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1 Introduction 

Human body movement is essentially the process of moving 
one or more body parts to a specific location along a certain 
trajectory. In some cases, a person observing the movement 
might be able to recognise it through the spatial pathway 
alone. Usually, the task of classification is supported by 
additional evidences which cannot be retrieved from the 
kinematic information alone. These evidences can be 
interpreted as the expressiveness of movements. Some 
aspects of expressive movements can be singled out and 
treated as ‘gestures’ (Kendon, 2004). Kendon (2004) holds 
the view that willingly or not, humans, when in co-presence, 
continuously inform one another about their intentions, 
interests, feelings and ideas by means of visible bodily 
action. Analysis of face-to-face interaction has shown that 
bodily action can play a crucial role in the process of 
interaction and communication. Kendon (2004) states that 
expressive actions like greeting, threat and submission often 
play a central role in social interaction. 

Figure 1 Different notational systems for movements  
(a) the Banesh Movement Notation  
(b) the Beauchamp-Feuillet Notation  
(c) the Sutton MovementWriting 
(d) the Eshkol-Wachman Movement Notation and  
(e) Labanotation 

 

1.1 Notational systems 

In order to approach the expressive content of movements 
scientifically, a notational system is needed. Early 
notational systems are known from the 17th century. Pierre 
Beauchamp and Raoul Auger Feuillet began in 1700 a 
program of publishing notated dances (Little and Marsh, 
1992) (see Figure 1). The Benesh Movement Notation was 
invented in the late 1940s by Benesh and Benesh (1983) to 
document any form of dance or human movement.  
The DanceWriting was first developed in 1966 by Sutton 
(1982) and extended to a greater body of work called 
MovementWriting. The Eshkol-Wachman Movement 
Notation was developed by the choreographer  
Noa Eshkol and architect Abraham Wachman (Eshkol and 

Wachmann, 1958). It has been used to analyse animal 
behaviour (Golani, 1976) as well as dance. Rudolf Laban 
(1879–1958), was a notable central European dance artist 
and theorist, whose work laid the foundations for Laban 
Movement Analysis (LMA). Used as a tool by dancers, 
athletes, physical and occupational therapists, it is one of the 
most widely used systems of human movement analysis. A 
more detailed overview can be found in Rett (2008). The 
use of spatial descriptors is a common characteristic for all 
above mentioned notational systems. What makes the 
framework of LMA so special is its ability to describe an 
additional ‘expression’ that accompanies the spatial 
trajectory. The Effort component can be seen as the key 
descriptor to solve the task of analysing ‘expressive 
movements’. 

1.2 Movement analysis and robotics 

Robotics has already acknowledged the evidence that 
human movements could be an important cue for  
human-robot interaction. Sato et al. (1996), while defining 
the requirements for ‘human symbiosis robotics’, state that 
those robots should be able to use non-verbal media to 
communicate with humans and exchange information. This 
skill could enable the robot to actively perceive human 
behaviour, whether conscious and unconscious. Fong et al. 
(2003) state in their survey on ‘socially interactive robots’ 
that the design of sociable robots needs input from research 
concerning social learning and imitation, gesture and natural 
language communication, emotion and recognition of 
interaction patterns. Otero et al. (2006) suggest that the 
interpretation of a person’s motion within its environment 
can enhance human-robot interaction in several ways. They 
state that body motion and context provide in many 
situations enough information to derive the person’s current 
activity. 

1.3 LMA and believable social robots 

In this section, we want to present arguments that lead to the 
conclusion that LMA will be a very useful ‘skill’ for social 
robots. For this, we will present a number of statements 
taken from a framework for ‘socially intelligent agents’ by 
Dautenhahn (1998) and relate them to LMA. 

Dautenhahn (1998) argues that the interactions need to 
be ‘acceptable’ and ‘comfortable’ to humans, that humans 
are active agents who want to use their body and explore the 
environment and that the interfaces should serve the natural 
human needs of activity. We conclude that: 

1 A social robot that is able to perceive human body 
movements provides a more comfortable interface to 
the person. 

Dautenhahn (1998) states that ‘cognitive technology’ has to 
understand human perception in order to optimise cognitive 
fit of technologically constructed tools, that the study of 
biological life and living can further research on artificial 
agents and that research on social robots could learn from 
human factors (ergonomics) about the study of how humans 
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and machines interact in order to design technology that 
work well in ‘human terms’. We conclude that: 

2 LMA is natural because it is based on humans 
observing other humans’ movements. 

Dautenhahn (1998) suggests that a central set of 
mechanisms which constitutes ‘social intelligence’ in 
humans are ‘stories’, that if stories are fundamental to 
human (social) intelligence, then social robots have to be 
good at telling and listening to stories. In dance movements, 
the art of choreography can also be interpreted as an attempt 
to tell a story and whole choreographies are written using 
Labanotation. We conclude that: 

