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Abstract. Vergence ability is an important visual behavitiserved on living
creatures when they use vision to interact withaheironment. The notion of
active observer is equally useful for robotic visigystems on tasks like object
tracking, fixation and 3D environment structureawery. Humanoid robotics
are a potential playground for such behaviors. Tpéper describes the
implementation of a real time binocular vergencénawior using cepstral
filtering to estimate stereo disparities. By implertieg the cepstral filter on a
graphics processing unit (GPU) using Compute Udifizevice Architecture
(CUDA) we demonstrate that robust parallel algorghthat used to require
dedicated hardware are now available on common oterg The overall
system is implemented in the binocular vision systtMPEP (IMPEP
Integrated Multimodal Perception Experimental Rlatf) to illustrate the
system performance experimentally.
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1 Introduction

Vergence ability is an important visual behaviosetyved on living creatures when
they use vision to interact with the environmentbinocular systems, vergence is the
process of adjusting the angle between the eyesafoeras) so that they are directed
towards the same world point. Robotic vision systéhat rely on such behavior have
proven to simplify tasks like object tracking, filan, and 3D structure recovery.
Verging onto an object can be performed by servalingctly from measurements
made on the image. The mechanism consists of aetiiscontrol loop driven by an
algorithm that estimates single disparity from th® cameras. There are several
methods to measure stereo disparities (featuresear based correspondence, phase
correlation based method, etc) and although sontleenfi present better performance
they were not used due to their computation requérgs. Cepstral filtering is more
immune to noise than most other approaches [1i&],cbmputing the Fast Fourier
Transform (FFT) of images and inverse FFT pressotse real-time challenges for
the processing devices. This work describes theleimgntation of a real-time



binocular vergence behavior using GPU cepstrakerfily to estimate stereo
disparities. By implementing the real-time cepstfifter on a current graphics
processing unit (GPU) using Compute Unified Deviaehitecture (CUDA) [4] we
demonstrate that robust parallel algorithms camdsl on common computers. The
overall system is implemented in the binocularanssystem IMPEP [23] (figure 1)
to experimentally demonstrate the system perforeahibe main body of the cepstral
algorithm, processed in parallel, consists of a BHT, a point transform (the log of
the power spectrum), and the inverse 2-D FFT. Tdad gf the control strategy is to
compensate the disparity between the cameras. l@ddmg behaviors and vergence
processes are very useful for the emergent humaabitics area that aims to mimic
humans. The following text presents the backgrofanddisparity estimation using
cepstral filtering, a description of CUDA IMPEP ilamentation, experimental
results and conclusions.
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Figure 1: Integrated Multimodal Perception Experimental @lah (IMPEP). The active
perception head mounting hardware and motors weseded by the Perception on Purpose
(POP - EC project number FP6-IST-2004-027268) teathe ISR/FCT-UC, and the sensor
systems mounted at the Mobile Robotics Laboratorthefsame institute, within the scope of
the Bayesian Approach to Cognitive Systems projB&QJS - EC project number FP6-IST-
027140). On the right it is presented an overviéwhe IMPEP vergence system architecture
and the NVIDIA GPU used for data parallel procegsin

2 Contribution to sustainability

Knowledge of the world allows the visual systemlitoit the amount of ambiguity

and to greatly simplify visual computations. By derstrating that computational
power is available on computers at affordable cestsexpect to contribute for the
sustainability of computer vision complex taskstdlliigent surveillance systems,
vision-guided autonomous vehicles, fingerprint/face recognition, humanoid

robotics, etc). The real-time cepstral filter implentation on a current graphics
processing unit (GPU) using Compute Unified Deviéechitecture (CUDA)

demonstrates that robust parallel algorithms cands®l on common computers. By
using the NVIDIA GPU multicore processors architeetand parallel programming
we speed up the cepstral filtering algorithm mdrant sixteen times than on a CPU.
The main body of the our GPU cepstral algorithmsists of a 2-D FFT, a point
transform (the log of the power spectrum) and thveiise 2-D FFT. It takes only 0,43



ms to process an [256x256] image. The completeevery control iterations cycle
can be performed in 31ms (f=32,25Hz). The use GRps€al Filtering to perform
vergence on binocular head systems is, to our keayd, an new contribution for the
state-of-art.

