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Abstract. We will present a Bayesian hierarchical framework for multi-
modal active perception, devised to be emergent, scalable and adaptive,
together with some representative experimental results. This framework,
while not strictly neuromimetic, finds its roots in the role of the dor-
sal perceptual pathway of the human brain. Its composing models build
upon a common spatial configuration that is naturally fitting for the in-
tegration of readings from multiple sensors using a Bayesian approach
devised in previous work.
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1 Introduction

Active perception has been an object of study in robotics for decades now, spe-
cially active vision, which was first introduced by [2] and later explored by [1].
Many perceptual tasks tend to be simpler if the observer is active and controls
its sensors [1]. Active perception is thus an intelligent data acquisition process
driven by the measured, partially interpreted scene parameters and their errors
from the scene. The active approach has the important advantage of making
most ill-posed perception tasks tractable [1].

We will present a complex artificial active perception system that follows
human-like bottom-up driven behaviours using vision, audition and vestibular
sensing. More specifically, the conceptual tool of Bayesian Programming [3] was
applied to develop a hierarchical modular probabilistic framework that allows the
combination of active perception behaviours, namely active exploration based on
entropy developed in previously published work [9,10] and automatic orientation
based on sensory saliency [12]. A real-time implementation of all the processes
of the framework has been developed, capitalising on the potential for parallel
computing of most of its algorithms, as an extension of what was presented in [8].
An overview of the framework and its models will be summarised in this text, and
representative results will be presented. In the process, we will demonstrate the
following properties which are intrinsic to the framework: emergence, scalability
and adaptivity.
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Fig. 1. Multimodal perception framework details. (a) The Bayesian Volumetric Map
(BVM) and the Integrated Multimodal Perception Experimental Platform (IMPEP);
(b) BVM Bayesian Occupancy Filter.

2 Active Multimodal Perception — A Hierarchy of
Bayesian Models

To achieve our goal of developing Bayesian models for visuoauditory-driven sac-
cade generation, a representation model and decision models for gaze shift gen-
eration, similar to what was proposed by Colas et al. [4], have been developed
and are summarised in the following text.

A spatial representation framework for multimodal perception of 3D struc-
ture and motion, the Bayesian Volumetric Map (BVM), was presented in [7],
characterised by an egocentric, log-spherical spatial configuration to which the
Bayesian Occupancy Filter (BOF), as formalised by Tay et al. [13], has been
adapted (see Fig. 1).

In this model, cells of a partitioning grid on the BVM log-spherical space
Y are indexed through C ∈ C ⊂ Y, where C represents the subset of positions
in Y corresponding to the “far corners” (logb ρmax, θmax, φmax) of each cell C,
OC is a binary variable representing the state of occupancy of cell C (as in the
commonly used occupancy grids — see [6]), and VC is a finite vector of random
variables that represent the state of all local motion possibilities used by the
prediction step of the Bayesian filter associated to the BVM for cell C, assuming
a constant velocity hypothesis, as depicted on Fig. 1. Sensor measurements (i.e.
the result of visual and auditory processing) are denoted by Z — observations
P (Z|OC VC C) are given by Bayesian sensor models, which yield results already
integrated within the log-spherical configuration, as presented in [7].

The BVM is extensible in such a way that other properties characterised
by additional random variables and corresponding probabilities might be repre-
sented, other than the already implemented occupancy and local motion prop-
erties, by augmenting the hierarchy of operators through Bayesian subprogram-
ming [3,11]. This ensures that the framework is scalable.
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Fig. 2. Active perception model hierarchy.

Therefore, we will specify two decision models1: one that implements entropy-
based active exploration using the representation model (πB), and one that uses
entropy and saliency together for active perception (πC). In other words, each
model πk incorporates its predecessor πk−1 through Bayesian fusion, therefore
constituting a model hierarchy — see Fig. 2. The first model we propose uses the
knowledge from the representation layer to determine gaze shift fixation points.
More precisely, it tends to look towards locations of high entropy/uncertainty.
Its likelihood will be based on the rationale conveyed by an additional vari-
able that quantifies the uncertainty-based interest of a cell on the BVM, thus
promoting entropy-based active exploration as described in [9,10]. The second
model is given by the product between the prior on gaze shifts due to entropy-
based active exploration, the Inhibition of Return (IoR) model [12], and each
distribution on sensory-salient BVM cells. This expression shows that the model
is attracted towards both salient cells and locations of high uncertainty, while
avoiding the fixation site computed on the previous time step through the IoR
process — the combination of these strategies to produce a coherent behaviour
ensures that the framework is emergent. The parameters used for each distri-
bution may be introduced directly by the programmer (like a genetic imprint)
or they may be manipulated “on the fly”, which in turn would allow for goal-
dependent behaviour implementation (i.e. top-down influences), and therefore
ensure that the framework is adaptive.

3 Results

Experimental results showcasing some of the capabilities of the system are pre-
sented in Fig. 3.
1 Constant model πA is for Bayesian learning purposes of system parameters, and is
beyond the scope of this text — it is considered herewith as a uniform prior.
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(a) BVM results corresponding to a scenario composed of one male speaker calling
out at approximately 30o azimuth relatively to the Z axis, which defines the frontal
heading respective to the IMPEP “neck”. The reconstruction of the speaker can be
clearly seen on the left of each representation of the BVM.

(b) Relevant values for entropy-based variable UC corresponding to each of the time-
instants in (a). Represented values range from .5 to 1, depicted using a smoothly gra-
dated red-to-green colour-code (red corresponds to lower values, green corresponds to
higher values). Chronologically ordered interpretation of these results goes as follows:
at first, relevant cells have their relative importance for sensory exploration scattered
throughout the visible area, and there is a separate light yellow region on the left cor-
responding to an auditory object (i.e the speaker) that becomes the focus of interest;
then, at the boundaries of the speaker’s silhouette, bright green cells show high rele-
vance of this area for exploration, which then becomes the next focus of interest; finally,
after a few cycles of BVM processing, uncertainty lowers, which clearly shows as the
number of green cells diminishes.

Fig. 3. Results corresponding, from left to right, to time-instants in which gaze shifts
were generated, 17.080 s, 26.664 s and 36.411 s, respectively, exemplifying the use of
the entropy-based variable UC to elicit gaze shifts, in order to scan the surrounding
environment. A scene consisting of a male speaker talking in a cluttered lab is observed
by the IMPEP active perception system and processed online by the Bayesian frame-
work. An oriented 3D avatar of the IMPEP perception system depicted in each map
denotes the current gaze orientation. All results depict frontal views, with Z point-
ing outward. The parameters for the BVM are as follows: N = 10, ρMin = 1000mm
and ρMax = 2500mm, θ ∈ [−180o, 180o], with ∆θ = 1o, and φ ∈ [−90o, 90o], with
∆φ = 1o, corresponding to 10 × 360 × 180 = 648, 000 cells, approximately delimiting
the so-called “personal space” (the zone immediately surrounding the observer’s head,
generally within arm’s reach and slightly beyond, within 2m range [5]).
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