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Abstract

This article presents a context-aware, adaptable ser-
vice selection model for a social robot, giving it
the ability to estimate the user’s expectation, as-
sess the degree of satisfaction and use it as feed-
back to improve subsequent interactions. We es-
tablished specific measures for expectation and sat-
isfaction, estimated using Bayesian inference and
used to control the human-robot interaction. This
work is proposed to overcome the fact that ser-
vice robots are usually designed to perform within
a very strict operational envelope, sometimes re-
quiring all knowledge to be known and locally pre-
programmed. The model was tested in demand-
ing simulated scenarios, showing promising results,
and also in exploratory experiments with users.

1 Introduction
In the past few years, we have witnessed an increased inter-
est from the research community on developing intelligent
robotic systems, such as the Social Robots and Compan-
ion Robots used in applications of Ambient Assisted Living.
Such systems can be used as a technical solution to support
our society and organizations to tackle the challenge posed
by the continuously growing fraction of elderly population in
developed countries. Several solutions have been devised and
successfully tested. However, these solutions tend to depend
greatly in previous knowledge and are unable to interact with
the user in an adaptable way.

In this work, we aim to contribute towards autonomy in
interaction of a service-providing Social Robot. More specif-
ically, we tackle the issue of autonomously selecting the ser-
vice that should be performed to a user in order to ensure
their satisfaction. We argue that satisfaction can be fulfilled
when the action that is performed matches the user’s expecta-
tion. These two concepts are used to perform a limited form
of interaction regulation.

This work was developed in the context of the GrowMeUp
project, funded by the European Union’s Horizon 2020 Research
and Innovation Programme - Societal Challenge 1 (DG CON-
NECT/H) under grant agreement No 643647.

The remainder of this work is organized as follows. Sec-
tion 2 presents a short review of recent work on User Adapt-
ability. Section 3 presents the proposed model. Section 4
presents our experiments, including the particular instantia-
tion of the model used in them and the results we have ob-
tained. These results are then discussed in Section 5, fol-
lowed by our concluding remarks and notes on future work,
in Section 6.

2 Related Work
In this section we present works involving robotic systems
that are User Adaptable, a characteristic here defined as the
system’s ability to automatically adapt its interaction to its
users. There have been studies on how users can coexist with
robots and on what characteristics these should exhibit in or-
der for the user to accept them as a social entities [de Graaf et
al., 2015][de Graaf and Ben Allouch, 2013][Fischinger et al.,
2014]. These studies show that humans are indeed capable,
and willing to, attribute a social role to robots and to perceive
them as part of their social circle. More importantly for this
work, [Heerink, 2011] shows that users of social robot sys-
tems prefer system-controlled to user-controlled adaptation,
although they do prefer to maintain a sense of control.

Focusing on children as end-users, the authors of [Kanda et
al., 2004] and [Kanda et al., 2007] present the results of long-
term trials involving child students, during which the robots
were able to adapt their behaviors using a “pseudo develop-
ment” system, in accordance with the interactions that they
experienced with the children. The authors of [Ros et al.,
2014] and [Magyar and Vircikova, 2015] focus on solutions
for robotic dance tutors for children, with the first focusing
on learning the policy of a Wizard of Oz, and the second on
implementing a system that adapts based on previous interac-
tions and a user model.

The authors of [Baraka and Veloso, 2015] also take a step
towards long-term cohabitation of robots and humans, by pre-
senting a system that aims at autonomously adapting to the
user’s preferences over a long-term period where several in-
teractions occur. In order to aid in the adaptation, the authors
explicitly rely on the user providing a rating of the robot’s
behavior, which is then used to learn the parameters of the
model employed.

A number of works make use of the user’s personal-
ity [Eysenck, 1991] to achieve higher levels of adaptation,
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Figure 1: A pictorial overview of the composition and basic functionality of the envisioned system. The rectangles represent
data processing modules, the parallelograms represent data sources and memory, and the dark rectangle represents all of the
robot’s hardware.

either by performing personality matching [Tapus and Aly,
2011], synthesizing adapted behavior based on the user’s per-
sonality traits [Aly and Tapus, 2013].