3 LMA is natural because its symbols can be used to tell 
a story. 

Dautenhahn (1998) argues that social robots should support 
individualised interactions, when personality, character, 
individual relationships are desirable (e.g., a personal 
assistant). A social robot which can adapt to our habits can 
be more robust through a smaller number of probable 
hypotheses. The style of movement is a personal attribute, 
thus, a descriptor of expressive movement is also a 
descriptor of the person itself. We conclude that: 

4 LMA is natural because it allows a personalisation of 
the system to the user. 

Dautenhahn (1998) states that believable technology is 
‘familiar’ to humans, it meets their cognitive and social 
typically human needs. We finally conclude that: 

5 The skill of LMA appears to be natural, thus a social 
robot having this skill will also be believable. 

Figure 2 summarises the goal of the work described in this 
article. LMA is implemented as a skill for human-robot 
interaction. 

Figure 2 Creating a social robot through implementing an 
interaction skill, i.e., LMA (see online version  
for colours) 

 

1.4 The problem – computational human movements 
analysis 

This article is in the research area of ‘computational human 
movement analysis’ (C-HMA). While naming the important 
issues and giving references to the state of the art, we will 
show how computational LMA fits in. In literature, this area 
has been named ‘visual analysis of human movements’ 
(Gavrila, 1999), ‘looking at people’ (Pentland, 2000), 
‘human motion analysis’ (Aggarwal and Cai, 1999) or 
‘vision-based human motion capture and analysis’ 
(Moeslund et al., 2006). Gavrila (1999) points out that the 
ability to recognise humans and their activities by vision is a 
key for machine to interact intelligently and effortlessly 
with a human-inhabited environment. 

Figure 3 Some frequently found application, ‘skills’ and 
methods in C-HMA (see online version for colours) 

 

In order to organise and compare research in the area of  
C-HMA three issues are important: 

1 the application that is targeted 

2 the ‘skill’ that the system provides to support 
interaction with humans 

3 the methods that are used to design and implement the 
system. 

The area of C-HMA has a wide range of applications, thus 
the literature (Moeslund and Granum, 2001; Gavrila, 1999) 
clusters them in more or less the groups shown in Figure 3. 
The type of application also determines the ‘skill’ which the 
system needs to provide. Human motion capture is the task 
of tracking several body parts. Face recognition is a skill 
that is closely connected to human movements as it allows 
personalisation. Gesture recognition is the skill to classify a 
meaningful movement. LMA is the skill discussed in this 
article. There are certain methods that have been used 
frequently in C-HMA some of them are shown in Figure 3. 
Diard et al. (2003) predict that in the future, probabilistic 
reasoning will provide a new paradigm for understanding 
neural mechanisms and the strategies of animal behaviour. 
Further, that it will raise the performance of engineering 
artefacts to a point where they are no longer easily 
outperformed by the biological examples they are imitating. 
In the context of this work, Bayesian methods will be used 
to design the model for computational LMA, for learning 
and for classification of movements. 
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Recognition 

We relate our work to a taxonomy suggested by Moeslund 
and Granum (2001) which divides the problem of C-HMA 
into the four processes: 

1 The initialisation process establishes the model that is 
used for the observed object. 

2 The tracking process holds the methods for 
segmentation of the subject in the image from the 
background, extracting ‘good’ features and finally 
correspondence of the segments of features between 
consecutive images. 

3 The pose estimation process defines to which extend a 
model of the human body is used. 

4 The recognition process analyses some features or 
variables to classify the movement. 

Using this implementation oriented taxonomy the 
contribution of our work lies mainly in the ‘recognition 
process’. 

Sensor modalities 

Two main streams of sensor modalities for gathering human 
movement data can be found. One relies on computer vision 
and sensor signals generated by some kind of camera, the 
other is based on devices that are placed on the subject 
which transmit or receive generated signals. In Moeslund 
and Granum (2001), the former is called ‘passive’, the latter 
‘active sensing’. Active sensing allows for simpler 
processing and is widely used when the applications are 
situated in well-controlled environments (Moeslund and 
Granum, 2001). Passive sensing is mainly used in situations 
where mounting devices on the subject is not an option. 
Given the benefits and drawbacks of the main streams, this 
work will follow a mixed approach. The system benefits 
from the simpler processing and higher precision of the 
active sensor during the recoding step, while using the 
attractive touch-free alternative of computer vision for the 
classification step. 

Labelled datasets 

Usually, movement data are labelled by low-level 
descriptors (e.g., XYZ position) or high-level concepts (e.g., 
‘writing on a black-board’). Mid-level labels are whether 
missing or ‘invented’ for a specific application. Moeslund 
and Granum (2001) conclude that the research field of  
C-HMA is lacking a general underlying modelling 
language. A semantic descriptor allows posing the 
classification task as a problem to recognise a sequence of 
symbols taken from an alphabet consisting of motion-
entities. Systems which are based on such modelling 
language can use it as a ground truth for recoding and 
labelling training data. The inherent constraints of a 
modelling language can be used to make the task of  
 

movement recognition more tractable. This work poses the 
automatic movement classification task as a problem to 
recognise a sequence of symbols taken from an alphabet 
consisting of motion-entities. The alphabet and its 
underlying model is well defined though LMA. The LMA 
parameters serve as mid-level descriptors that can be 
produced and understood by the system. 

