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Abstract—This paper presents a study of three possible tech-
niques to detect changes in the environment based on the use of a
combination of the Earth Mover’s Distance (EMD) and each one
of the following methods: Principal Components Analysis (PCA),
Gaussian Mixture Models (GMM) and Plane Extraction (PE).

It starts by describing how the EMD can be used with each one
of the three methods to detect changes among 3D point clouds
that one obtains as robot measurements made with a laser. The
advantages of using a laser instead of cameras are related with the
sensibility of cameras to weather conditions, while the capability
of change detection is crucial for truly autonomous mobile robots,
as well as for mobile robots integrated in surveillance systems,
for example.

The techniques here presented where either implemented in
MatLab or adapted from already existing implementations, and
a set of simulations were made to evaluate their behaviour
relatively to the following aspects: their sensibility to errors in
the data, their ability to detect objects of different sizes and their
computational complexity.

The results obtained show that the combination PCA-EMD is
the one with the lowest computational complexity. However, the
difference between the PCA-EMD and GMM-EMD techniques is
not much significant. More importantly, the results clearly show
that the GMM-EMD technique is by far the more stable, in the
sense that presents a less sensibility to errors and is able to detect
changes with greater reliability. In fact, the techniques PCA-EMD
and PE-EMD yield too many fluctuations in the results, making
it impossible to distinguish if the technique is detecting a change
or the result obtained is because of errors. The GMM-EMD
technique has proved to be the best one allowing the detection
of changes as was intended in this work.

Index Terms - Change detection, Earth Mover’s Distance,
Principal Components Analysis, Gaussian Mixture Models,
Plane Extraction.

I. INTRODUCTION

To have a truly autonomous mobile robot it is necessary
to have a method that allows the robot to solve the three
following problems:

¢ to use what it perceives from the environment in order to

construct a representation of that environment;

o to localize itself in that representation;

o to decide its next movement (based on what it senses

from the actual state of the environment).

There are a lot of methods/techniques that try to answer,
simultaneously, the first two problems presented above. They
are known as SLAM (Simultaneous Localization And Map-
ping). SLAM is a process by which the robot estimates a map
of the environment and localizes itself relatively to that map,
given its perceptions and movements.

In the last years there has been quite some progress towards
solving the SLAM problem, as well as some computational
improvements. [1], [2] The latest advances were brought
forward by hierarquical and hibrid approaches, namely, by the
integration of global topological maps with local metric maps
[3]. This has the advantage of reducing the computational
complexity, and makes it possible to deal with larger envi-
ronments. But, there are still some unsolved problems related
with SLAM: trade off between environment size and com-
putational efficiency, dual problems of perceptual ambiguity
and data association, and lack of robust loop closure for large
environments.

To enable the robot to decide its own movements, i.e. to
solve the third problem presented above, it is necessary to
provide the robot with some kind of alarms that are actived
when there are important changes in the environment, changes
that may affect the path of the robot. Therefore, when a robot
is moving through an environment for a second time, it needs
to compare the data that is extracting with the data extracted
the last time it was at that same place, in order to determine
if there are any changes in the environment that will alter its
predefined path. In order to do that, the robot needs to evaluate
if there are any relevant changes in the environment, and if
there are, it needs to detect where those changes are located.

Change detection can also be used, for example, in surveil-
llance systems to detect if there are any changes, especially
in critical places in the environment. In this setting, it is
advantageous to use laser range finder instead of cameras,
since the latter are negatively affected by weather conditions.

The present work evaluates and compares three different
methods that we have used for change detection: principal
components analysis, geometric primitives, namely planes, and
gaussian mixture models. These methods are all compared
using the so called “earth mover’s distance” to evaluate their



capabilities to detect change.

In section 2 we formulate the problem dealt with this
paper, and we describe the Earth Mover’s Distance in detail.
In section 3 we describe the 3 methods used to attack that
problem, namely: principal components analysis, Gaussian
mixture models, and plane extraction. For each one we explain
how the Earth Mover’s Distance can be applied to measure
differences among sets of points. In section 4 we describe
simulations we made, and report the results obtained. Finally,
in the last section, we draw some conclusions from what was
done, and point out some possibilities for future work.

II. ANALYSIS AND CHARACTERIZATION OF CHANGES IN
3D MAPS

We start by formulating in an abstract way the problem
of finding appropriate measures to detect and locate ???seg-
ment??? changes in sets of points. We then describe the Earth
Mover’s Distance, which will be the bedrock on which those
measures will be built upon.

