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Abstract— A point cloud registration method is proposed in
this article, and experimental results are presented for long three-
dimensional map sequences obtained from a moving observer.

In vision based systems used in mobile robotics the perception
of self-motion and the structure of the environment is essential.
Inertial and earth field magnetic pose sensors can provide
valuable data about camera ego-motion, as well as absolute
references for the orientation of scene structure and features. In
this work we explore the fusion of inertial and magnetic sensor
data with range sensing devices. Orientation measurements from
the inertial system are used to rotate the obtained 3D maps into
a common orientation, compensating the rotational movement.
Then, image correspondences are used to find the remaining
translation. Results are presented using both a stereo camera and
a laser range finder as the ranging device. The laser range finder
also needs a single camera to stabilish pixel correspondence.

The article overviews the camera-inertial and camera-laser
calibration processes used. The map registration approach is
presented and validated with experimental results on indoor and
outdoor environments.

Index Terms— Inertial Sensors, 3D Mapping, Laser Sensors

I. INTRODUCTION

Vision or 3D imaging systems in robotic applications can
be rigidly coupled with an Inertial Measurement Units (IMUs)
and magnetic sensors, which complement it with sensors
providing direct measures of orientation relative to the world
north-east-up frame, such as magnetometers (that measure the
earth magnetic field) and accelerometers (that measure gravity)
[13]. Micromachining enabled the development of low-cost
single-chip inertial and magnetic sensors that can be easily
incorporated together alongside the camera and other sensors
such as a laser range finder (LRF).

Calibration techniques find the rigid body rotation between
the camera and IMU frames [9, 10], and between the camera
and LRF frames [17]. Then, the orientation of the camera or
LRF in the world can be calculated from the IMU orientation
measurement. The knowledge of the range sensing device
orientation should allow faster processing or the usage of
simpler motion models in registration tasks. For example, these
two sensory modalities can be explored to improve robustness
on image segmentation and 3D structure recovery from images
[8, 15] or independent motion segmentation [11].

Figure 1 shows a camera, an IMU, and an LRF mounted
on a pan-tilt.

3D mapping with color images and a rotating LRF was
already performed [16], but without any calibration process

Fig. 1. The sensors utilized for 3D mapping.

to calibrate the rotation between the sensor frames, and using
only ICP to register the point clouds. Rotating LRFs were also
used to recover 3D range scans, that were matched to build
maps, in room scale with small mobile robots [6], or in larger
scale in urban mapping with cars as the sensor platform [18].

To detect outliers on stereo registration two geometric
constraints were proposed in [5]. The single constraint on
translation vectors proposed here subsumes the other two.

Our first aim is to register 3D point clouds obtained by a mo-
bile observer carrying a stereo camera [15]. Correlation based
stereo depth maps were obtained for each frame. Having the
camera-inertial system calibrated, the camera orientation in the
world was calculated from the IMU orientation measurements,
and the point clouds were rotated to a common levelled and
earth referenced frame. Then the remaining 3D translation to
register the successive point clouds was estimated by tracking
image targets over successive frames, and subtracting their
3D position. Fully registered point clouds can therefore be
obtained.

Then, on this paper the same technique is applied to a
different setup with a LRF as the ranging sensing device
instead of a stereo system. Images from a single camera will
still be used to track targets and relate them with the 3D points,
after a LRF-camera calibration process. The IMU will still be
used to rotate the point clouds to a leveled reference frame,
as the rotation LRF-IMU can be calculated from the result of
both calibration processes.

Although accumulation of errors does not allow the regis-
tration of a long sequence of point clouds by registering only
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pairs of point clouds taken from adjacent frames, it is possible
to register and combine into a larger, aggregated point cloud
a limited sequence of neighbouring point clouds around one
taken as reference.

The next subsections define the reference frames utilized,
reviews the calibration processes, and present the experimental
platform. Section II describes our present approach, followed
by experimental results on section III and finally the conclu-
sions on section IV.

A. Definitions of reference frames

In the scenario of figure 2(a), the IMU is mounted with a
stereo camera. In the scenario of figure 2(b), an inertial system
is rigidly mounted with a LRF and a single calibrated camera.
Hence the following reference frames are defined:

• Camera Frame {C}: A common pinhole camera projec-
tion model. The origin is placed at the camera center, the
axis z is the depth from the camera, and the axes x and
y form the image plane. In the stereo scenario, the {C}
frame is defined by the left camera.

• Inertial Frame {I}: The inertial orientation output is the
rotation between the {I} and the {W} frames.