1.5 Related works 

Laban Movement Analysis 

A long tradition in research on computational solutions for 
LMA has the group around Norman Badler, who already 
started in 1993 to re-formulate Labanotation in 
computational models (Badler et al., 1993). Zhao and 
Badler (2005) presented a computational model of gesture 
acquisition and synthesis which can be used to learn motion 
qualities from live performance. A more detailed version of 
their work can be found in the thesis of Zhao (2002), who 
based his work on the earlier implementation of the 3-D 
animation control module EMOTE (Chi et al., 2000). The 
work of Zhao (2002) is related with our work, particularly 
the relationship of LMA components with physically 
measurable entities. For classification of Effort qualities 
from the low-level features a three-layered feedforward 
neural network (NN) was used. Zhao’s (2002) main 
contribution was the automatic classification of Effort 
qualities from movement data obtained from an active 
sensor as well as from a (stereoscopic) visual tracker. Our 
article goes one step further by learning the 2-D projections, 
which allows feeding in multiple single-camera data. In our 
case, Bayesian models and their representation as Bayesian 
nets are used, which offer the possibility to discuss the 
phenomenon in terms of dependencies, observations and 
probabilities. Zhao (2002) reported that, when feeding in 
data from the visual tracker the classification results 
decreased. This was partially due to the noise generated by 
occlusions and the tracker getting lost. Probabilistic 
approaches, like the one used in this work, usually perform 
better under such circumstances. 

Nakata et al. (2002) reproduced expressive movements 
in a robot that could be interpreted as emotions by a human 
observer. The first part described how some parameters of 
LMA can be calculated from a set of low-level features. The 
critical point in Nakata et al. (2002) is the mapping of  
low-level features to LMA parameters. The computational 
model is closely tied to the embodiment of the robot which 
has only a low number of degrees of freedom. The major 
physical entities were chosen subjectively by the designer 
without experimental data for evaluation. This article 
investigates the framework of LMA as deeply as possible to 
choose ‘good’ candidates for low-level features. 

Human movement analysis 

There has been an interesting work which also used 
movement descriptors and a probabilistic framework.  
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Bregler (1997) introduced mid-level descriptors embedded 
in a thorough probabilistic framework that produced a 
robust classification for human movements. The concept of 
multiple hypotheses is kept from low-level motion clusters 
to high-level gait categories producing good classification 
results even for noisy and uncertain evidences in natural 
environments. Model parameters are learned from training 
data using the EM-algorithm. The work points towards the 
concept of atomic phonemes and words used in speech 
recognition. Bregler (1997) defines his ‘movemes’ as 
simple dynamical categories, i.e., a set of second order 
linear dynamical systems. Bregler (1997) used a 
probabilistic method for the same reasons it is used in our 
work: 

1 noisy input images 

2 spatial and temporal ambiguities 

3 occlusion 

4 cluttered environments 

5 large variability. 

The critical point in his approach were the ‘movemes’ 
themselves. The ‘movemes’ appear limited in their 
expressiveness. This might have been caused by their 
simplicity and that no relations are drawn to models and 
data of physiological studies of human movements. To 
overcome this weakness, the work presented in this article 
ties the descriptors to a well established notational 
framework: LMA. 

In Rosales and Sclaroff (2000) 3-D data from an active 
sensor was used to obtain a set of movement sequences. 
Then 2-D projections from several orientations are 
generated. For the same orientations, projections of a 3-D 
model to images are created. Treating the two sets as  
input-output data a NN was trained. They achieved good 
results for training five sequences sampled at 32 
orientations. As their system only provides the pose of a 
human body, the classification of movements still remained 
an open issue and consequently no descriptor was 
introduced. Also, online or real-time behaviour was not 
addressed in their work. 

Very good classification results obtained from 
probabilistic methods was also demonstrated for the 
application of sign language recognition. Starner and 
Pentland (1995) based their system on real-time tracking of 
the hands using colour gloves and a single camera with five 
frames per second. Starner et al. (1998) later removed the 
constraint of using colour gloves and added relative 
displacement as a feature. The problem of personalisation 
was not addressed and it appears that the dataset may be 
recorded from a single person. Starner (1995) first used a 
five-state hidden Markov model (HMM) with three-skip 
transitions, later a four-state HMM with two-skip transitions 
(Starner and Pentland, 1995) and, finally, it reduced to one 
skip transition (Starner et al., 1998). This reflects a main 
problem when using HMM: the design of the ‘best’ 

topology. The topologies presented in this article are 
designed without explicit temporal transitions. 