The authors of [Khaoula et al., 2015] present a work where
the robot, a sociable dining table, develops a personalized
communication protocol with the user. The robot responds to
knocks on the table by knocking back, constructing a person-
alized protocol with the user, leading to increased acceptance.

A number of works focus on providing assistance to the
user, such as the Paro robot [Wada and Shibata, 2006], able
to adapt to its user by learning the name that the user prefers
to use to call it, with its reinforcement learning system al-
lowing it to gradually adapt to the user’s preferred behav-
iors. Similarly, Autom, the weight-loss assistant robo[Kidd
and Breazeal, 2008] performs the function of aiding a per-
son to lose weight, adapting to the user by keeping track of
their progress and adjusting interaction accordingly. Robots
are also able to adaptively assist users in other ways, such
as by organizing shelves according to user preferences [Abdo
et al., 2015][Hoefinghoff et al., 2015], or helping them get
dressed taking into account their upper limb mobility [Gao
et al., 2015] or monitoring their physical limitations [Klee et
al., 2015].

Current works are able to adapt their paths to the presence
of users [Kim and Pineau, 2015], employing the theory of
Proxemics [Rios-Martinez et al., 2015], and to plan the mo-
tion of robotic arms taking into account the presence of a
user, be it through crowd-sourcing path scores [Menon et al.,
2015], using Gaussian Mixture Models to model interaction
primitives [Ewerton et al., 2015] or by employing Game The-
ory [Li et al., 2015].

Lastly, we regard certain forms of human-in-the-loop con-
trol as User Adaptability. For example, in [Lam et al., 2015]
the authors model the interaction between the user and the ve-
hicle they are driving in order to perform human-in-the-loop
control of a moving vehicle. The system adapts to the state
of the user and acts only when necessary, depending on the
state of the user. In an earlier example, the authors of [Zhang
and Nakamura, 2006] propose a system where a robotic arm
is used to assist an impaired person in feeding themselves,
employing a controller based on a Neural Network, which is
automatically adjusted for each user, such that the robotic arm

compensates and assists the user’s movements.
User Adaptability exists in many forms and in systems that

far exceed the boundaries of Robotics itself. The goal of this
work is to contribute to the field of adaptable robotic systems
by introducing the concepts of expectation and satisfaction
as governing metrics of interaction, aiming to increase the
autonomy of service robot. These are modelled and func-
tionally implemented using Bayesian Programs [Ferreira and
Dias, 2014] for their estimation. Results indicate that the pro-
posed models can be used to endow social robots with new
levels of autonomy in interaction.

3 The Adaptability Model
3.1 Problem Statement and Rationale
Let us assume that a service robot is interacting with a person,
on one-on-one interaction. How can the robot provide a ser-
vice that is pertinent, appropriate and adjusted to the context
that the robot and the user are immersed in? More formally,
given a discrete set of actions xi ∈ χ : χ1×n = [x1 x2 ... xn],
where χ corresponds to the space of the actions that the
robot can perform, how can the robot determine which action
should be performed in a given situation? By grounding our
problem in the domain of service-providing Social Robotics,
we establish that each action corresponds to a service that
the robot can provide. We assume that the user is consistent
in their service preferences, i.e. that they always prefer the
same service in a given context.

We propose that the interaction between a robot and a hu-
man agent can be made adaptable through the application and
exploitation of two concepts: expectation and satisfaction.
The user expects the robot to perform a task, and when the
robot performs this task, the user is satisfied to a certain de-
gree. The estimation of these measures and the associated
decision making model are the main focus of this work and
are formally defined in the following sections.

3.2 Functional Description
Let C be the Context of the interaction as the robot perceives
it. Contextual information is divided into two types: infor-
mation on the user U1×m = [u1 u2 ... um] and on the world
W1×l = [w1 w2 ... wl]. Variable ui pertains to the user while



wi is a variable containing information that does not relate to
the user. Thus, context C is given by:

C1×(m+l) = [UW] (1)

which, as will be defined later on, contains information such
as the user’s emotional status and/or the robot’s localization
in the world. This information is used to estimate the user’s
expectation. We aim to determine the probability distribution
of user expectation, χ̂, as a function of the current context and
user satisfaction level ξ, such that:

χ̂ = f(ξ,C) (2)

Knowing this distribution will allow for the selection of an ac-
tion which is most likely to match the user’s expectation and
achieve satisfaction, as formulated in the following section.

