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ABSTRACT
This research proposes an on-line incremental 3D recon-
struction framework that can be used on telepresence robots
or human robot interaction (HRI). The aim is a low cost
solution that enables users to communicate and interact re-
motely experiencing the benefits of a face-to-face meeting.
By exploring computers graphics techniques and spatial au-
dio we intend to induce sensations of being physical in the
presence of other people. There is a wide variety of re-
search opportunities including high performance imaging,
multi-view video, virtual view synthesis, etc. One fun-
damental challenge in geometry reconstruction from tradi-
tional cameras array is the lack of accuracy in low-texture
or repeated pattern region. Our approach explores virtual
view synthesis through motion body estimation and hybrid
sensors composed by video cameras and a depth camera
based on structured-light or time-of-flight. We present a
full 3D body reconstruction system that combines visual
features and shape-based alignment. Modeling is based on
meshes computed from dense depth maps in order lower
the data to be processed and create a 3D mesh representa-
tion that is independent of view-point.

KEY WORDS
3D reconstruction, augmented reality, human robot interac-
tion, tele-presence; virtual view synthesis.

1 Introduction

This work presents an on-line incremental 3D reconstruc-
tion framework that can be used on telepresence robots, hu-
man robot interaction (HRI) or augmented reality (AR) ap-
plications. The project, based on recent low cost depth sen-
sors, intends to create a domestic easy to install 3D acqui-
sition and display system that enables socialization, collab-
oration and entertainment. Exploring computers graphics
techniques, spatial audio and artificial vision enables us to
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induce sensations of being physical in the presence of other
people useful on several domains like elderly loneness min-
imization problem[20], tele-rehabilitation[18][32], com-
panion robot, education, socialization, 3DTV, entertain-
ment, etc.

Phones and internet chat/audio/video conferencing
programs (ex: VOIP, NetMeeting, Skype) have been used
for socialization, nevertheless they are not able to create the
remote person presence feeling. Means of communications
that enable eye contact, gestures reconnaissance, body lan-
guage and facial expressions are required.

Figure 1. The concept goal: An mobile telepresence robot
(Hilario) carrying an auto stereoscopic 3D display, video
cameras, depth sensor, microphones and speakers enables
users to communicate and interact remotely experiencing
the benefits of a face-to-face meeting in full size.

The concept goal is depicted on figure 1. An mobile
telepresence robot carrying an auto stereoscopic display,
video cameras, depth sensor, microphones and speakers en-
ables users to communicate and interact remotely experi-
encing the benefits of a face-to-face meeting in full size.
On recent years, there has been significant advances on 3D
displays not requiring special glasses, mostly due the game
console industry and 3DTV. Flat-panel auto stereoscopic
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solutions employing lenticular lenses or parallax barriers
are common technologies nowadays, although they still
constrain the user to certain point of views. By moving the
robot in front of a person we can easily compensate wrong
user point of views avoiding loosing the stereoscopic per-
ception. Even with an accurately location track of viewer’s
head and rendering view dependent images on common
screens (ex: TV’s, LCD’s) is possible to create the illu-
sion of a real window. Our incremental on-line 3D human
reconstruction solution should provide models easily ren-
dered on any of those referred display technologies.

Augmented reality and particularly tele-immersion
[16][5][21] can provide the technology means that en-
ables users interact remotely and experience the benefits
of a face-to-face meeting. The tele-immersive technology
“combines virtual reality for rendering and display pur-
pose, computer vision for image capturing and 3D recon-
struction, and various networking techniques for transmit-
ting data between remote sites in real-time with minimal
delay” [22].

In order to aim an incremental on-line 3D human
reconstruction solution useful for shared mixed reality
workspace [19][30][18], we estimate the 3D world in-
formation using 2D image sequences and depth informa-
tion using a depth camera, e.g. a time of flight camera
(ToF) or structured light camera. This hybrid approach ad-
dresses the geometry reconstruction challenge from tradi-
tional cameras array, that is the lack of accuracy in low-
texture or repeated pattern regions. The proposed real-time
3D full reconstruction system combines visual features and
shape-based alignment. By detecting image point features
for which tri-dimensional coordinates can be measured, a
correspondence between 3D and 2D is established. Us-
ing those annotated 3D points, between consecutive point
clouds, it is possible to estimate the motion transformation
through a linear, closed form or iterative method, register
them on one same referential and create a global model.
Correspondence between consecutive image features in im-
ages is performed using SURF method [6]. Virtual view
synthesis and modeling is based on 3D mesh from dense
depth maps in order lower the data to be processed and
to create a 3D mesh representation that is independent of
view-point [9].