Social robots 

The term social robots are strongly associated with 
anthropomorphic social behaviour (Breazeal, 2003). 
Scenarios in which social robots have been tested already 
are museums and exhibitions. The guide robots of 
Nourbakhsh et al. (2003), Burgard et al. (1998) and 
Siegwart et al. (2003) have already developed quite 
advanced methods for autonomous navigation and provide 
various output modalities for the interaction with the 
human. The fact that their input modalities mainly relies on 
pressing some buttons shows the need for a more intuitive 
way of interaction. Burgard et al. (1999) contribute this to a 
lack of a convincing methodology for ‘intuitive’ human-
robot interaction where it is not desirable to expect the 
person to learn a large variety of control gestures. Our work 
suggests: 

1 LMA as a convincing methodology 

2 expressive movements as an intuitive modality for 
interaction. 

1.6 The contribution of this work 

The contribution of this work for the field of C-HMA 
encompasses the following points: 

1 ‘This work provides semantic descriptors for the 
automatic analysis of human movements based on the 
framework of LMA’. The alphabet and its underlying 
model is well-defined though LMA. Systems which are 
based on this modelling language can use it as a ground 
truth for recoding and automatic labelling of training 
data. 

2 ‘This work shows the design of probabilistic models 
which relate physically measurable entities obtained 
from movement tracking to the descriptors of LMA.’ 
Both points 1 and 2 use a common language which 
allows discussing and incorporating knowledge gained 
in human science. This article provides a theoretical 
‘fit’ in description and modelling. 

3 ‘This work implements classifiers for human 
movements based on the descriptors of LMA’. By 
using the descriptors of LMA, especially Effort, the 
process of movement recognition can reach a higher 
level of sophistication (expressiveness of a movement). 

4 ‘This work uses a Bayesian approach for the process of 
learning and classification’. The Bayesian approach 
provides the classifier with the ability to better deal 
with the always apparent incompleteness of the  
real-world data. Additionally, it creates a measure of 
certainty for human-robot interaction. 
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5 ‘This work follows a mixed approach for human 
movement tracking by recording the data with an active 
sensor and then mapping it to a camera plane’. Our 
system benefits from the simpler processing and higher 
precision of the active sensor during the recoding step, 
while using the attractive touch-free alternative of 
computer vision for the classification step. 

1.7 The organisation of this article 

Section 2 will unfold the framework of LMA. The two 
components Space and Effort will be discussed in detail and 
prototypical movements will be presented. Section 3 
presents the technique and models related with 
computational retrieval of human movement data. The 
correspondence between LMA and low-level features are 
shown and statistically evaluated. The concept of 
segmentation is presented. Section 4 introduces the 
Bayesian approach and presents the models for 
computational LMA. It shows the process of learning and 
online classification. In Section 5, the implementation of the 
system is presented. Results are compared for different 
types of classifiers. The application of the system for the 
social robot Nicole is presented. Section 6 ends this article 
with conclusions of the presented work and developments 
that are planned for the future. 

2 Laban Movement Analysis 

LMA is a method for observing, describing, notating and 
interpreting human movement. The general framework was 
described in 1980 by Irmgard Bartenieff a scholar of Rudolf 
Laban in Bartenieff and Lewis (1980). While being widely 
applied to studies of dance and application to physical and 
mental therapy (Bartenieff and Lewis, 1980), it has found 
little application in the engineering domain. Most notably, 
Badler et al. (1993) who already started in 1993 to 
reformulate Labanotation in computational models. 
Recently, researchers from neuroscience started to 
investigate the usefulness of LMA to describe certain 
effects on the movements of animals and humans. Foroud 
and Whishaw (2006) adapted LMA to capture the kinematic 
and non-kinematic aspects of movement in a reach-for-food 
task by human patients whose movements had been affected 
by stroke. It was stated that LMA places emphasis on 
underlying motor patterns by notating how the body 
segments are moving, how they are supported or affected by 
other body parts, as well as whole body movement. 

The theory of LMA consists of several major 
components, though the available literature is not in unison 
about their total number. The works of Norman Badler’s 
group (Chi et al., 2000; Zhao, 2002) mention five major 
components as shown in Figure 4. Relationship describes 
modes of interaction with oneself, others and the 
environment (e.g., facings, contact and group forms). As 
Relationship appears to be one of the lesser explored 
components, some literature (Foroud and Whishaw, 2006) 
only considers the remaining four major components. Body 

specifies which body parts are moving, their relation to the 
body centre, the kinematics involved and the emerging 
locomotion. Space treats the spatial extent of the mover’s 
kinesphere (often interpreted as reach-space) and what form 
is being revealed by the spatial pathways of the movement. 
Effort deals with the dynamic qualities of the movement and 
the inner attitude towards using energy. Shape is emerging 
from the Body and Space components and focused on the 
body itself or directed towards a goal in space. The 
interpretation of Shape as a property of Body and Space 
might have been the reason for Irmgard Bartenieff to 
mention only three major components of LMA. Like 
suggested in Foroud and Whishaw (2006) we have grouped 
Body and Space as kinematic features describing changes in 
the spatial-temporal body relations, while Shape and Effort 
are part of the non-kinematic features contributing to the 
qualitative aspects of the movement (see Figure 4). We 
expect that the strength of computational LMA can already 
be proven by regarding one component from each group. 
Thus, in the following, we will concentrate on the Space 
and Effort component and introduce the other components 
elsewhere (Rett, 2008). 