Every time a service is rendered, the user reacts to it. This
reaction is measured by the robot’s sensors, generating new
signals which are processed by the Perception module, gen-
erating the user’s reaction variable, R. The user’s reaction
is then used as a means to estimate their satisfaction level, ξ,
which aims to describe how well the user accepts the robot’s
actions. It is mapped into the [0, 1] range, where ξ = 1 indi-
cates that the user is maximally satisfied. A pictorial descrip-
tion of this process can be found in Fig. 1.

3.3 Model Specification
Decomposition
We employ Bayesian estimators for estimating ξ and χ, which
are implemented using Bayesian Programming [Ferreira and
Dias, 2014]. The Satisfaction Estimator provides an estimate
of the user’s satisfaction level (ξ) using the user’s reaction
(R) as input. R is a vector of the form [r1 r2 ... rz], where ri
is a component of the user’s reaction. We propose to estimate
the user’s satisfaction level as ξ̂ = P (ξ|R), yielding:

ξ̂ = P (ξ|R) ∝ P (ξ)P (R|ξ). (3)
Assuming that, in R, all of the variables are statistically in-
dependent, we obtain

P (R|ξ) =
∏
k

P (rk|ξ). (4)

Since we have no prior information on user satisfaction, P (ξ)
is defined as a uniform distribution.

The Expectation Estimator’s objective is to determine
which of the action categories known by the robot is the most
likely to correspond to the user’s current expectation. By ap-
plying Bayes’ Rule, we obtain:

P (χ|ξ,C) ∝ P (χ)P (ξ,C|χ). (5)
Which, applying the Chain Rule to the term P (ξ,C|χ),
yields:

P (χ|ξ,C) ∝ P (χ)P (C|χ)P (ξ|C, χ). (6)

The service is selected by the Service Selector through the
expression

χ̂ = argmax
x

P (χ|ξ = 1,C), (7)

i.e. by finding the action that maximizes the probability of
user satisfaction given the current context.

Expectation and Satisfaction Estimators
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Variables:
C, χ, ξ, R
Decomposition:
P (χ, ξ,C) ∝ P (χ)P (C|χ)P (ξ|C, χ)
P (ξ,R) ∝ P (ξ)P (R|ξ)
Formulation:
P (C|χ), P (ξ|C, χ), P (R|ξ): Learned Histograms.
P (χ), P (ξ): Uniform Distribution.

Identification: Training from records obtained from interaction.

Questions:
Expectation: P (χ|ξ,C)

Satisfaction: P (ξ|R)

Figure 2: Bayesian Program for performing satisfaction and
expectation estimation.

Inference
Regarding the estimation of satisfaction, the P (R|ξ) fac-
tor in Eq. 3 encodes our learning process and is described
using a static stochastic matrix. In order to learn this
distribution, we can perform a number of observations,
where each observation produces a record of the form
{Reaction, Satisfaction}, and in which the user’s satisfac-
tion level ξ is known, and the P (rk|ξ) terms can be deter-
mined by operating over the records:

bi,j = P (rk = i|ξ = j) =
1

N
N(rk = i) (8)

where N is the number of available records, and N(Uk = i)
is the number of records where Uk = i, j can be either 0 or
1, and i represents the i-th possible state of Uk. An example
of these matrices can be seen in Fig. 3.

Regarding the estimation of expectation, all of the right-
hand side terms in Eq. 6 can also be described using stochas-
tic matrices. These are recalculated on every interaction, ev-
ery time a service is rendered, based on the record of the
form {Expectation,Context, Satisfaction} that is pro-
duced, which constitutes our expectation learning mecha-
nism. The recalculation of these distributions, and the way
they influence the decisions the module takes, are the key
to our model’s adaptability. This process is described as a
Bayesian Program in Fig. 2.