A. Formulation of the problem

Our problem can be formulated as follows:

Let P be the set of all finite subsets of R3, that is, the set
of all finite sets of 3-dimensional points. For each S € P, we
denote by |S| the number of its elements.

Now, given S,T € P, that could be obtained by a laser
mounted on a mobile robot, for example, we want to evaluate
how different these sets are, and, if possible, segment the
subset of points associated to those differences. In order to
do that, we define, for each method that we are analyzing in
the paper, a function:

d:PXP—)RJ

that assigns to each pair S,7 € P a number, d(S,T), that
quantifies the extent of the changes.

Moreover, given S,T € P, say S being the set of points
observed by the robot at a certain location, and 7" being the
set of points observed at that some location at a later time, if
either |S| # |T'| or d(S,T) is about a certain pre-determined
threshold, §, then we give procedures to determine the subsets
of S where changes ocurred, which can either be single points
or clusters of points, and what are the corresponding (new)
subsets in 7'. Those procedures also should give points or
subsets of 7" that have no correspondence in S (new features).

We will describe in the next section three different methods,
based on Principal Components Analysis, Gaussian Mixture
Models, Plane Extraction, respectively, to define such a dis-
tance d, using the Earth Mover’s Distance, to be described
shortly. One of the goals of this paper is to we compare
all these three methods by applying them to the same 25(?)
situations, and analyzing how each behaves in regard to each
one of the following aspects:

« discriminating power relative to the percentage of change;

o scale used;

e computational cost.

B. Earth Mover’s Distance

The earth mover’s distance (EMD) is defined in [4] as a sort
of distance! between two distributions of points in space for
which a “ground distance” is given, that is, a distance between
points. This “distance” between sets of points is based on the
solution of a particular kind of transportation problem in linear
optimization. The basic ideia is that, given two distributions,
one can imagine one of them as a mass of earth spread in
space, while the other can be thought of as a collection of
holes in that same space. It can always be assumed that there
is at least as much earth as needed to fill all the holes by
switching the roles of earth and holes, if necessary. Then, the
EMD measures the least amount of work needed to fill the
holes with earth.

To rigorously define the EMD distance in R", let us start
by recalling the notion of an n-dimensional weighted point: it
is a pair (z,w) with z € R™ and w € R, the weight of the
point z. Now, if

A ={(z1,w1), (Z2, wa), ..., (Tpm, W) }

and
B = {(y17u1)7 (yz,uz)a s (ynaun)}

are two sets of n-dimensional weighted points, with m < n,

and if
W = Zglwl and U = Zyzluj

are the total weight of A and B, respectively, the EMD
between A and B is defined as:

1> e figdij
min{W,U} ’
where d;; is the distance from z; to y;, and F' = {f;;} €

F(A, B), with F(A, B) being the set of all feasible flows
between A and B defined by the constraints:

D fi; >0, i=1,...mji=1,..,n;
2) Z fij Swi, t=1,...,m
j=1

EMD(A, B) =

min
FeF(A,B)

)

m
3) Zflj Suja .]:177’”7
Z7:rL1 n

4) > > fiy =min{W,U}.

i=1j=1

The motivation for this set of conditions is the following:
think of, as mentioned above, the weight associated to each
point in one of the sets of data as a portion of “earth” that
needs to be moved to the other set of data, thought of as
“holes”, while the weight of these latter points are thought of
as their capacity. The set of points taken as containing earth
is the one that has greater total weight. In that context, the
quantities f;; represent the amount of earth that gets moved
between the i-th point in one set and the j-th point in the other.
Then, condition (1) simply states that there are no negative
amounts of earth; condition (2) and (3) mean that from each
point one cannot get more earth than the amount it contains,

Tt is a distance only on some special cases: see the remark made at the
end of this subsection.



and one cannot put more earth in a hole than what it capacity
allows; finally, condition (4) means that, in the end, all holes
must be filled.

Remark: The EMD is a true distance only when the total
weight of the two sets of weighted points is the same (see
appendix A of [4]).

III. TECHNIQUES FOR DETECTING AND EVALUATING
CHANGES

We now describe the three techniques that we use to detect
and measure change in two different sets of data: principal
components analysis, Gaussian mixture models and plane
extraction. For each one of them, we explain how the EMD
metric can be used to yield a way to quantify the differences
between sets of points.