Figure 4 The major components of LMA are Body, Space, 
Effort, Shape and Relationship (see online version for 
colours) 

 

2.1 Space 

The Space component presents the different concepts to 
describe the pathways of human movements inside a frame 
of reference, when ‘carving shapes in space’ (Bartenieff and 
Lewis, 1980). Space specifies different entities to express 
movements in a frame of reference determined by the body 
of the actor. The different entities which are specified by the 
Space component have been presented in Rett et al. (2008). 
Two entities are regarded in this article as shown in  
Figure 5(a): 

1 the three axes – vertical, horizontal and sagittal axis 

2 the three planes – door plane (vertical) ,vπ  table plane 
(horizontal) hπ  and the wheel plane sπ  (sagittal) each 
one lying in two of the axes. 

This work uses the concept of vector symbols (Longstaff, 
2001) which is based on lines of motion as shown in  
Figure 5(b). In Rett et al. (2008), these vector symbols have 
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been projected to the three planes producing a  
two-dimensional representation. This work regards only 
those vector symbols related with the door plane .vπ  

Figure 5 (a) Two concepts of the Space component: 1) three 
axes and three planes (b) vector symbols are based on 
lines of motion which are projected to, e.g., the door 
plane πv  (see online version for colours) 

 
(a) 

 
(b) 

2.2 Effort 

The Effort component describes the dynamic qualities of the 
movement and the inner attitude towards using energy. It 
consists of four Effort qualities: Space, Weight, Time and 
Flow. In Bartenieff and Lewis (1980) the underlying 
cognitive process was suggested and summarised in  
Rett (2008). Each quality is bipolar and can have values 
between two extremes. The values for the Effort qualities 
are shown in (1): 

{ , , }
{ , , }
{ , , }
{ , , }

Space direct neutral indirect
Time sudden neutral sustained

Weight strong neutral light
Flow bound neutral free

∈
∈
∈
∈

 (1) 

Movements are described and distinguished by those 
qualities that are close to an extreme, e.g., a punch has 
strong weight, sudden time and direct space. For this 
movement, the flow quality is considered to be neutral. 

Combinations of all four qualities close to an extreme 
rarely occur as they produce extreme movements  
(e.g., tearing something apart) (Bartenieff and Lewis, 1980). 

Also single-quality movements are rare (Bartenieff and 
Lewis, 1980) and even for a trained Laban performer  
(i.e., Laban notator) difficult to perform (Zhao, 2002). 
Combinations of three qualities, with the fourth considered 
to be neutral, appear to be the most natural way to perform 
an action. With only Flow, Space, Weight or Time being 
neutral, the combinations are called Action Drive, 
Spaceless, Timeless or Weightless, respectively. Laban 
associated some Basic Effort Actions to the Action Drive 
which are shown in Table 1. The literature on LMA like 
Zhao (2002) often gives some exemplary movements like 
those shown in the second column. More examples are 
given in Rett (2008). 

Table 1 Basic effort action drives 

Action Example Space Weight Time 

Punch Punching Direct Strong Sudden 
Slash Slashing Indir. Strong Sudden 
Dab Lunging Direct Light Sudden 
Flick Cleaning Indir. Light Sudden 
Press Pushing Direct Strong Sustained 
Wring Stretching Indir. Strong Sustained 
Glide Erasing Direct Light Sustained 
Float Spraying Indir. Light Sustained 

For the remaining three combinations (Spaceless, Timeless 
or Weightless), no explicit actions were defined but some 
examples were given in Bartenieff and Lewis (1980). Using 
the concept of Effort combinations, a movement can be 
defined by its position in one of the four 3-D spaces. The 
space of the Action Drive is often modelled as a cube where 
each vertex represents an action (see Figure 6). The edge 
length represents the distance between two extremes  
(e.g., sudden and sustained). Figure 6 shows the space of 
Action Drive with some movement ;M  in this case, a 
Punch. 

Figure 6 The bipolar Effort qualities of the action drive 
represented as a cube (see online version for colours) 

 
Notes: Flow = neutral (omitted). The position of the 

movement M  (punch) indicates its qualities, i.e., 
direct, sudden and strong. 