3 Background and related work

Animals, especially predators, that have their eydsced frontally can use
information derived from the different projectiohabjects onto each retina to judge
depth. By using two images of the same scene aatdhom slightly different angles,
it is possible to triangulate the distance to ajectbwith a high degree of accuracy.
For primates like ourselves the need for a verganeehanism is obvious. Human
eyes have non-uniform resolution, so we need atwaljrect both foveas at the same
world point so as to extract the greatest possibleunt of information about it. The
human brain has an extraordinary ability to extréepth information from stereo
pairs, but only if the disparities fall within anlited range. Verging on surfaces
usually constrains points near the fixation pointatl inside this range [2].

Binocular systems heads have been developed imtraetecades. For example,
VARMA head [12], MDOF head [13], Rochester [14]etfRichard the First" head
[15] and the KTH robot head [16] were capable ofmioking human head motion.
More recent robot heads include the POP head [R3)84d on the Bayesian
Approach to Cognitive Systems project (IMPEP)[#e tLIRA-head [17], where
acoustic and visual stimuli are exploited to diite head gaze; the Yorick head [18],
and the Medusa head [19] where high-accuracy eidr, gaze control, control of
vergence or real-time speed tracking with log-polarages were successfully
demonstrated.

In binocular camera systems, the vergence psoleas to adjust the angle between
the cameras, by controlling the camera’s pan arsglghat both sensors are directed
at the same world point. The process must estirteteangle between the current
direction of the non-dominant camera optical axid the direction from the camera
center to the desired direction (fixation pointheTcompensation angle is driven by
continuously minimizing the binocular disparity. ¥hMPEP cameras do not have
foveas. Even so, there are good reasons to hawe-vel mechanism that maintains
vergence. As Ballard and Olson argues [10,11],rtpsi unique fixation point defines
a coordinate system which is related as much tmkiject being observed as it is to
the observer, and hence is a step in the diredfoan object-centered coordinate
system.Verging the eyes also provides an invariant thay twe useful to higher level
processes. It guarantees that the depth of atdeastvorld point is known, even if we
do not attempt stereo reconstruction in the useabe. Additionally, by acquiring
images that contain the focus of interest neapfiieal axis it is possible to avoid the
effects due the camera lens radial distortion.

There are many different possible models for imm@etimg vergence using disparity
in the context of a robotic binocular system [2,B1612]. For example, by means of
saliency detection or using stereo-matching teakesqsuch as: phase correlation
method like cepstral filtering, area based matcling feature-based matching. This
work uses cepstral filtering to obtain a singlepdisty due their immunity to noise

[1,2] and proves that the associated exponentibdukkes ovehead (FFT) can be



overcome by common parallel GPU's. Scharstein amtisgi [21], and Brown [22],
present thorough reviews of these techniques.

4 Visual Vergenceusing Cepstral Disparity Filtering

A single disparity is estimated from the two carsetsing the cepstral
filtering. The cepstrum of a signal is the Fouriemsform of the log of its power
spectrum. Cepstral filter it is a known method afasuring auditory echo and it was
introduced by Bogert [20]. The power spectrum ofamlio signal with an echo
present has a strongand easily identified compowéitth is a direct measure of the
echo period [1]. The binocular disparity measurenigrobtained by applying of a
non local filter (cepstral filter), followed by plealetection. Yeshurun and Schwartz
[1,2] developed a method of using two-dimensiomgistrum as a disparity estimator.
The first step of their method is to extract samwiledows of sizeh x w from left and
right images. The sample windows are then spliagkther along one edge to
produce an imagiXx,y) of sizeh x 2w. Assuming that right and left images differ only
by a shift, the spliced image may be thought asotiiginal image at (0,0) plus an
echo at(w+dy,d,), whered, andd, are the horizontal and vertical disparities. The
periodic term in the log power spectrum of suchnalgwill have fundamental
frequencies ofw+d, horizontally andd, vertically. These are high frequencies
relative to the window size. The image dependeami téy contrast will be composed
of much lower frequencies, barring pathological ges Thus, as some authors [1]
show, the cepstrum of the signal will usually halear, isolated peaks at((v+dy),".
d,).