A. Principal Components Analysis

Principal Components Analysis (PCA) is a well known
statistical technique to identify patterns in data [5]. It is
especially useful when we are analysing data involving several
variables or dimensions. Once one has found those patterns,
it is possible to compress the data by reducing the number
of variables without much loss of information, and this is the
standard application of PCA. Here we will make a slightly
different use of this technique.

The PCA method consists of, given a set of points?:

Pk:(xkaykazk)eRg (kil,...7n),

to compute a referencial that strongly captures the way these
points are distributed. It has the property that the new coordi-
nates of the given points are ordered by decreasing variance.
That is, in that new referencial, the first coordinate (called the
first principal component) has greatest variance, the second
greatest variance lies on the second coordinate, and so on.

The so called components in the PCA method are in fact
the eigenvectors of a certain covariance matrix, obtained as
follows: one starts by computing the mean u(P) of the data
P=(Py....,P,):

1 n
n(P) = - ZPk~
k=1

Then one subtracts that mean to each one of the values in-
volved (this corresponds to moving the center of the referencial
to the centroid of the data):

15 =P - /~L(P) = ((1517@1,51)7 ) (imgmgn))

One now computes the corresponding square covariance
matrix that correlates each pair of variables (three in this
context) in P, obtaining the 3 x 3 matrix:

cov(Z,x) cov(Z,y) cov(Z,Z2)
M= | cov(§a) coo(§g) cou(d?) |,
cov(Z,&) cov(Z,y) cov(z,Z2)

2For simplicity, we describe PCA for 3 dimensions only, which is the case
we are interested in, but this description carries over in an obvious way to
any number of dimensions.

where & = (Z1,...,Zn), § = (J1,--,Un)s 2= (Z1,--+,2n),
and the covariance cov(Z, §), for example, is obtained by the
formula:

> (@ = p(@) (G — 1(@))-

k=1

1
n—1

cov(@, §) =

Finally one computes the eigenvalues, i, A2, A3, and cor-
responding unitary eigenvectors, vy, vy, v3, of the matrix M.
These eigenvectors are the mentioned components.

In the general case, the number of components is equal to
the number of variables being analysed. The component that
corresponds to the highest eigenvalue is the one that describes
the strongest relation in the data. The eigenvectors obtained
depend on how the data is spread in space. In particular, if one
has two sets of data, and one wants to analyse how different
they are, one can compare their components to get an ideia
of those differences: the differences between their eigenvalues
increases with differences in the data sets.

As mentioned, PCA is mainly used to reduce the number
of dimensions or variables, compressing the information by
replacing the data points by their projections on the principal
component axes or, more generally, on a d-dimensional plane
defined by some subset of the d eigenvectors, obtained by
removing the ones with smaller eigenvalues. One can also use
PCA to represent the data on a referencial that brings forward
the different levels of correlation among the data.

In mobile robotics, one possible use of PCA is to detect the
existence of changes in an environment that a robot is revisit-
ing, by comparing the components of the set of measurements
taken by the robot on the first visit with the components of the
data obtained the second time over. To be more precise, the
EMD distance yields a way to compare the sets of components
obtained from two different sets of points by using as weighted
points the eigenvectors, their weights being the corresponding
eigenvalues. Using the notations introduced in sections 2.1
and 2.2, if S = (Py),_; ,, and T = (Q;),_, , are two
sets of points, and if A = {(v1, A1), (v2,A2), (vs, A3)} and
B = {(w1, 1), (wa, ua), (ws, u3)} are the corresponding
sets of weighted points, consisting of the eigenvectors obtained
by the PCA method, each one weighted by its associated
eigenvalue, then:

dpoa ((P2),(Qy);) = EMD ({(vi M)y s {(wes 1))
2

B. Gaussian Mixture Models

A mixture of Gaussian functions is a probability density
function given by a convex linear combination of Gaussian
density functions [6]. More precisely, a function is a mixture
of Gaussian functions if it has the form:

K

[(x,0) = Zpk g(x; ., Sk)  (x €RY),
k=1

where the functions g are Gaussian densities given (as usual)
by



9(X; pge, X)) = S e (e (=)

(var|=il)”

(ur € RY are means and X, are covariance matrices,
positive-definite real N x N matrices which we assume to
be non-singular, |Xj| being the corresponding determinant);
the coefficients py, known as the mixing probabilities, satisfy:

pr >0 and

> m=1 3)

Finally, © denotes the K (1+ N + N?) dimensional vector:

© = ((01,p1),---,(0r,PK)),

where
Or = (i, Xk)

is a vector containing all the coordinates of the means 1, and
all the entries of the covariance matrix® ;. That is, © is
a vector containing all the parameters of the given Gaussian
mixture. The conditons in (3) guarantee that f is indeed a
density function.