Mesh simplification are conducted reducing the num-
ber of vertices’s and facets while keeping important ob-
ject features or interest points in the model. The aim is
to continuously generate a realistic body model, transfer
the model and reconstruct on a remote common display or
virtual environment according each users viewpoint by a
tracking process. Figure 2 presents an overview of the al-
gorithm.

The reminder of this paper is organized as follows.
First a related work is presented on the following subsec-
tion. Section 2 describes the suggested methodology and
section 3 present implementation and experimental results.
Finally, section 4 presents the future work and conclusions.
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Figure 2. Algorithm overview. The proposed real-time
3D full reconstruction system combines visual features and
shape-based alignment between consecutive point clouds.
The model representation is updated incrementally

1.1 Background

Presently the field of robotic telepresence platforms is very
active. Recently major groups on area directed by Profes-
sor Nadia Magnenat-Thalmann from Nanyang Technolog-
ical University, Professor Markus Gross from Swiss Fed-
eral Institute of Technology (ETH) Zurich and Professor
Henry Fuchs from University of North Carolina at Chapel
Hill have created the BeingThere Centre: International Re-
search Centre for Telepresence to pursue technological and
systems-level advances leading to a credible, 3D experi-
ence of telepresence in a fitted room using a mobile plat-
form. Efforts in achieving a semi-transparent autostereo-
scopic 3D displays that bring the illusion of the other per-
son being present into a room, a laboratory or a hospital
will soon be a reality. Requirements for future telepresence
systems includes:
Seamless integration into everyday environments;
Autostereoscopic display and multiview holography;
Full gaze contact and perspective corrections;
Scalable and mobile;
Combine display, capture & robotics.

Market robotic telepresence platforms includes bot
names like QB from AnyBots, TiLR from RoboDynam-
ics, Jazz Connect from Gostai, Mantaro bot from Mantaro
and VGo from VGo. In recent years, there has been a sig-
nificant effort focusing immersive video conferencing and
immersive television challenging research areas and con-
sumers product industries. 3D cinema, 3D console games,
3D contends, 3D broadcast or 3DTV LCD displays are
common technologies nowadays. The display technology,
as a key component, is now able to recreate the stereoscopic
perception of 3D depth for the viewer either using light ac-
tive shutter glasses, passive polarized glasses or even with-
out glasses, using flat-panel autostereoscopic solutions em-
ploying lenticular lenses or parallax barriers.

Notable works that realistically represent the user’s
appearance at tele-immersion lab at UC Berkeley [19] or
at GrImage lab at Inria [31] are using traditional video
cameras arrays to perform real-time full body 3D recon-
structions. F. Isgro, Emanuele Trucco, Peter Kauff and
Oliver Schreer present a good survey paper, titling Three-
Dimensional Image Processing in the Future of Immersive
Media [15], where they discuss “the three-dimensional im-
age processing challenges posed by present and future im-
mersive telecommunications, especially immersive video
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conferencing and television”. European funded projects
[11] like VIRTUE, 3DTV, 3D4YOU, 2020-3D-MEDIA,
MOBILE 3DTV, 3D PHONE and 3D Presence demon-
strate the interest on the area.

Virtual view synthesis and modeling are the potential
graphic tools to create the eye to eye contact illusion on
tele-presence communications[15] [8]. Usually the body
surface is reconstructed by merging sensors data from dif-
ferent views. Two types of information are required: depth
data and sensor pose data. When there is no prior informa-
tion about depth and pose, the reconstruction techniques
bases on structure from motion. On such cases, the sen-
sor ego-motion estimation is based on corresponding fea-
tures found in consecutive images. The depth informa-
tion, without absolute scale, is then computed using the
obtained ego-motion information. When depth informa-
tion is available a priori, but sensor pose is still unknown,
using data resulting from a ToF or structured light depth
camera, a laser scanner or a stereo camera without iner-
tial sensors, the reconstruction techniques usually bases on
the Iterative Closest Point (ICP) algorithm [7]. 3D point
clouds acquired from different views are registered onto
one same referential by iteratively matching overlap sur-
faces. This method is computationally heavy for real time
applications. When depth data and sensor pose data are
known a priori, no registration procedure is required to
merge the data onto a global referential. The precision of
depth measurements and sensor pose estimation influences
the final surface reconstruction quality. Recent depth sen-
sor devices provide 3D measurements and also RGB data,
enabling the use of 2D image algorithms. It is possible
to improve the 2D feature mapping between consecutive
RGB images, associating the respective depth data and cre-
ating a 3D feature tracking. 2D image features mapping
approaches are generally based on Kanade-Lucas-Tomasi
(KLT) method [34][25][35], Scale-Invariant Feature Trans-
form (SIFT) method [24] or Speed Up Robust Features
(SURF) method [6]. Several works use these techniques
to track 3D pose sensor changes either for object detection,
path planning, for gesture recognition or for reconstruction
purposes [14][29][1][26][27]. Our work intends to perform
a real-time incremental body modeling.