Because the user is assumed to maintain their preferences
under equal context information, the Markov assumption is
employed. Therefore, we assume that the previously esti-
mated expectation distribution, at each time step, can be used
as the prior distribution for the subsequent steps, taking care
to penalize erroneous decisions when the Satisfaction level
is low by reducing the probability of the erroneous action in
the prior distribution injected in the next step. i.e. for a time
instant k:

P (χk|ξk−1,Ck) ∝ P (χk−1)P (ξk−1,Ck−1|χk−1), (9)

a detail we have omitted from previous equations for the sake
of readability. This corresponds to a computational imple-
mentation of the inference described by Eq. 5. χk is com-
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Figure 3: An example of the probability distributions pro-
duced during the training of the Satisfaction Estimator, and
that can be used to generate the simulated user’s reactions.

puted synchronously every time a service is rendered and a
reaction is observed.

4 Experiments
In order to demonstrate the functionality of our system, we
have designed a number of experiments, divided between
simulated scenarios and trials with real users. We have im-
plemented the models using ROS [Quigley et al., 2009] mod-
ules and the ProBT [Ferreira and Dias, 2014] probabilistic
calculation library, which will be released on the GrowMeUp
project webpage1.

4.1 Experimental Set-Up and Model Instantiation
For these trials, we have instantiated the model as follows. U
is constituted by both the user’s current action and displayed
emotion (see the following equation).

U = [u1 u2],with

u1 ∈ E : E ≡ {sad, happy, angry,
scared, joyful, neutral}

u2 ∈ Λ : Λ ≡ {wave, nod,walk,
shake head},

(10)

and W is composed by the user and robot’s location and the
time of day

W = [w1 w2 w3] (11)
where w1 and w2 contain the user’s and robot’s location, re-
spectively, and w3 contains the current time of day.

In this work, the user’s reaction is conveyed by a different
materialization of the same set of variables as U, although
there is no strict need for this to be the case.

R ≡ U (12)
In what regards the simulated scenarios, we strove to de-

sign experiments that were as realistic as possible, namely by

1www.growmeup.eu

Figure 4: A user interacting with the robot.

the injection of uncertainty in most of the steps of the pro-
cess. In order to perform these tests, we have implemented a
module which emulated the “human” component in the sys-
tem, which probabilistically generates an appropriate reac-
tion to the stimuli it receives, depending on whether the value
received corresponds to the “correct”. This module imple-
mented a person profile, which was used to define the dis-
tributions from which the signals that were injected into the
system during the tests were generated. Essentially, a profile
is defined by the distribution P (R|ξ) and a set of constant,
coherent rules that allow us to establish a connection between
C and χ, which are unknown to the rest of the system. For
example, a profile may be constituted by the distribution il-
lustrated in Fig. 3 and the rule “when the robot an the user are
in the same location, the user wants to be entertained”.

Two types of short-term tests were conducted:
• using constant W-context;
• using using randomly-varying W-context.

The first test had the goal of determining if the system was
able to converge to the correct solution, and how quickly; the
second type of test aimed to study how the system could adapt
to constant changes in the environment. We have also mea-
sured the average number of cycles needed to converge to the
correct solution when starting with no knowledge. The Satis-
faction Estimator was trained with 300 examples drawn from
the aforementioned distribution, and no training was given to
the Expectation Estimator, except where noted.

Long-term simulation tests were also conducted, in order to
observe the system’s ability to converge to correct solutions
given enough time to study the user. In these tests, the W -
context was varied as before, but the system was allowed to
run for a much longer time, ranging from 1000 to 10000 trials.

Regarding the tests with users, we have implemented a
number of services on the GrowMu robot [Martins et al.,
2015], ultimately instantiating the χ vector as

χ = [follow go to entertain do nothing]. (13)

As a general way of measuring the level of adaptability of
the system, we have calculated the error rate, i.e. the ratio
of the number unsatisfactory trials over the number of satis-
factory ones. This was done both cumulatively, i.e. for all
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(a) Results obtained during simulated system testing with constant W-context.
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(b) Results obtained during simulated system testing with randomly-varying W-context.

Figure 5: The results obtained from the short-term simulation trials.

of the previous samples obtained, as well as within a sliding
window that progresses through the results of the tests.