• World Frame {W}: A Latitude Longitude Altitude
(LLA) frame.

• Laser Frame {L} Its origin is the convergence point of
the laser beams. Its axes are alligned with the laser beams
as shown in figure 2.

• Rotated Device Frame {R}: This frame shares its origin
with the {C} (stereo scenario) or {L} (LRF scenario)
frames, but its axes are aligned with the world frame
{W} (see figure 5).

B. Calibration of fixed rotations

The camera-inertial calibration [9, 10] outputs the constant
rotation IRC between the camera {C} and inertial {I} frames.
It is implemented as a Matlab toolbox [12]. Two examples of
calibration images are shown in figure 3, where a chessboard
was placed in the vertical position, so that its vertical lines
provide an image-based measurement of the gravity direction
to be registered with the gravity measurements provided by
the accelerometers.

On this paper the fixed rotation CRL between the laser {L}
and camera {C} frames was found by reprojecting the image
pixels onto the point cloud and adjusting the rotation until 3D
structures are correctly painted.

The fixed rotation IRL between the LRF and IMU frames
can be calculated as IRL = IRC · CRL.

C. Experimental Platform

The LRF is a Hokayo URG-04LX (figure 1), used together
with a single camera Allied Guppy-36C[1], calibrated with the
Camera Calibration toolbox[3]. The stereo camera is a Videre
STH-DCSG-C Stereo Head [19]. To calibrate the cameras and
compute range from stereo images we use the Small Vision
System (SVS) Software [7]. All sensors are rigidily mounted
together with the inertial and magnetic sensor package MTi
from Xsens [20]

(a) The stereo scenario

(b) The laser scanner scenario

Fig. 2. Moving observer and world fixed frames of reference

Fig. 3. Two examples of calibration images used to calibrate the camera-
inertial system.

II. REGISTERING 3D POINT CLOUDS

Figure 4 shows the data flow for point cloud registration.
On the left the inputs are shown: for frame i, the point cloud,
the camera image, and the inertial orientation measurement.
Two other inputs are constant for all frames: the reference
image, and the fixed rotation matrix between the IMU and the
ranging device (IRL or IRC).

A. Obtaining images and point clouds.

For each time index i, the camera provides intensity images
Ii(u, v) where u and v are pixel coordinates. The laser scanner
outputs a set of 3D points LP|i, expressed in the laser frame
of reference {L}. The 3D positions of each point are given by
a laser projection model as defined in [17]. For each point the
pantilt position is defined by the tilt angle (ϕ), as the pan axis
was not moved, and the LRF supplies a distance measurement
ρ and a beam angle θ in the scan plane.
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Fig. 4. The data flow for the registration of each 3D point cloud.
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where c and s represent the cosine and sine functions and
the calculated x, y, z coordinates are given in the {L} frame.

Each 3D point is be reprojected into the camera frame, and
if it falls in the camera field of view, it is associated with
an image pixel (u, v) on the image Ii, with a corresponding
intensity gray level c = Ii(u, v).

When using stereo cameras, the stereo image pair is pro-
cessed to calculate a depth for most pixels, yielding a set of
3D points CP|i directly in the {C} frame. In both cases each
point in the set retains both 3D position and gray level.

P (x, y, z, c) ∈ {C,L}P|i

B. Rotate to Local Vertical and Magnetic North
The measured inertial orientation for the time index i,

expressed as a rotation matrix WRI |i, rotates the inertial frame
{I}|i into the world frame {W}.

If stereo cameras are used as the ranging device, the point
cloud CP|i are rotated by the rotation WRC |i = WRI |i · IRC ,
that rotates the camera frame into the world frame. As figure
5 shows for two point clouds, the purpose of this rotation is to
align all point clouds to the earth-referenced {R} frame, i.e.,
North, East and vertical directions, as indicated by the inertial
and magnetic orientation measurements.

For the LRF, a similar step is taken, but it is necessary
also to compensate for the pantilt position at the moment
the inertial measurement was taken. The pantilt rotation is
represented by R(ϕ,ψ), the rotation matrix equivalent to the
Euler angles ϕ, ψ, 0 considered at the relevant axes. For
each time index i = 1 . . . n, we define the matrix WRL|i =
WRI |i ·IRL ·R(ϕ,ψ) as the rotation that brings a point from
the laser frame {L}|i into the world frame {W}, and apply
this rotation to 3D points on the point cloud LP|i, generating
a point cloud RP|i in the rotated frame of reference. The fixed
rotation IRL was obtained by verifying as shown in section
I-B.

