decrease of the thresh-
old Hth has a strong impact in tmission. Dashed
lines in figure 3 show an example where the decrease
of map’s entropy until H(t) = Hth = −8.6068.104

is divided in two equal steps. The robot needed
254.9 s for accomplishing the first step and 1899.5 s
for accomplishing the two steps at the final of the
mission, which yields an increase of 7.452 in tmission

if we go from the first step to the second step.

Figure 3: Map’s entropy along a 3-D mapping mis-
sion with a single robot.

5 3-D maps with a team of co-

operative robots

In the previous sections, we have already stated
how a single robot can build a 3-D map and how
to assess the information utility associated with
new sensor measurements. In this section, we de-
scribe how a team of such robots, populating the
3-D environment being mapped, can be coopera-
tive on building a 3-D map. Cooperation has three
main potential advantages: (i) efficiency – tak-
ing advantage from the spatial distribution of sen-
sors makes possible to reduce the map’s uncertainty
more quickly than if a single robot is used; (ii) reli-
ability and robustness – with redundancy in robots
capabilities, the failure of any particular robot does
not necessarily compromise the overall mission suc-
cess; (iii) specialization – robots with different sen-
sory or motion skills may have complementary and
specialized features that overcome their individual
limitations and increase the team’s total utility.

We assume that each robot, besides being able to
build and update its own local 3-D map based on
information from its own sensors, is also commit-
ted to share new acquired sensory information with
its teammates through communication. Whenever
a given robot gets a set of measurements Vk, it
sends to other robots a list of 3-D coordinates
Sk = (posk,Uk). The set

Uk = {
−→
uk

1 , . . . ,
−−−→
uk

mck
} ⊆ Vk (42)

is a set of mck communicated measurements and
posk the position of the sensor when those mea-
sures were gathered, which is necessary to regis-
ter those measurements in the local map of other
robots5. Different communication topologies can
be used, depending on the capacity and range of
the available communication channel. When possi-
ble, the robot acting as information provider should
send data to all robots in the team, so that all of
them can take advantage of new sensory informa-
tion; otherwise, the communication is restricted to
a team’s subset, such as the nearest robots to the
information provider.

When a robot receives a list of communicated
measurements, it updates its local map as if mea-

5As it was already noted, we assume that each robot is
able to localize itself accurately and correctly register its
sensor measures.
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surements Uk would have been gathered by its own
sensors at the position posk (first point in the re-
ceived list). As communication channels have al-
ways limited capacity, when a robot is acting as
information provider, it has to limit the amount
of communicated data and select the most useful
measurements gathered from its own sensors. On
doing it, the robot uses equation (26) to assess the
information utility Ik associated with the measure-
ments Vk and classifies them by utility. Let define
burst as being the maximum number of allowable
communicated measurements at a given time in-
stant. Let also define Imin as being the minimum
allowable information utility for a communicated
measurement. The set (42) is built in such a way
that the proposition

(mck ≤ burst ∧
mck < burst⇒ ∀−→

vk
z∈Vk\Uk

, Ik
z < Imin ∧

∀−→
uk

j ∈Uk
, Ik

j ≥ Imin ∧ ∀−→
vk

w∈Vk\Uk
, Ik

w ≤ Ik
j ) (43)

is true. In words, the proposition is true (the set
of communicated measurements is valid) if the fol-
lowing conditions are met: (a) the size of the set
is not greater than burst; (b) the size of the set
is less than burst only if it includes all measure-
ments in the set Vk having an information utility
not less than Imin; (c) the information utility of
communicated measurements is at least Imin and
all not communicated measurements have lower or
equal utility than those which are selected to be
communicated.

