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Abstract— In this paper, we present a brief review of re-
search work attempting to tackle the issue of tractability in
Bayesian inference, including an analysis of the applicability
and trade-offs of each proposed solution. In recent years, the
Bayesian approach has become increasingly popular, endowing
autonomous systems with the ability to deal with uncertainty
and incompleteness. However, these systems are also expected
to be efficient, while Bayesian inference in general is known to
be an NP-hard problem, making it paramount to develop ap-
proaches dealing with this complexity in order to allow the im-
plementation of usable Bayesian solutions. Novel computational
paradigms and also major developments in massively parallel
computation technologies, such as multi-core processors, GPUs
and FPGAs, provide us with an inkling of the roadmap in
Bayesian computation for upcoming years.

I. INTRODUCTION

In recent years, Bayesian models and inference techniques
have been used in different areas of science and technology,
such as physics, biology, economy and artificial intelligence
(AI). In this particular field, in fact, namely in robotics,
the Bayesian approach has been shown to be particularly
suitable to deal with incompleteness and uncertainty in
models of perception, decision and cognition [1], [2], [3],
[4]. Unfortunately, even when the computations performed
to implement this approach are made using closed-form
expressions, they may still be intractable for the applications
under consideration (e.g. when real-time performance is
required, such as in the case the AI examples mentioned
above).

In this paper, we present a brief review of research work
attempting to tackle the issue of tractability in Bayesian
inference, including an analysis of the applicability and
trade-offs of each proposed solution, starting with a summary
of inference algorithms and general implementations (sec-
tion II-A), then an overview of probabilistic programming
languages (section II-B), followed by a survey of state-
of-the-art massively parallel implementations of inference
using recent advances in technologies such as multi-core
processors, GPUs and FPGAs (section II-C), and finishing
with a discussion on the probable roadmap in Bayesian
computation for upcoming years (section III).
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II. BAYESIAN INFERENCE IN PRACTICE –
BAYESIAN COMPUTATION

The application of the Bayesian approach to modelling
consists in establishing a joint distribution describing a
generative model, therefore encoding the probability of any
set of data D being generated from any given hypothesis H.
Bayesian inference is therefore the process of determining
information based on the conditional probabilities of any
hypothesis given the available data by applying Bayes’ rule

P(H | D) =
P(H)P(D | H)

P(D)

=
P(H)P(D | H)

∑H∈H P(H)P(D | H)
,

(1)

where “information”, in this context, can mean the exact
values or estimates of (1) the probability of a specific
hypothesis or set of hypotheses [H = h] given a specific
instantiation of the data [D = d], expressed as P(h|d); (2)
the full posterior distribution, P(H | d); or it may also mean
(3) a probabilistic decision based on the posterior distribution
in favour of specific hypotheses, fh(P(H | d)). In the text that
follows, unless otherwise stated, we will be referring to case
(2), given that cases (1) and (3) are partial results of the
former.

We can therefore define Bayesian computation in generic
terms as the act of executing Bayesian inference. If H and
D are continuous random variables, there are in general no
closed-form expressions for computing inference (with the
notable exception of Kalman filters); if, on the other hand,
the generative model is based on discrete random variables,
although inference is computable, it is frequently intractable
due to the so-called curse of dimensionality caused by the
cardinality of the space of hypotheses H . Moreover, deter-
mining the actual computational expression for inference in
the discrete case has been shown to be in general NP-hard
[1], [2].

In the following text, we will be analysing the approaches
that have been proposed for Bayesian computation so as to
overcome these problems.

A. Algorithms for Bayesian Computation

Guo and Hsu presented a comprehensive survey of algo-
rithms for Bayesian inference in [15], where they provide the
widely accepted taxonomy reproduced in Fig. 1. Exact infer-
ence consists of the process of computing the exact values
of probabilities from the posterior distribution as accurately
as possible (limited, of course, by the numerical precision
available), and is generally considered in the context of the



TABLE I
WORKS ON EXACT ALGORITHMS.

Algorithm Reference Topology Complexity*
Polytree [5], [6] for polytree only polynomial complexity (n)

Conditioning [6] generic BN NP-hard
Clustering (Clique/Junction tree) [7] sparse BNs exponential (size of the largest clique)

Arc Reversal/Node Reduction [8] generic BN -
Variable/Bucket Elimination [9] generic BN NP-Complete

Symbolic Inference [10] generic BN -
Differential Method [11] BN as polynomial O(n2 · exp(w))

Successive Restriction Algorithm [12], [13] generic Bayesian models -
Adaptive inference [14] generic BN O(dw)

Adaptive conditioning [14] generic BN O(n · exp(w))

*n is the number of nodes, w the tree-width and d the domain size of the variables

Fig. 1. Categories for exact and approximate inference algorithms (adapted
from [15].

exhaustive computation of the full probability distribution.
In theory, this would be the natural way of regarding the
inference process, except that, as we have seen above, in
many cases exact inference is not feasible. In those cases,
Bayesian practitioners have resorted to approximate infer-
ence, for which exactness and exhaustiveness are sacrificed
and replaced by an approximate description of the posterior
distribution.