Movements with only two Effort qualities are called 
Incomplete or Inner States as they occur often during 
transitions between two three-quality combinations. They 
can also reflect a failure to produce a certain three-quality 
action (e.g., an attempt to perform a punch fails due to 
weakness). 
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2.3 Database of expressive movements 

From the 32 possible movements with distinct Effort 
qualities that can be derived from the LMA definitions of 
Action Drive, Spaceless, Weightless and Timeless we have 
created a database of ‘expressive movements’. The database 
extended the earlier ‘gesture’ set (Rett and Dias, 2007). 
Some of the movements are based on suggestions 
mentioned in Bartenieff and Lewis (1980) and Zhao (2002) 
others are commonly used gestures with anticipated Effort 
qualities. 

From the database, sets of movements were put 
together. The first set is called ‘expressive movements’ and 
holds movements which show some interesting spatial 
patterns. This set is presented in greater detail in Rett et al. 
(2008). Though some of the ‘expressive movements’ 

already have some distinguishable Effort qualities a second 
set of movements (‘bye-byes’) was put together as shown in  
Table 2. The reason for this was to have spatially one single 
movement pattern (byebye) but four different performance 
‘flavours’ (Effort combinations). 

Table 2 Expressive movements from our human interaction 
database (HID) with Effort qualities, principal plane 
πprin  and principal phase prinPh  

M  Space Weight Time πprin  prinPh  

Dab Direct Light Sudden YZ Stroke 
Flick Indir. Light Sudden YZ Stroke 
Glide Direct Light Sust. YZ Stroke 
Float Indir. Light Sust. YZ Stroke 

Figure 7 Two movements from the set ‘bye-byes’  
(a) bye-bye performed in a ‘flick’ way and  
(b) bye-bye performed in a ‘glide way’  
(see online version for colours) 

 
(a) 

 
(b) 

Figure 8 Two movements from the set ‘bye-byes’  
(a) bye-bye performed in a ‘dab’ way and  
(b) bye-bye performed in a ‘float way  
(see online version for colours) 

 
(a) 

 
(b) 
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The Space quality is considered neutral and the Weight 
quality is light for all movements .M  Table 2 reveals their 
distinct Effort qualities while the trajectories appear similar 
as shown in Figure 7. In this case, both movements have the 
spatial form of a bye-bye gesture and thus produce  
a similar sequence of vector symbols. The Effort qualities 
for the ‘flick’ way of performance will be Space = indirect 
and Time = sudden while the ‘glide’ way of performance 
will yield Space = direct and Time = sustained. Figure 8 
show two more distinct cases in terms of Effort.  
The Effort qualities for the ‘dab’ way of performance  
will be Space = direct and Time = sudden while the  
‘float’ way of performance will yield Space = indirect and 
Time = sustained. 

3 Human movement tracking 

The main idea transported in this section is a mixed 
approach concerning the sensor technology to obtain human 
movement data. By using an active sensor during the 
recoding step the system can benefit from simpler 
processing and higher precision. For the classification step 
the attractive touch-free alternative of computer vision can 
be used. Once the correspondence between the different 
sensor modalities is established the recorded and labelled,  
3-D movement data obtained from the active sensor can be 
mapped to 2-D plane(s) aligned with the camera plane(s). 
After this, the same algorithm can be used to calculate  
low-level features and perform a temporal segmentation. 

Figure 9 Example of a scene for human-robot interaction,  
(a) frames of reference can be defined for a camera 
{C} and the world {W} (b) world frame of reference 
{W} with orientation of axes, principal planes and 
sensor positions (see online version for colours) 

 
(a) (b) 

The scenery for an interaction of a human with a robot or, 
more general, a machine can be described by frames of 
reference. Figure 9(a) shows an example with a mobile 
robot equipped with a camera to perform online 
classification of movements. Furthermore, the active sensor 
for the preceding step of 3-D movement recording can be 
seen. The world frame of reference {W} might be placed at 
any position in the 3-D scenery. For the experimental setup 
used in this work, the world frame of reference {W} 

coincides with the frame of reference of the active sensor. 
This is why {W} is close to the centre of the kinesphere 
defined by the hands and the face. Figure 9(b) presents a 
closer look at {W} by showing the orientation of the axes 
and the three principal planes (door plane ,vπ  table plane 

hπ  and wheel plane )sπ  as mentioned in LMA. The figure 
also indicates the position where the three active sensors are 
attached, i.e., right hand rh, left hand lh and face f. 

The active sensor and the visual tracker are described in 
more detail in Rett (2008). The geometrical relationship 
between the two sensor modalities is shown in Rett et al. 
(2008) while the process of calibration is presented in  
Rett (2008). With this any 3-D position can be related to a 
point in the 2-D projection. The spatial concept of 2-D 
planes has also been shown earlier in Section 2 through the 
principal planes (door plane ,vπ  table plane ,hπ  wheel 
plane ).sπ  

3.1 Relating LMA and low-level features 

Three paradigms guided the selection of features in this 
work. First, the features were chosen by interpreting the 
parameters of LMA through physical measurable entities 
that could describe them best. Second, the features and their 
cardinality were chosen by predicting an optimal 
performance when using a Bayesian method for learning 
and classification. Third, the features were chosen according 
to our interpretation of ‘Ockham’s Razor’, that is simple 
features, low cardinality and a small number of them. The 
initial hypotheses of correspondences between LMA 
parameters and physical entities are expressed as shown in 
Table 3. The hypotheses were established with having our 
primary paradigm in mind. 