Mixtures of Gaussian functions provide good models of
clusters of points: each cluster corresponding to a Gaussian
density with mean somewhere in the centroid of the cluster,
and with a covariance matrix somehow measuring the spread
of that cluster. Conversely, given a set of points in RY, one
can try to find the mixture of Gaussian functions with a
certain number of summands that best fits those points, using
a method known as expectation maximization (see section 2.3
in [6]). This is known as the density estimation problem. This
gives a technique to study the way a set of points is distributed
in space.

Therefore, if S is any set of points in R3, one can use the
expectation maximization method to get a mixture of Gaussian
functions describing it as a set of clusters, in a way that reflects
the distribution of those points in space. In this manner one
obtains a set of vectors 0 together with its corresponding
mix probability coefficient pj. These can be seen as weigthed
points (6x, px), setting the stage to use EMD to compare two
sets of points. Using again the notations introduced in sections
2.1 and 22,if S = (Pi),_y  ,, and T' = (Q;),_, , are
two sets of points, one gets by this process sets A = {(0x, pr)}
and B = {(n¢, qe)} of weighted points, and we define:

dernar ((P2);+(Q)); ) = EMD ({(01,p0)}  { (1e200)})
“4)
This yields a way to measure differences between two sets
of points using GMM.

3Using a natural identification of the space of N x N real matrices with
2
RN™.

C. Plane Extraction

To be able to detect geometric primitives, i.e. simple shapes
from which all, or almost all, other shapes are made off, is
a crucial part of pattern recognition. Since a set of short line
segments approximate the shape of almost anything, the most
popular geometric primitive is precisely the line segment [7].
However, in practice one has to have a lower limit to the
length of line segments, and then objects with parts smaller
than that value are missed. This can cause obvious problems in
path planning, for example. In [8], a method to overcome this
problem is proposed. It consists of an algorithm to extract two
kinds of geometrical primitives out of the data: line segments
used to model all objects with a width exceeding 30 cm,
and circles representing clusters of points that are closer to
a specified point by a distance that is closer than a maximum
predetermined value (see (1) on p. 905).

In the present work we have found that it was more
appropriate for our aims to deal with planes, instead of just
line segments. We have therefore implemented, in MatLab,
a procedure to extract planes out of a given set of points.
Actually we extract what one may call fuzzy planes, that is
a neighborhood of a plane: all points that distance from it
less than a pre-assigned value. This is done in a more or less
straightforward way, as follows:

0: INPUT:

- a set S of points (data);

- some threshold values: €, 4, 7;

- some limiting values: N, m, p.

OUTPUT: a set of fuzzy planes contained in .S together
with the points in the respective neighborhoods.

1: Let £ be a list (initially empty) containing the param-
eters of each plane 7 already detected, together with a
weight w, that represents the number of times the plane
7 has shown up in step [3] below;

2: Select, at random, 3 points in S until one gets non-
collinear points P, P, Ps;

3: Determine ™ = (a, b, ¢, d) € R* such that ax+by+cz =
d is the cartesian equation of the plane that goes through
Py, Py, P3 and v, = (a,b,c) is a unit vector;

4: Look in L for planes p close to 7 in the following sense:

a) ||[ve — v,|| < € (for the planes to be roughly
parallel);

b) the distances from P;, P, P; to the plane p are
less than § (so the part of the planes 7 and p that
contain data are somewhat close to each other);

5: Put all such planes p, and their corresponding weights
wp, in a temporary list Ly, which we initialize with
the plane 7, assigning to it the weight 1;

6: If L4y ends up containing only the plane 7, we add it
to £ with weight 1;
if not, we remove from L all the planes in L;,,, while
adding to £ a plane obtained by the weighted average
of all those planes, assigning to it a weight equal to the
sum of all their weigths.

7: Repeat steps [2]-[6] N times;



8: Find the planes in £ with maximum weight. If this
maximum is less than m, STOP. Otherwise, sequencially
remove from the data set the points that belong to the 7-
neighborhood on each of these planes. Put these planes
on a list F, together with the number of points in their
n-neighborhood.

9: Repeat [1]-[8] for the new data set, the points leftover
after [7]. If there are less that p points, STOP.