2 Methodology

Building 3D body models is an important task for robotics
with applications in grasping, manipulations, semantic
mapping and tele-presence. We propose a real-time full
3D reconstruction system that combines visual features and
shape-based alignment using Xbox Kinect device. Align-
ment between successive frames is computed by jointly
optimizing over both appearance and shape matching.
Appearance-based alignment is done over 2D SURF fea-
tures annotated with 3D position. Although SIFT descrip-
tor present better accuracy, we have choosen SURF method
in order to achieve the real-time characteristic. Shape-
based alignment is performed using the motion transfor-

mation estimation between consecutive annotated 3D point
clouds through a linear method. There are several possible
closed form solutions for rigid body transformation [12]:
SVD [3][10][12] or iterative methods like Random Sample
Consensus (RANSAC) [13][1][17]. Once obtained a 3D
point model a mesh is generated through Delaunay trian-
gulation.

2.1 Registration

Considerer the motion of a rigid body in front of a scan-
ner and the estimation of the rigid transformation (rotation
and translation). This information is important to register
the body points on one same referential and create a global
model.

Suppose the existence of two corresponding 3D
points sets {xt

i} and {xt+1
i }, i = 1..N , from consecutive t

and t+ 1 scans, related through the following equation:

xt+1
i = Rxt

i +T+Vi (1)

R represents a standard 3x3 rotation matrix, T stands for a
3D translation vector and Vi is a noise vector. The optimal
transformation [R,T] that maps the set {xt

i} on to {xt+1
i }

can be obtained through the minimization of the following
equation using a least square criterion:

ε2 =
N∑
i=1

∥∥ xt+1
i −Rxt

i− T
∥∥2 (2)

The least square solution is the optimal transformation only
if a correct correspondence between 3D point sets is guar-
anteed. Otherwise other methods should be selected (e.g.
RANSAC). The singular value decomposition (SVD) of a
matrix can be used to minimize Eq. 2 and obtain the rota-
tion (standard orthonormal 3x3 matrix) and the translation
(3D vector) [3][10][12]. In order to calculate rotation first,
the least square solution requires that {xt

i} and {xt+1
i }

point sets share a common centroid. With this constraint
a new of equation can be written using the following defi-
nitions:

xt
i =

1

N

n∑
i=0

xt
i xt+1

i =
1

N

n∑
i=0

xt+1
i (3)

xt
ci = xt

i − xt
i xt+1

ci = xt+1
i − xt+1

i (4)

ε2 =
N∑
i=1

∥∥ xt+1
ci −Rxt

ci

∥∥2 (5)

Maximizing Trace(R H) enable us to minimize the gen-
erated equation 5, with H being a 3x3 correlation matrix
defined by H = xt+1

ci (xt
ci)

T. Considering that the singu-
lar value decomposition of H results on H=UDVT , then
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the optimal rotation matrix, R, that maximizes the referred
trace is R= U diag(1; 1; det(UVT )) VT [3][10][12]:

R = UVT (6)

The optimal translation that aligns {xt+1
i } centroid with

the rotated {xt
i} centroid is

T = xt+1
i −Rxt

i (7)

2.2 Model Mapping

Suppose that the mapping from the world coordinates to
one of the scans of the sequence, is known (ex: to scan
0) and it is represented by the transformation 0Hw. As
described before, for any consecutive pair of scans (t, t+1)
from tracked points it is possible to measure rotation and
translation and combine them into a single homogeneous
matrix 4x4, t+1Ht, H = [R,T]. Therefore it is possible
to compute Eq. 8:

iH0 = iHi−1
i−1Hi−2 . . . ..

1H0 and iHw = iH0
0Hw

(8)

To update the reconstructed model, each acquired 3D point
set is transformed to the world coordinate system using
iHw. This alignment step adds a new scan to the dense
3D model. Alignment between successive frames is a good
method for tracking the body position over moderate dis-
tances. However, errors in alignment between a particular
pair of frames, and noise and quantization in depth values,
cause the estimation of body pose to drift over time, leading
to inaccuracies in the map. This is most noticeable when
the body follows a long path, eventually returning to a lo-
cation previously visited. The cumulative error in frame
alignment results in a map that has two representations of
the same region in different locations.