Table 3 Initial hypotheses of correspondences between LMA 
parameters and physical entities 

LMA parameter Physical entities 

Space Displacement angle 
Time.sudden High acceleration, high velocity 
Time.sustained Low acceleration, low velocity 
Space.direct Small curvature, high angular vel. 
Space.indirect High curvature, high angular vel. 
Weight.strong Muscle tension, medium accel. 
Weight.light Muscle relaxed 

For the Space component of LMA the sequence of 
displacement angles is used as a descriptor as shown in Rett 
et al. (2008). As the position data is projected to planes, 
each plane produces a sequence of displacement angles with 
a certain sampling rate and discretisation. For the Effort 
component of LMA, the assumption of a high acceleration 
when Time.sudden occurs seems to be a logical choice. The 
high velocity might follow as a consequence of the high 
acceleration. The inverse situation is assumed during 
Time.sustained when low acceleration and velocity is 
assumed. Interpreting Space.direct as reaching towards a 
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target we can assume a straight trajectory of the hand. This 
suggests taking the curvature into consideration as a 
measure of ‘directness’. The mathematical definition of 
curvature though, requires a parameterised curve which is 
independent of time .t  We decided to approximate the 
curvature by calculating the change of displacement angles 
(angular change; angular velocity). Zhao (2002) used in his 
computational LMA the displacement ,D  the estimated 
velocity ˆ ,iv  the estimated acceleration îa  at it  and the 
average velocity and acceleration over a segment. 

3.2 Computing the low-level features 

All computations are based on the raw tracking data inside 
our HID. The tracking data consists of: 

1 the 2-D or 3-D position bpX  of a point belonging to a 
body part bp  

2 the timestamp it  given by some timer function of the 
system. 

The position is defined in a frame of reference φ  indicated 

by .φX  This usually indicates the sensor used for input like 
the camera {C} or the active sensor {W}. With the sampling 
(frame) index i  the sampling interval 1it +Δ  can be 
calculated between two consecutive frames i  and 1.i +  In 
order to treat 2-D and 3-D data equally, the first step is to 
project the 3-D data to some suitable planes. This work 
regards only the door plane (vertical) vπ  and the right hand 
rh. To allow for a fast computation we are discretising the 
low-level features to a low cardinality as shown in (2). 

{180,135,90,45,0, 45, 90, 135} 8
{ , , } 3
{ , , , } 4
{ , , , } 4

D

K

− − − 〈 〉
〈 〉
〈 〉

〈 〉

Vel slow medium fast
Acc no low medium high

zero small medium big

∈
∈
∈
∈

 (2) 

It can be seen that this approach used only four discrete 
variables per body part and plane. 

3.3 Evaluating the variance between trials 

To test the variance of our low-level features over some 
trials for given Effort qualities we conducted the following 
experiment. By using the table of expressive movements 
(Table 2) we know the Effort qualities that are present for a 
certain movement (‘ByeBye_dab’ has Space.direct). The 
low-level feature values (Vel, Acc and )K  are computed for 
each frame ( )i  and each trial .S  A suitable representation 
is to create a histogram of the value space of each low-level 
variable. Figures 10(a) and 10(b) shows the evaluation of 
the low-level feature curvature K when used to describe the 
Effort quality space along five trials. 

 

Figure 10 Evaluating the usefulness of the low-level features 
curvature K  and speed gain Acc for the Effort  
qualities Space and Time on five trials (see online 
version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Through the tables of exemplary movements for the Effort 
qualities we can collect sets of movements with a certain 
Effort quality present. As an example all movements that 
are known to be Time.sudden were collected to one set. It 
can be seen that the majority of the curvature K  has value 
no when performing the Space.direct ‘byebye_dab’. In the 
case of a Space.indirect ‘byebye_flick’ performance, the 
majority of the curvature K  has value big or medium. 
Another example is shown in Figures 10(c) and 10(d) for 
the evaluation of speed gain Acc for Time. It can be seen 
that nearly all speed gain Acc values are showing high when 
performing the Time.sudden ‘byebye_flick’. In the case of 
Time.sustained represented by ‘byebye_glide’, the majority 
is with the no or low value. The diagrams show that the 
major tendencies and patterns across the trials allow a 
relation between the low-level features curvature K  and 
speed gain Acc with the Effort qualities Space and Time. 

Figure 11 Feature histogram for speed gain Acc given by all trials 
with Time.sudden against all trials with Time.sustained 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Note: Each diagram (a), (b) and (c) represents trials of a 
single person. 