At the end, we obtain a list of fuzzy planes, F, extracted
from the given set of points, together with the number of
points in an appropriate neighborhood of each one of those
planes. Now, the planes obtained are nothing but a set of four
parameters, which can be looked at simply as a 4D point.
Therefore, we again get, from any given set of points, a set
of weigthed points of the form (7, w;) and apply to it the
EMD metric to compare sets of points. Using one more time
the notations of sections 2.1 and 2.2, if S and T are two sets
of points, one obtains through the process just described two
sets A and B of weighted points, and we define:

dpp(S,T) = EMD({(m,wx)} , {(x",wx)}). (5

IV. RESULTS AND DISCUSSION

In order to evaluate the methods for change detection
described in section 3, we made a series of tests with sim-
ulated data. We started by building a set of 300 points in 3-
dimensional space, simulating the readings of a perfect laser,
with the shape of a corridor with two parallel walls and a
ceiling. On this set of points we then introduced random errors,
normally distributed, with zero mean and a variance going
from 0.00001 to 0.1, by factors of 10. After that, we moved a
certain number of points out of one of the walls of the corridor,
simulating a box of various sizes in that corridor. The number
of points of that box was made to vary from 3 to 33% of
the total number of points. Finally we increased the number
of points of our initial corridor to experimentally study the
complexity of the various methods.

A. Methods’ behaviour for different errors and different size
of object

Figures 1-5 display the results for EMD distance variation
as the percentage of change increases, comparing the be-
haviour of the three methods we studied: principal components
analysis (PCA), Gaussian mixture models (GMM) and plane
extraction (PE).

These graphs clearly show that the GMM method is the
most stable as the percentage of change increases in the
environment, while PCA is the most unstable change detector.

B. Methods’ sensibility to different error sizes

To evaluate the sensibility to errors, we generated, for each
one of the variances studied above, 30 different datasets, and
calculated the standard deviation of the EMD values obtained
when applying each method. The results are rather curious, as
shown in figure 6.

This confirms what the results presented in the previous
section already suggested: that the GMM method presents a

Results obtained for a variance of: 0.1
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Fig. 1: The behaviour of PCA, GMM and PE for a variance
of 0.1

Results obtained for a variance of: 0.01
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Fig. 2: The behaviour of PCA, GMM and PE for a variance
of 0.01
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Fig. 3: The behaviour of PCA, GMM and PE for a variance
of 0.001

Results obtained for a variance of: 0.0001
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Fig. 4: The behaviour of PCA, GMM and PE for a variance
of 0.0001



Results obtained for a variance of: 0.00001
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Fig. 5: The behaviour of PCA, GMM and PE for a variance
of 0.00001

standard deviation
Variance | PCA GMM PE
0.1 0.3154 | 0.0840 | 0.0813
0.01 0.3821 | 0.0177 | 0.0796
0.001 0.4132 | 0.0062 | 0.3274
0.0001 0.4153 | 0.0026 | 0.3172
0.00001 | 0.4004 | 0.0037 | 0.3623

Fig. 6: Statistical behaviour of PCA, GMM, PE

much better behaviour than the other two, with a much lower
standard deviation, and that improves as the errors decrease.

C. Experimental computational complexity

To evaluate the computational complexity of each method,
we analysed the average time for 30 experiments, in seconds,
needed to deal with datasets with a number of points ranging
from 147 to 91875. Figure 4.3 shows how PCA and GMM
performed.

Relation between the number of points and time
nedded in seconds
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150 _GMM‘
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0 20000 40000 60000
number of points

80000 100000

Fig. 7: The behaviour of PCA and GMM

The increase of time needed, as the number of points
increases, it is quite similar for both PCA and GMM. We
note that, while we used an implementation of GMM in the C
language, the PCA implementation used was in MatLab. That
of course has an impact on the time each algorithm takes for
a given number of points, but not on the rate of change as the
number of points increase.

The PE method turned out to be much more time demand-
ing, but our implementation made in MatLab can certainly be
improved, and used for other applications. However, given the
excelent results obtained for GMM method we did not pursue
that issue here.

V. CONCLUSIONS

The experiences and results described in the previous sec-
tion, strongly support the conclusion that GMM performs
much better than PCA and PE, detecting change in a robust
way as errors are introduced in the data readings.

The plane extraction seems to be a fairly simple method to
locate some changes in the environment. We did played a little
with it, and it certainly seems be worthy of further study. (...)
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