Therefore, based on this taxonomy, exact inference algo-
rithms attempt to make the exhaustive computation of the
probabilities composing the posterior distribution tractable
by simplification of the corresponding computational tree (a
first attempt in tackling the curse of dimensionality problem),
in an effort to compute the full posterior distribution with a
minimum amount of computational burden. Ever since the
seminal work by Pearl [16], introducing Bayesian networks
(BNs) and belief updating and propagation processors, with
few exceptions, these have consisted mostly of graphical
and tree-based methods. Approximate inference algorithms,
on the other hand, attempt to generate the “best” possible
approximation (according to a set of optimisation objectives)
of the posterior distribution.

In Tables I and II, a summary of the research work
on each of these types of algorithms is presented. The
description of most of these algorithms can be found in
[15]. In this survey, the authors found that most of the
algorithms for real-time inference are anytime algorithms.
Anytime algorithms, as their name indicates, return a result
at any time during execution [17], while still producing
results of a guaranteed quality [15]. They are classified
as iterative refinement algorithms that are able to quickly

TABLE II
WORKS ON APPROXIMATE INFERENCE ALGORITHMS.

Algorithm Reference
Stochastic Sampling/Monte Carlo [19], [20], [21], [22], [23]

Model Simplification [24], [25]
Search-Based Methods [26], [27]

Loopy Belief Propagation [28]

generate an imprecise answer and able to refine it using a
number of subsequent iterations. It is noted in [15] that most
of the approximate inference algorithms can be implemented
to run under real-time constraints as they can be used as
anytime algorithms by applying them iteratively. Examples
of more recent developments presented in Tables I and II
include [12] and [13], where an algorithm called Successive
Restrictions Algorithm is presented, a goal-oriented approach
that attempts to find an efficient marginalisation ordering
for an arbitrary joint probability distribution. Additionally,
in [14] an adaptive exact inference approach for graphical
models is presented that takes advantage of previously com-
puted quantities to perform inference more rapidly than from
scratch (adaptive inference). Finally, Ramos and Cozman
[18] describe an investigation on methods that balance time
and space constraints against the quality of Bayesian network
inferences is presented. The result of this investigation is
an adaptive conditioning algorithm, that works by dividing
a Bayesian network into sub-networks and processing each
sub-network with a combination of exact and anytime algo-
rithms strategies.

To conclude, Korbinian [29] presented a relevant compar-
ison of exact static and dynamic Bayesian context inference
methods for activity recognition we strongly recommend the
interested reader to refer to.

B. Probabilistic Modelling Languages

Implementing Bayesian models and inference for cogni-
tive applications implies an identification of the Bayesian
approach as an alternative to traditional logic [1], [2], [36].
Therefore, to provide a reasonable way of applying the
algorithms presented in the previous section in this context,
Bayesian practitioners realistically need a way to univer-
sally combine the definition and specification of generative
models and resulting probabilistic representations with first-
order logic [37] in a user-friendly fashion. Moreover, since
Bayesian computation has generally been implemented using



TABLE III
EXAMPLES OF PROBABILISTIC PROGRAMMING LANGUAGES.

Language Reference Style/paradigm Inference Algorithm Models
IBAL [30] Functional Programming Variable Elimination BN/hidden Markov models

Church [31] Markov chain Monte Carlo
PRISM [32] Logic-based BN/hidden Markov models

Blog [33] Markov chain Monte Carlo
Factorie [34] Imperative-style Markov chain Monte Carlo Relational factor graphs
Figaro [35] Object-oriented paradigm Variable Elimination/Metropolis-Hasting Bayesian Models (broad sense)
ProbT [13], [2] Declarative style Successive Restriction Algorithm (exact)/sampling methods (approximate) Bayesian Models (broad sense)

software, the research community has provided this service in
the form of probabilistic programming languages. In general,
these languages are supported by:

1) an application programming interface (API) that allows
the programmer to specify his/her model and provides
an interface for learning model parameters as easily as
possible;

2) an inference engine that parses the model and estab-
lishes a computational process that implements algo-
rithms such as those presented in the previous section.