After this step only a translation is missing to register the
point cloud into the {W} frame.

Fig. 5. Compensating the rotation: point clouds aligned on inertial levelled
frame.

Fig. 6. 2D image matching and corresponding pair of 3D points with a
translation vector.

C. Translation from Image Correspondences

The translation component between the point clouds RP|i
and RP|i+1 can be obtained by tracking fixed targets in the
images Ii and Ij of the scene. The tracked image features must
have the corresponding 3D points P|i ∈ RP|i and P|j ∈ RP|j
in each point cloud, such that each tracked feature yields a
translation vector in the form:

∆−→t = P|i −P|j

Figure 6 shows two corresponding 3D points in two over-
lapping point clouds, obtained from a corresponding pixel pair
on the respective images. The dashed arrow is the translation
vector, with the corresponding 3D points and image pixels
connected by full lines.
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(a) Difference between translations
vectors and the mean vector (in mm).

(b) Histogram of the angle between
the translation vectors and the mean
vector.

Fig. 7. An example of the usage of RANSAC to detect outliers.

Interesting points are found by the SURF algorithm [2].
Assuming that the majority of interesting points are from the
static background, random sample consensus (RANSAC [4])
is used to reject outliers. Interesting points wrongly matched
and 3D points wrongly positioned due to errors on the stereo
disparity image are detected as outliers by the same RANSAC
procedure.

As the model used on RANSAC is very simple, involving
averaging and subtracting 3D vectors, the RANSAC procedure
runs very fast. Since there is not an absolute pose reference,
one reference frame {R}|0 is arbitrarily choosen as the global
frame where the other point clouds will be registered to.

1) The stereo camera case: When point clouds are obtained
from stereo cameras, dense stereo algorithms can recover
disparities and thus 3D points for many (or most) image pixels.
Then the association of image pixels with 3D points is trivial,
and, for most matched pairs of interest points, there exist a
corresponding 3D point pair. The ones for which there is not
an associated 3D point pair can be simply discarded.

Both mismatched interesting points and wrong stereo dispar-
ities are detected as outliers by the same RANSAC procedure.
Figure 7(a) is a plot of the set of translation vectors for one
image pair. The plotted circles are the differences between
each inlier vector and their mean (indicated by ′+′) - i.e., if all
vectors were equal, all circles would appear on the origin. The
’x’s are outliers, which were detected and eliminated. Figure
7(b) is a histogram of the angle between the translation vectors
and the mean vector - most point approximatelly to the same
direction, except a few outliers (the crosses on the left graph).

2) The LRF case: In the case of the point clouds from the
LRF, as its angular resolution is tipically less than the image
angular resolution, most pixels do not have an associated 3D
point. When one pixel x, belonging to a matched interesting
point pair, do not have an associated 3D point, the closest pixel
x∗ with an associated 3D point in its neighborhood is found.
If the image distance |x− x∗| is less than a small threshold
(2 pixels in our experiments) that 3D point substitutes the
missing one. This approximation increases the measurement
error for the translation. Therefore, as suggested in [14], for
each corresponding pixel pair (xi,xj) in the images Ii and
Ij , the value w = (|xi − x∗i | +

∣∣xj − x∗j
∣∣)−1 is defined as a

weight in the averaging of the resulting translation vector T ,
that become, for N corresponding pixel pairs:

T = (
N∑

k=1

N
k=1wk)−1(

N∑
k=1

wk∆−→t k) (2)

D. A non-iterative alternative to RANSAC.
To detect outliers, instead of using RANSAC, geometric

constraints can be exploited, avoiding iterative techniques. An
example are the two constraints proposed by [5].

Consider two pairs of corresponding 3D points on the i
and j frames, (P|i,P|j) and (Q|i,Q|j). The first constraint
concerns the invariance of the length of the P|i −Q|i vector
under a rigid transformation.

The second constraint limits the angle between a vector
formed by two 3D points before and after the motion. With
the orientation measured, it can be more tightly enforced with
a statistically significant boundary if the error on orientation
measurements is known.

As these constraint will never be exactly satisfied in prac-
tice, the problem consists in determining if the difference
verified is consistent with the expected errors on the process;
if it is not, one of the points must be an outlier. Therefore
these constraints are checked against all possible pairs of cor-
responding 3D points, and the maximum subset of consistent
measurements is selected.

Altough this method is not interactive, it requires signif-
icantly more time than the RANSAC method outlined on
section II-C. Also, the difference between translation vectors
is a single constraint that is not satisfied if any of the two
other constraints is not satisfied, and therefore it subsumes
both. Therefore the method of section II-C was chosen to be
used on the experiments of this paper, and the non-iterative
method was abandoned.