5.1 Results and discussion

The simulation experiments carried out for the sin-
gle robot case were extended for teams of cooper-
ative robots with different sizes and for different
communication parameters burst and Imin. Here-
after, the team size will be denoted as tsz. Our aim
was to assess the advantages provided by coopera-
tion and the influence of parameters tsz, burst and
Imin in the mission execution time tmission. Besides
using again the parameters already presented in ta-
ble 1, simulations were carried out with different
teams of cooperative robots having combinations
of the parameters’ values presented in table 2. As
our coverage beliefs are always Gaussians, accord-
ingly with (27), if for a given measurement there

Table 2: Sets of values for parameters tsz, burst
and Imin, used to simulate teams of cooperative
mobile robots performing 3-D mapping missions.

Parameter Set of Values
tsz {1, 2, 3, 4}
burst {32, 64, 128}
Imin {0.6215, 0.3219, 0.0291}

is only one influenced voxel, the values used for
Imin means a reduction on the standard deviation
of the Gaussian for that voxel of 35%, 20% and 2%,
respectively. The simulator assumed a broadcast-
based communication scheme allowing each robot
in the team to communicate measurements to all of
its teammates.

5.1.1 Advantages provided by cooperation

Figure 4 presents curves of the map’s entropy H(t)
of one of the robots in the team, for different team
sizes. As it was intuitively expected, increasing the
team size accelerates the reduction of the map’s
entropy and leads to smaller values of tmission be-
cause, for a given instant time, the modulus of the
derivative of H(t) generally takes higher values as
long as tsz is increased. As robots share measure-
ments through communication, each robot is able
to integrate in its map a greater number of mea-
surements per time unit and achieves a faster re-
duction of its maps’ entropy. Thus, cooperation has
the main benefit of magnifying the sensory capacity
of each robot. This fact is demonstrated through
the total number of measurements mT gathered by
each robot whose maps’ entropy is represented in
figure 4. This quantity is computed as

mT =
kmax∑
k=1

(mk +mck) (44)

where mk is the number of measurements yielded
by the robot’s own sensor at t = tk and mck the
number of received measurements through commu-
nication by the same robot at the same time in-
stant. The value of mT is shown near to each curve
of figure 4. Observe that, although the four val-
ues of mT are quite similar, those measurements
were obtained within time intervals tmission quite
different, especially for 1 ≤ tsz ≤ 3, tsz ∈ N. Note
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that all of the conclusions aforementioned when dis-
cussing the curve for tsz = 1 (figure 3) are still
applicable to tsz > 1.

Figure 4: Map’s entropy along a 3-D mapping
mission for different team sizes. For tsz > 1,
burst = 64 and Imin = 0.3219.

Figures 5 and 6 show different graphs of tmission

as a function of tsz and allows to make a more
detailed analysis of the influence of variables tsz,
burst and Imin on the benefits provided by the co-
operation. The curves presented in figure 5 were
obtained with different values of burst and Imin =
0.3219. The curves presented in figure 6 were ob-
tained with different values of Imin and burst = 64.
Both figures confirm the aforementioned conclusion
that tmission decreases when tsz increases. How-
ever, this performance gain is generally sub-linear,
i.e. if tsz increases a times, a ∈ N, tmission de-
creases b times, where b < a, b ∈ R. The authors
suspect that this performance gain due to a greater
team size would be more noticeable, or even super-
linear, for a workspace with higher volume, where
the benefit of robots’ spatial distribution would be
more beneficial and interference among robots less
prejudicial. But, this conclusion would have to be
demonstrated with further simulations. Both fig-
ures also show that increasing burst or decreasing
Imin always leads to higher values of tmission and
restricts the effectiveness of cooperation among ro-
bots. Both burst and Imin restricts the amount of
explicit communication among robots, when burst

is decreased or when Imin is increased (is more se-
lective). In a 3-D mapping mission, there is no com-
munication via environment or via sensing, because
robots’ actions when performing the mission do not
produce changes in the environments which might
be sensed by other robots. Thus, as cooperation
among robots is based solely on explicit communi-
cation, restricting this explicit communication also
restricts the extent of cooperation. However, re-
stricting communication is needed for adapting co-
operation mechanisms to the communication chan-
nel limitations and using it to convey the most use-
ful information. But, figures 5 and 6 do not allow
to conclude the way burst and Imin restrict com-
munication and cooperation along the mission.