A number of probabilistic programming languages have
been developed using different programming approaches.
Some of them are based on functional programming [38],
such as IBAL [30] and Church [31], while others are logic-
based, such as the PRISM [32] and Blog [33]. An imperative
style programming called Factorie is presented in [34]. A
more recent approach is presented in [30] and [38], where
an object-oriented paradigm for probabilistic programming
called Figaro is proposed, which combines the programming
styles and paradigms of the previous examples, in an attempt
to capitalise on their advantages and at the same time
avoid their drawbacks. Another recent example, ProBT by
ProBAYES [13], uses a more general formalism for Bayesian
model representation named Bayesian Programming [2], [1].
The Bayesian programming paradigm allows a natural way
to specify Bayesian models in a broad sense and probabilistic
questions (i.e. inference goals) to “ask” those models.

Table III presents an overview of probabilistic program-
ming languages and their respective styles or paradigms,
built-in inference algorithms, and the type of models they
support. Note that, however useful these languages might
be, for medium-to-complex models they are still unable to
provide real-time performance required by applications such
as those mentioned in the introductory section.

C. Massively Parallel Inference

Bayes inference, be it either to exact or approximate,
implies the computation of a large number of independent
factors. Additionally, conditional independence and hierar-
chical structures [1] makes it possible to also deal with
different parts of most models independently of one another.
These two facts combined, data and structural parallelism,
respectively, mean that Bayesian inference is, in fact, an
excellent candidate for massively parallel computation. As a
consequence, the availability of emerging massively parallel
computational architectures, such as multi-core CPUs, GPUs
and FPGAs, have resulted in a large amount of research that

attempts to take advantage of the parallel trait of Bayesian
inference to drastically lower execution times.

From 2006 to 2011, the research group lead by Professor
Viktor Prasanna at the University of Southern California
produced a vast body of work contributing with solutions
for the implementation of exact inference in multi/many-
core CPUs and GPUs. Starting in 2006, Namasivayam et al.
presented a study on parallel implementations of inference
for generic BNs [39], with prior transformation into junction
trees [40], using OpenMP and MPI. Performance for three
different types of junction trees was evaluated: linear junction
trees, balanced trees and random junction trees. Xia et al.
[45], [42], [43], [46], [41], [44] followed up in the study of
parallel implementations for exact inference in junction trees
deployed in CPUs until 2011. In 2010, Jeon, Xia et al. [47]
also presented an adapted implementation of [45] and [42]
on a heterogeneous CPU-GPGPU system.

A similar approach was proposed in 2012 by Zheng and
Chong in a joint effort from Carnegie Mellon University and
the University of California, Berkeley, [48], where Bayesian
network models are also converted in junction trees for exact
inference, but using a GPU system. They developed data
structures and algorithms that extend existing junction tree
techniques, and specifically develop a novel approach to
computing each belief propagation message in parallel. They
implemented the approach on an NVIDIA GPU and tested
it using BNs from several applications.

From 2010 to 2012, at UC Berkeley, the team led by
Professor John Wawrzynek fronted a research effort focussed
on implementing Bayesian inference using multi-core archi-
tectures based on FPGAs. From this team, Lebedev et al. [50]
and [51] presented an architecture coined MARC – Many
Core Approach to Reconfigurable Computing for inference
in Bayesian networks. These works describe a methodology
that combines a many-core architectural template and a high-
level imperative programming model to efficiently target
FPGAs for general-purpose compute-intensive applications.
This system enables applications to be expressed using a
parallel programming model such as OpenCL and to be
targeted to a MARC machine implemented on FPGA. A
MARC prototype machine with 48 processing nodes was
implemented in a Xilinx Virtex-5 FPGA for a Bayesian
network inference problem using Markov Chain Monte Carlo
Algorithm. Another work from this group exploiting the
FPGA’s distributed memories and its abundant hardware
structures was presented in [52]. An FPGA was used to
construct a high throughput “Bayesian Computing Machine”



TABLE IV
COMPARISON BETWEEN MASSIVELY PARALLEL IMPLEMENTATIONS OF BAYESIAN INFERENCE.