E. Filtering out redundant points
The point clouds being registered have large overlap and

many redundant points. To save memory, new points too close
to a point already present on the cloud should be rejected. But,
as the number of points is large, it is too slow to check linearly
all the stored points to test if a new point is redundant.

Additionally, the point clouds should be filtered, eliminating
points wrongly positioned due to range sensing errors. Isolated
points must be deleted to generate a smoother point cloud.

One approach would be to divide the covered space in vox-
els and mark each voxel as occupied or free. The disavantage
of this approach is that the number of voxels increases with
the covered space, and many voxels are empty. This waste of
memory should be avoided to be able to cover a larger space.

Another well-known approach, which has been imple-
mented here, keeps only a 3D point cloud and a hash table
indexing all points by their coordinates. When a new point
is inserted, the hash table retrieves a list of potentially close
points, rejecting the new point if it is redundant.

Doubious points are eliminated by deleting points that were
not seen in a sufficient number of frames. To keep track of
this, every point is associated to a counter, that is incremented
every time there is an attempt to insert a new point on the
same position. Each counter can be incremented only once
per frame. In such a way the frames “vote” for each point.
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(a) One point cloud.

(b) Two registered point clouds.

Fig. 8. Point clouds from the sidewalk dataset.

III. EXPERIMENTAL RESULTS

A. Using stereo cameras

Figure 8(a) shows one point cloud from an outdoor image
sequence, with its left camera image displayed on the back.
Figure 8(b) shows two registered point clouds, one in green,
the other in the original gray level color, with their respective
images displayed behind them.

Figure 9 shows, on the left, a set of registered point
clouds of the same sidewalk sequence, and on the right, the
resulting point cloud after registering together a sequence of
27 successive point clouds, and filtering out points imaged in
less than 4 frames. In the left figure, only one every four point
clouds is shown, to ease visualization.

The pyramids (one for every four camera poses) on figure
9(b) represent the camera trajectory and orientation (the cam-
eras point towards the pyramids base). The RANSAC threshold
for membership in the inlier set was 5 cm. The minimum
acceptable number of inliers was 20. For each reference

(a) Registered point clouds (only one every four)

(b) The resulting, filtered point cloud. The camera poses are
shown as blue pyramids.

Fig. 9. The result of registering point clouds for 27 successive frames.

frame, between 20 and 50 frames were registered, representing
between 1.5 s and 3 s worth of data at 15 fps.

B. Using a LRF

To generate a 3D point cloud, the LRF was mounted on a
pantilt, and its tilt axis was moved from −30◦ to 30◦, taking a
scan every 1◦. One example is shown in figure 10(a). Points in
the area imaged by the camera are painted with the gray color
of their corresponding pixel, while points not imaged are on an
uniform gray. Three such point clouds are shown registered in
figure 10(b), with the other point clouds highlighted in green
and blue.

C. Final adjustment with ICP

After the process shown in sections III-A and III-B is
completed, ICP or other methods can be used to obtain a final
adjustment. This was unnecessary on the outdoor sequence of
figure 9. But in indoor environments, often metalic structures
or eletric equipment interferes on the magnetic field, and thus
the IMU compass output has larger errors. In such conditions
our method can only be used as a first approximation for other
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(a) A point cloud taken by a LRF

(b) Two registered point clouds.

Fig. 10. Registration of three point clouds taken by the LRF.

techniques. Averaging the processing times for 10 different
pairs of point clouds, after the data is acquired, it takes 1.5
to generate interest points on both images, plus 1.5 to run the
process described here, against 7 seconds to execute ICP.

IV. CONCLUSION

From a large number of small point clouds, a smaller
number of larger point clouds were generated, by registering
sequences of point clouds around a reference frame. ICP or
other point cloud matching algorithms can use of the process
described here as a good initial approximation, specially in
applications where odometry is not available. Also, in some
situations ICP may be unreliable, such as when the point
clouds have low overlap, and a better initial approximation
can allow ICP to avoid local minima.

The inertial data was used to eliminate the degrees of
fredom associated with rotation, grounding the point clouds
into a north-east-up frame of reference, and allowing the usage
of a simple translation-only movement model - that allowed a
single run of a robust algorithm to detect gross outliers both
on the pixel correspondences and on the stereo calculations.

It is expected that the larger point clouds will be easier to
register among themselves than if one had to deal directly with
one point cloud per frame. This is left as future work.
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