Figure 5: Graphs of tmission as a function of tsz,
for different values of burst and Imin = 0.3219.

Figures 7 and 8 present graphs of the cumula-
tive sum of communicated measurements along the
mission. The curves presented in figure 7 were ob-
tained with different values of burst and Imin =
0.3219. They show that their derivative is nearly
the same by the end of the mission and as high as
burst at the beginning of the mission. Thus, the pa-
rameter burst only restricts communication at the
beginning of the mission. This is understandable
as the measurements’ utility is typically high and
greater than Imin at the beginning of the mission.
The curves presented in figure 8 were obtained with
different values of Imin and burst = 64. As burst
is common to the three curves, they show equal
derivative for t = 0. As long as the mission is exe-
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Figure 6: Graphs of tmission as a function of tsz,
for different values of Imin and burst = 64.

cuted, the derivative decreases to an extent which
depends on the selectivity of Imin, i.e. higher selec-
tivity leads to a smaller derivative by the end of the
mission. Thus, the communication limitation due
to Imin increases with t. Note, for instance, that
Imin = 0.0291 is so small that it does not restrict
communication and the curve’s derivative is nearly
constant along the mission.

These results, about the way burst and Imin

restrict communication, yield some guidelines for
developing communication schemes aiming at fos-
tering cooperation. While the parameter burst is
imposed by the communication channel capacity,
the parameter Imin has to be tuned in an intel-
ligent way, whereby its selective power is benefi-
cial for the performance of the cooperative robotic
team. It precludes a robot to communicate mea-
surements with small utility, when other robots
might have measurements with much higher utility;
this situation is more likely to occur by the begin-
ning of the mission. As long as the 3-D mapping
mission is executed and measurements provided by
sensors progressively take smaller values, Imin be-
comes more and more restrictive and might lead to
a poor utilization of the available communication
bandwidth. This suggests that further investiga-
tion should be conducted with the aim of develop-
ing a selective scheme whereby Imin could be adap-
tively controlled and reduced along the mission.

Figure 7: Graphs of the cumulative sum of commu-
nicated measurements along a mission, for different
values of Imin and burst = 64.

6 Conclusions

Most of the previous research on building maps of
unknown environments has been restricted to de-
terministic models without an explicit representa-
tion of the map’s uncertainty. Few authors have
proposed a probabilistic approach to the problem,
but whether they are restricted to 2-D maps with
a single robot or cannot cope with real-time re-
quirements. This article presented innovative work
related with developing a probabilistic model for 3-
D mapping using information theory to explicitly
represent uncertainty, and sharing information effi-
ciently through communication in a team of coop-
erative mobile robots, driven by the maximization
of information utility. We presented a straightfor-
ward method to build a 3-D discrete grid, which di-
vides the workspace in equally sized voxels, a sensor
model for a range sensor providing distance infor-
mation, a Bayesian inference procedure to update
the coverage belief of each voxel upon new mea-
surements, a gradient-based survey strategy which
drives a robot to regions with higher entropy (un-
certainty), and an entropy-based measure of infor-
mation utility which is used by robots to coop-
erate on building a 3-D map. Simulation results
of 3-D mapping experiments with robots equipped
with range sensors were presented and discussed,
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Figure 8: Graphs of the cumulative sum of commu-
nicated measurements along a mission, for different
values of burst and Imin = 0.3219.

both for a single robot and multi-robot systems
with different number of robots. We demonstrated
that the proposed framework can be successfully
used to perform the 3-D mapping mission. We
also showed that a cooperative multi-robot sys-
tem allows to accomplish the mission in less time
and how restricting communication, both in vol-
ume and minimum allowed information utility, in-
fluences cooperation. Obtained results yielded im-
portant guidelines for future development of com-
munication schemes within cooperative multi-robot
systems. Future theoretical work will focus on cop-
ing with registration of measurements on a common
coordinate space, when robots’ localization is error-
prone. Future experimental will be carried out to
validate the proposed models through real mobile
robots equipped with active stereo-vision systems.
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