Technology Reference Implementation Inference Type & Optimisation Input Models Reported Speedup

multi-core
CPU

[39], [40] MPI/OpenMP exact (structure-level), pointer jumping generic BNs ≈×200 (1,024 nodes, 256 processors)
[41] MPI/OpenMP exact (structure-level), pointer jumping junction trees N.A. (scalability study)
[42] C++ (Cell Ext.) exact (structure-level), junction tree decomposition junction trees ≈ 7× (1,024 nodes, 8 Cell BE SPE)
[43] MPI exact (structure-level), junction tree decomposition junction trees ≈ 100× (100 cliques, 64 processors)
[44] Pthreads exact (structure-level), junction tree rerooting junction trees ≈ 7× (8 cores)
[45] MPI/OpenMP exact (data-level), table operations optimisation junction trees N.A. (scalability study)
[46] MPI/CGM exact (data-level), table operations optimisation junction trees ≈ 100× (1,024 nodes, 128 processors)

GPU
[47] CUDA exact (data- and structure-level), ad. of [45] and [42] junction trees 30×/2× (vs hom./heter. multi-core CPU)
[48] CUDA exact (data-level) cluster-sepset belief propagation junction trees ≈ 10 (36 cliques)
[49] OpenCL exact (data-level) processors for exact inference processing nodes ≈ 100 (searched var. card. ≈ 1×109)

FPGA
[50],[51] OpenCL approximate, sampling (MCMC) generic BNs N.A. (area vs performance study)

[52] - data-level processor for exact & approx. inference processing nodes ≈ 100×/≈ 200× (vs GPU/CPU)
[53] - data-level stochastic processor for exact inference processing nodes N.A. (proof-of-concept)

(BCM) for computing numerous important algorithms, in-
cluding the forward or backward algorithm, the Viterbi
algorithm, the iterative “turbo” decoding algorithm, Pearl’s
belief propagation algorithm, the Kalman filter, and certain
fast Fourier transform (FFT) algorithms.

The research team led by Professor Jorge Dias at the Insti-
tute of Systems and Robotics (University of Coimbra) have
presented recent work on Bayesian inference exploiting data-
level parallelism. In particular, Duarte et al. [53] presented
proof-of-concept work on a general-purpose “Bayesian Ma-
chine” (BM) implemented on FPGA, a processing node
that takes as input soft evidence from observations and
prior probability distributions on the conjunction of searched
variables and returns as a resulting output the posterior
distribution. Although this approach allows for the specifi-
cation of a complete model using ProBT that then outputs
a computational tree that is mapped to a corresponding
BM, the focus of the work was on designing and imple-
menting the actual stochastic processing units that perform
approximate computations of the probabilities that exhaus-
tive Bayesian inference needs for full posterior probability
retrieval. Finally, Ferreira et al. [49], in a sister publication
also submitted to this workshop, present SIMD principles
of tractable computation at data-level of models with high-
dimensional variables, implemented using OpenCL on GPU
(structure-level parallelisation is performed by hand). These
SIMD techniques are put to test on a hierarchical Bayesian
framework for gaze estimation for human-robot interaction,
and is proven to achieve the real-time performance required
by this particular application.

Table IV summarises and compares the research work sur-
veyed in this section. Given the diversity of this body of work
– exploitation of either data- or structure-level parallelism (or
both), different types of input models, different performance
metrics, etc. – it is nearly impossible to fairly compare
these implementations with one another directly. Moreover,
in most cases, using the proposed approaches as off-the-
shelf solutions is infeasible, since the implementations are
in general not packaged to be open-source. However, all of
the proposed solutions bring to light astonishing advances
in terms of Bayesian inference implementation, opening up
several paths of a future roadmap for Bayesian modelling
and computation.

III. DISCUSSION

The brief survey presented in this paper shows that solu-
tions for Bayesian computation have evolved dramatically
since the late twentieth century. We have witnessed the
development of a solid body of work concerning algorithms
that have dramatically improved the efficiency of computa-
tional solutions for Bayesian inference. Bayesian modellers
currently have at their disposal probabilistic programming
languages that provide them with APIs that conceal the
complexity of these computational solutions through high-
level abstractions. Moreover, many algorithms are currently
being adapted for efficient implementations in specialised
hardware, taking full advantage of the data- and structure-
level parallelisms inherent to Bayesian inference.

Nonetheless, the NP-hard nature of Bayesian computing
still makes time-critical applications in many cases im-
practical, and despite the effort put into providing user-
friendly probabilistic programming languages, they are not
yet efficient enough for generalised use – in fact, most prac-
titioners still tend to develop proprietary solutions for their
inference needs. An important reason for this is currently
believed to be that common von Neumann architectures
are not natively designed to perform Bayesian inference. In
fact, Bayesian computations overload standard von Neumann
machines due to the large dimensionality of the underlying
entities, leading to slow computations. For many practical
applications for which inference is needed, von Neumann
machines present performance, power and area bottlenecks,
making them costly and inefficient.