The tests with users, pictured in Fig. 4, were conducted
over two “days”, being run in simulated time, i.e. by manip-
ulating the robot’s timekeeping primitives to allow for more
testing in less real time. The two users that participated in the
test were instructed to act according to a “user profile”, which
guaranteed that there was consistency in the way the users
expressed their expectation. Additionally, the satisfaction of
these users was not estimated from their reaction, and they
were instead asked to state their satisfaction explicitly. The
advantages of this set-up for tests of this nature is twofold:
it allowed us to gauge the system’s effectiveness in the ab-
sence of satisfaction estimation error, and, more practically,
to avoid having the robot perform actions that the user was
not interested in, thus greatly expediting the process.

4.2 Results
Fig 5 shows the simulation results we have obtained, both for
constant (5a) and varying (5b) W-context. The model took,

on average, 3.85 iterations to converge on a “typical” trial
such as the one presented in Fig. 5.

Fig 6 shows the results of the long-term tests. We can ob-
serve, in Fig. 6a that the error rate that the system experiences
tends to stabilize around 15%, but that despite its initial gen-
eral decreasing trend, does not reach a negligible value. We
can also observe, in Fig. 6b, that in the later stages of the
experiment, the error rate is rather unstable, exhibiting sig-
nificant variation.

Lastly, the tests with users yielded the following results.
When training the system, it displayed a behavior similar to
that of the first few trials in Fig. 6a, with relatively unstable er-
ror rates. Once the system was trained, and in the absence of
the Satisfaction Estimator, it exhibited null error rates, infer-
ring the user’s preferences from context perfectly every time
it was asked to do so. In other words, the error rate of the
system tends to zero once enough information on the user is
gathered.
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Figure 6: Error rate progression observed during the experi-
ments.

5 Discussion
In Fig. 5, we can observe that the system exhibits the main
characteristics we envisioned: it is able to effectively explore
the solution space for the correct one, as seen in Fig 5a. When
found, it tends to maintain that decision, as seen in Fig 5b. In
the same figure, we can observe that it is also able, to some
degree, to deal with possible errors in the estimation of the
user’s satisfaction.

In the long-term tests, depicted in Fig. 6 We can observe
that the error rate does not stabilize in the case of the sliding
window analysis, although it does show a clear tendency in
the cumulative case. We attribute this observation to the fact
that, in both cases, the user’s satisfaction is generated and es-
timated by probabilistic models, such as the one pictured in
Fig. 3. Although it is not explicitly measured in this work, the
satisfaction estimator suffers from a significant error rate it-
self, which tends to induce the expectation estimator in error.

Furthermore, we can observe that the system converges to
a low error rate rather early in the test, showing that it does
not need an exceedingly large amount of information to be
able to operate well.

In the tests with real users, where the Satisfaction Estima-
tor was replaced by the user’s explicit answer, and where we
observed that the system can converge to a null error rate, we
can conclude that the system is able to achieve a full knowl-

edge of the user’s preferences in the contexts under inspec-
tion.

6 Conclusions and Future Work
In this work, we have introduced a probabilistic system that
aims at learning the user’s preferences in what regards the
services they would like a robot to perform. We have per-
formed simulated tests, which show the functionality of our
technique, and demonstrative tests with human users, illus-
trating the system’s ability to regulate a real interaction and
its ability to adapt to its users. Our results show that our sys-
tem can operate well given a substantial enough amount of
training data and that it is able to adapt to real users, albeit
within a restricted environment.

We can now envision a number of improvements that can
be made to our system. Firstly, there is room for improve-
ment when it comes to convergence speed, an issue we can
mitigate, for instance, by intelligently propagating the infor-
mation gathered across contexts, obtaining a more context-
invariant but still context-aware representation of the user’s
preferences. Secondly, our tests with users are also relatively
demonstrative, and could likely be improved with the anal-
ysis of a larger, more varied population of both expert and
non-expert users. Lastly, we are interested in progressing be-
yond the service-based paradigm. As such, we will now focus
taking steps toward the design, implementation and testing of
a full interaction regulation system which should be able to
achieve full interaction autonomy by automatically learning
and optimizing its actions, not only services, in order to bet-
ter fit the user’s preferences, moods and characteristics.
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