2.3 Tracking

The system first undistorts the images, and then the SURF
features are detected and matched. These features are in-
variant to affine transformations, so they allow detection
of the feature points from different angles and range. Al-
though SURF provides good distinctive descriptors, unde-
sirable matches can occur related with background static
areas and image body boundaries. To overcome this situa-
tion it possible to define a working reconstruction space for
the body and a mask for the SURF algorithm.

After finding the set of matched image features, a cor-
respondence between 2D and 3D is set up. These annotated
3D points pairs are then used to estimate the motion be-
tween two time consecutive point clouds. Assuming that
the identification problem has been solved, we must com-
pute the rigid transformation (rotation and translation) that
align the two consecutive 3D scans. The solution should
take in account that the data are typically affected by noise:

correspondences may be false, and some key data patches
may be partially occluded.

Virtual View Synthesis: On a 3D video conference,
the real eye contact is preserved while each participant ob-
serves the others from their current perspective. Each user
viewpoint changes according his movements around the
shared meeting environment. Therefore new perspectives
views have to be presented at each time instant depend-
ing on the viewers pose in front of the display. This re-
quires a precise estimation of the viewers pose in 3D space,
which can be accomplish by and head/body tracking mod-
ule [37][33][4]. The selected approach is based on a fa-
cial feature tracker using eye feature [36][23]. The purpose
of used Haar-like features is to meet the real-time require-
ment. The resulting 2D position of the eyes can then be
associated to 3D points for the calculation of the 3D posi-
tion of the head.

Algorithm:The global model reconstruction algorithm can
be described as follow on Algorithm 1:

Algorithm 1 Model reconstruction algorithm: estimate the
3D world information using 2D image sequences and depth
information using a depth camera. The proposed real-time
3D full reconstruction system combines visual features and
shape-based alignment. By detecting image point features
for which tri-dimensional coordinates can be measured, a
correspondence between 3D and 2D is established. Us-
ing those annotated 3D points, between consecutive point
clouds, we estimate the motion transformation through a
closed form method, register them on one same referential
and create a global model.

1: Rg ← Rinit; tg ← tinit
2: f1 ← undistort(adquire rgb image())
3: f1d ← undistort(adquire depth image())
4: f1xyz ← convert depth image to xyz data(f1d)
5: f1r ← map rgbcolor to depth image(f1xyz, f1)
6: for (; ; ) do
7: f2 ← undistort(adquire rgb image())
8: f2d ← undistort(adquire depth image())
9: f2xyz ← convert depth image to xyz data(f2d)

10: f2r ← map rgbcolor to depth image(f2xyz, f2)
11:
12: (surf1, surf2) ←

detect SURF features(f1r, f2r)
13: matches2D ← SURF match(surf1, surf2)
14: matches3D ← correspond2D3D(matches3D)
15: (R, t)← motion estimator(matches3D)
16: (Rg, tg)← update global transformation(R, t)
17: f1r ← f2r; f1xyz ← f2xyz {update past data}
18: model← proj points to world coord(f2xyz, Rg, tg)
19: mesh model generation
20: end for
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3 Implementation and Results

Novel depth sensors like PrimeSense camera or Xbox
Kinect [28] can capture video images along with per-pixel
depth information.

a) b)

Figure 3. a) Kinect Sensor b) Depth map with color repre-
senting the distance to sensor

To experimentally test the algorithm we register sev-
eral 3D point clouds in order to create person model while
he is rotating in front of Kinect device.

3.1 Calibrations

The Kinect device combines a regular RGB camera and a
3D scanner, consisting of an infrared (IR) projector and an
IR camera as shown in figure 3a). The projector sends sev-
eral thousand structured IR rays into the scene which are
reflected by objects and recaptured by the IR camera. The
distortion between the emitted and the received pattern is
used to reconstruct the depth values for each reflected ray
using triangulation. The driver interpolates the depth val-
ues between the rays and outputs a 640x480 depth grid with
a precision of 11 bits @ 30 Hz. Microsoft officially spec-
ifies a depth range of 1.2–3.5m. The RBG image is pro-
vided in the same resolution and framerate as the depth
data, however, the two signals do not naturally match due
to different extrinsic and intrinsic camera parameters. The
exact parameters may even vary among different Kinect de-
vices which makes an individual calibration unavoidable.
These parameters can be estimated using camera calibra-
tion methods. The cameras can be individually calibrated
using chessboard patterns images and OpenCV’s calibra-
tion routines. The aim is to undistort the RGB and IR im-
ages and map depth pixels with color pixels (see figure 4).
The maximal range of the kinect raw depth is 211, and it
is possible to convert the raw depth to metric depth using
a linear approximation after a previous depth calibration
dm(xir, yir) = f(rawdepth(xir, yir)).