As works such as [53], [49], [52] imply, the current
roadmap for Bayesian computation seems to be research on
a solution for what might be called a universal Bayesian
inference machine (Fig. 2). As a matter of fact, currently
there are numerous projects that propose novel computing
hardware natively capable of performing inference, in an
attempt to take a step forward towards energy-efficient and
limited resources hardware but able to compute any infer-
ence problem in real-time, surpassing the main drawback
of probabilistic computations on standard von Neumman
architectures.

Analysing these projects and related research, one might
identify three different (albeit sometimes overlapping) trends:
(1) neuromorphic hardware development, with the argument
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Fig. 2. The universal Bayesian inference machine as a generalisation of
Turing’s universal calculator (adapted from [54]). Such a machine would be
able to take a probabilistic program specifying a joint distribution P(H,D,F)
on hypotheses, observed data and free variables (cf equation (1)), and
respective structural information (i.e. its decomposition), apply it to inputs
consisting of (soft evidence concerning) observed data D (and perhaps prior
distributions on hypotheses H resulting as outputs from other Bayesian
inference machines), and obtain the posterior distribution P(H | D) after
marginalising out the free variables (or perhaps an approximation of the
posterior, or even only a sample of interest).

that the brain seems to natively perform probabilistic in-
ference; (2) stochastic hardware for sampled, approximate
inference, as proposed for example by Mansinghka [54], who
argues that “[c]ritically, inference machines do not make
it easy to calculate probabilities, but only to simulate (or
sample) good guesses”; and also (3) stochastic hardware
for approximate exhaustive probability computation, with the
argument that “local” precision may be sacrificed for the sake
of tractability.

For example, the goal of the IBM SyNAPSE (Systems
of Neuromorphic Adaptive Plastic Scalable Electronics)
project1 was the development of a brain-inspired computer.
The resulting TrueNorth framework has a parallel, dis-
tributed, modular, scalable, fault-tolerant, flexible architec-
ture that integrates computation, communication, and mem-
ory and has no clock. TrueNorth project used neurons as
inspiration for computational building blocks (using standard
fixed point arithmetic).

For DARPA’s UPSIDE (Unconventional Processing of
Signals for Intelligent Data Exploitation) project2, on the
other hand, instead of traditional CMOS-based electronics,
the project team envisions arrays of physics-based devices
performing the processing chores. Unlike traditional digital
processors that operate by executing specific instructions to
compute, UPSIDE arrays would rely on higher-level compu-
tational elements based on probabilistic inference embedded
within a digital system.

The BAMBI (Bottom-up Approaches to Machines Dedi-
cated to Bayesian Inference) collaborative project3, funded
by the European Commission’s FP7 “Future Emerging Tech-
nologies” programme, takes inspiration from biological and
physical systems to attain the long term goal of building
an energy-efficient probabilistic computer. The three main

1http://www.research.ibm.com/articles/brain-
chip.shtml

2http://www.darpa.mil/program/unconventional-
processing-of-signals-for-intelligent-data-
exploitation

3https://www.bambi-fet.eu/

axes in this project (theory of probabilistic computation,
probabilistic inference in biology, and hardware implementa-
tion) imply an ambitious bottom-up approach, starting from
the development of elementary components, followed by
research on how to combine them to build more complex
systems, as follows: (1) the study of Bayesian gates op-
erating on probability distributions on binary variables as
the building blocks of our probabilistic algebra, in fact a
generalisation of logical operators in Boolean algebra; (2)
the interpretation of elementary cell signalling pathways as
biological implementation of these probabilistic gates, with
the additional hope of gaining new insights for innovative
probabilistic hardware implementation; (3) the association of
conventional electronics and novel stochastic nano-devices
to build the required hardware elements, leading to new
artificial information processing systems, which could, in the
future, outperform classical computers in tasks involving a
direct interaction with the physical world.

The first steps to building dedicated hardware to perform
fast probabilistic inference using energy-efficient hardware
have been taken. For example, Vigoda [55] presented a
system that performs exact inference using continuous time
analog circuits. Also, Mansinghka [56], the creator of the
Church programming language presented in section II-B,
proposed the compilation of a specification written in this
language into an electronic circuit that performs approximate
inference using samplers to represent probability distribu-
tions and using Metropolis algorithms.

Nevertheless, although we are closer to building infer-
ence machines that perform Bayesian computation with
the energy- and time-efficient requirements that Bayesian
practitioners require, as we hope to have shown with this
brief survey, there is still a lot of exciting ground to cover
and paths to explore.
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