The imagef(x,y) composed by the left and right images pairs can be
mathematically represented as follow:

Fy)=9x Y *[0(x y) +o(x-(W+d,),y-d,)] @)
Wheres(x,y) is the left imageg(x,y) is the delta functior’vV the image width

and * operator represents two dimensional conwmtuti The Fourier
transform of such image pair is

F (u,V) = S(u,V).(1+ e 2 ey 2)
The power spectrum and the logarithm of equationgie:
|FOV)F=ISuy).(1re ) 2 ©
- j27(W+dp)u+(d)v]
logF (u,v) = logS(u,v) +log(1+e " M) @)
and the Cepstral filter is the inverse Fourier $farm of equation (4)
FlogF (u, v)] = F "[logS(u, v)]
+i(_1)n+l J(X_n(VV+dh)’ y_ndv) (5)
1 n

In the equation (5), the second term representgpthaminent peak located in the
output of Cepstral filter response. By determinthgse peak points positions it is
possible to obtain disparity (figure 2).



4.1 Implementation on GPU using CUDA

Our system uses the GeForce 9800 GTX+ with 128scanel 512MB of dedicated
memory to process the cepstral filter. The mainybodl the cepstral algorithm
consists of a 2-D FFT, a point transform (the Idgh® power spectrum), and the
inverse 2-D FFT.

3D Capstrum Magnitude (blue ball on peaks)

2value

Figure 2: Input subsampled spliced images [40x30], image wih horizontal disparity=3
(left figure). Surface plot of the power spectrofithe cesptral filter (right figure). Peaks are
visible at dominant global disparity location (meakwith arrows)
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Figure 3: Schematic block diagram of GPU
cepstral filtering algorithm



5 Experiments
Experiment 1 — Image alignment

Figure 4 presents the real-time image alignmentgs® frame sequence driven by the
vergence control algorithm when an object is "in{él positioned in front of the
system. Both cameras changes alternate their at@lesnimize the disparity. The
performance measurements, according the schemlatik Hiagram of figure 3, are
shown on table 1.
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Figure 4 — Real-time image alignment process frame sequ@amh colum pair is an stereo
pair). Below are the left camera angle values (re&) land right camera angle values (green) in
degrees during the image alignment process.

Tablel. Processing time measurements

Task Set A Processing Time Task Set B Processing Time

GPU (FFT abs log iFFT) 0,43ms GPU (FFT abs log iFFT) 0,43ms

[256x256] [256x256]

OpenCV image acquisition 26 ms OpenCV image preloaded 3,2-4,5ms

2x[640x480] and preprocessing 2x[640x480] and preprocessing

Complete iteration cycle with 31ms Complete iteration cycle without 6,9-9,1 ms

vergence control (f=32,25Hz) vergence control and image (f=144,92Hz-109,89Hz)
aquisition

Experiment 2 — Image alignment with a dominant game

We have also implemented an experiment where ttiecénera follows a color

object (a ball) using CPU OpenCV camshift algoritfish and the right camera
equally follows the object while trying to minimizthe disparity using the GPU
Cepstral Filtering (figure 5). By demonstratingsttiehavior we show that binocular
heavy tracking algorithms can be applied to oney @amera allowing CPU extra
computational power for other tasks. Work on veogeoontroller should be carrying
out to enable smooth movements.
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Figure5 — Right camera follows left camera during a trackiagkt

6 Conclusions

By implementing the cepstral filter on a graphioogessing unit (GPU) using
Compute Unified Device Architecture (CUDA) we demstrate that robust parallel
algorithms that use to require dedicated hardwaeen@w available on common
computers for real time tasks. Using the GPU for llevel tasks allows CPU

extra computational power for other high level taskhe cepstral filtering algorithm
speed up is more than sixteen times than on a GRUttee use of GPU Cepstral
Filtering to perform vergence on binocular headtays is, to our knowledge, an
contribution for the state-of-art.
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