From the metric depth, the 3D metric position
(Xir, Yir, Zir) of the pixel, with the respect to the IR cam-
era, can be computed using the following equation (9):

Xir

Yir

Zir

 =


(xir−cxir)∗dm(xir,yir)

fxir
(yir−cyir)∗dm(xir,yir)

fyir

dm(xir, yir)

 (9)

where xir, yir are the coordinates of the depth pixel in im-
age, fxir,fyir are the lengths in effective horizontal and
vertical pixel size units (IR camera focal length), cxir, cyir
are the coordinates of the image center of IR camera, and
dm is depth in meters.

The IR and RGB cameras are separated by a small
baseline and using chessboard target data and stereo cali-
bration algorithms, it is possible to determine the 6 DOF
transform between them. Knowing the rotation R and
translation T between the RGB and IR camera, we can
then re-project each 3D point on the color image and get
its color. The mapping between color image and depth im-
age can be expressed by following equations (10):

Xrgb

Yrgb

Zrgb

 = R

Xir

Yir

Zir

+T
xrgb =

(Xrgb∗fxrgb)
Zrgb

+ cxrgb

yrgb =
(Yrgb∗fyrgb)

Zrgb
+ cyrgb

(10)

where xrgb, yrgb are the coordinates of the rgb pixel in im-
age, fxir, fyir are the lengths in effective horizontal and
vertical pixel size units (RGB camera focal length), cxrgb,
cyrgb are the coordinates of the image center of RGB cam-
era, and dm is depth in meters.

a) b) c)

Figure 4. a) undistorted RGB image b) undistorted depth
Image, the white pixels have unknown depth value, due
occlusions or reflective surface material c) Map between
undistorted RGB image and depth image.

On figure 5 we present an example of correspondence
between consecutive image features in using SURF method
(white lines indicate correspondent point). Some matches
are undesirable and are related with background static ar-
eas. Our solution is to confine the reconstruction space
with better limits or develop a movement segmentation fil-
ter. The contribution of erroneous matches is minimized
by the number of good matches while using the described
minimization method to obtain the transformation.
An example of off-line mesh generation, using unorganized
kinect 3d points is provided on figure 6. Delaunay triangu-
lation computation results on 99334 vertices and 1223930
faces. A further filtering is required to clean noisily points
that increase the number of vertices.
Figure 7 depicts a sequence of scans that creates a 3D per-
son model. They result from several 3D point clouds fused
after applying successive 3D rigid body transformations.
Implementation: The system was developed using the C++
language, OpenCV library, OpenKinect library, OpenAR
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Figure 5. SURF features matched on consecutive time
frames

Figure 6. Mesh model with 99334 vertices and 1223930
faces

framework (an augmented reality framework under devel-
opment on ISR-Coimbra). The processing unit, running
Ubuntu Linux v10.10, is composed by a PC with an Intel
Core 2 Duo CPU E8200 @2.66GHz, 2GB of RAM and an
NVIDIA GPU 8600GT with 512MB. Typically the system
has a performance of 2 HZ. The time consuming stage is
related with the surf feature extraction and it takes an av-
erage of 300 ms. It depends on the number of detected
good feature of the image, although we expect to speed up
significantly this step by making use of GPU [2]. The in-
volved number of points also influences the transformation
time calculus. On table 1 we present some typically time
measure involving some algorithm steps.

4 Conclusion

There is still a potential for algorithm speedup involving
code optimization, GPU CUDA programming and stereo
display graphics. The future work also includes studies
conducing to a technological testbed that allow us to mea-

Table 1. Processing time measurements

Algorithm Steps (ms)
Acquisition 1.55

Undistort Images 10.61
DepthRGB Map and last frame update 36.13

SURF feature extraction 314.853
Matching and transformation calculus 78.0282

Alignment, display and interaction 30.377

Total (framerate) 471.56 (f=2.12 Hz)

sure the sense of presence. Our approach explores virtual
view synthesis through motion body estimation and hy-
brid sensors composed by video cameras and a low cost
depth camera based on structured-light. The solution ad-
dresses the geometry reconstruction challenge from tradi-
tional video cameras array, that is, the lack of accuracy in
low-texture or repeated pattern region. We present a full 3D
body reconstruction system that combines visual features
and shape-based alignment. Modeling is based on meshes
computed from dense depth maps in order lower the data
to be processed and create a 3D mesh representation that
is independent of view-point. This work presents an on-
line incremental 3D reconstruction framework that can be
used on low cost telepresence robots or HRI applications
applications to enable socialization and entertainment.
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