3.4 Evaluating the variance between persons 

The diagrams of Figure 10 were performed by the same 
person (‘Joerg’). The next experiment investigates the 
variance between persons. For this, the former trial 
histograms are summed to a single movement histogram 
and afterward movement histograms with the same Effort 
quality are created. Figure 11 shows the feature histogram 
for speed gain Acc as a fusion of all trials with Time.sudden 
(blue bars in the front) against all trials with Time.sustained 
(red bars in the back). Each Figures 11(a), 11(b) and 11(c) 
represents trials of a single person. It can be seen that the 
patterns for Time.sudden are similar for all three persons, 
while ‘Diego’ (Figure 11) shows a higher number of 
medium values. The patterns for Time.sustained appear 
different as ‘Joerg’ trials are monotonically decreasing from 
no values, ‘Luis’ trials are more ‘Gaussian’ with a mean 
between low and medium values and ‘Diego’ trials have a 
peak at no values. The patterns for Space.direct are similar 
for all three persons, without any significant distinction. Our 
conjecture is that some groups of patterns are more 
‘personal’ than others. Time.sudden and Space.direct seem 
to have a pattern which is unaffected by the actor. For 
Time.sustained and Space.indirect qualitative changes can 
be observed depending on the performing person. It appears 
that histograms with ‘Dirac’-like distributions are less 
affected by the variance of the performing person. 
Histograms with ‘Gaussian’ or monotonic distributions are 
in general affected by the actor. Though, we can see that an 
additional variance will be added when using a multiple 
person approach, the important distinction between opposite 
Effort qualities like indirect and direct and sudden and 
sustained still holds. 

3.5 Evaluating the relation of low-level feature to 
Effort qualities 

For the final evaluation, ‘person’ histograms are also fused. 
Figures 12(a)–12(c) shows the results for all trials, 
movements and persons for the Effort quality Time. The 
bars in the front (blue) show Time.sudden while the bars in 
the back (red) show Time.sustained. For speed (Vel) we can 
see a distinct pattern. Time.sustained is monotonically 
decreasing from the low values. For Time.sudden we can 
see that the majority of speed is at fast values. Our 
conjecture is that low-level feature speed can be used  
as an evidence for Time. For speed gain (Acc) shown in 
Figure 12(b), we can also see a monotonically decreasing 
pattern for Time.sustained and a monotonically increasing 
pattern for Time.sudden. These patterns are even more 
distinct for speed gain Acc and can also be used as an 
evidence for Time. The patters for curvature K  are not 
distinct as both are monotonically decreasing as shown in 
Figure 12(c). This evidence can be assumed independent 
from Time. 

 



24 J. Rett et al.  

Figure 12 Behaviour of the low-level features for the Effort quality (a)–(c) Time and (d)–(f) Space (see online version for colours) 

   
(a)      (b) 

   
(c)      (d) 

   
(e)      (f) 

 

Figures 12(d)–12(f) shows the results for the Effort quality 
Space. The bars in the front (blue) show Space.direct while 
the bars in the back (red) show Space.indirect. For speed 
(Vel), we can see no strongly distinct pattern where the 
values are more or less equally distributed as shown in 
Figure 12(d). This evidence can be assumed independent 
from Space. Equally distributed values can also be observed 
for speed gain (Acc) and Space.direct as shown in Figure 
12(e). When having Space.indirect though, the distribution 
shows a monotonically increasing behaviour towards high 
values. As indirect movements often manifest as curved 
trajectories the linear acceleration changes constantly. Thus, 
speed gain Acc might be used as an evidence for Space. 
Finally, curvature K  shows a strong pattern when  
in comes to Space.indirect as nearly all values are no.  
This distinguishes clearly from the ‘Gaussian’ shaped  
 

distribution around the low values when it comes to 
Space.indirect. Our conjecture is that the low-level feature 
curvature K  can be used as an evidence for Space. 

3.6 Movement segmentation 

Effort qualities determine the most ‘expressive’ part of a 
movement. The beginning and the end might have 
completely different qualities than the main part, thus, it is 
useful to perform some kind of segmentation. In the domain 
of gesture analysis, an established model is that of dividing 
the movement into three phases (Rossini, 2004): 

1 pre-stroke (preparation) 

2 stroke 

3 post-stroke (retraction). 
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We adopted this three-phase model for the segmentation of 
our expressive movements. 

Figure 13 shows ‘ByeBye_dab’ segmented into three 
phases. The first four images belong to the pre-stroke phase 
where the hand moves from the rest position upward to 
position the hand and prepare for the waving. The following 
four images show the performance of the waving during the 
stroke phase. The final four images belong to the  
post-stroke phase where the hand moves back to the rest 
position. Gesture recognition systems have often adopted 
this temporal composition (Starner, 1995; Pavlovic, 1999). 
In Kettebekov et al. (2002) the phases are called 
‘phonemes’ following the terms used in phonology to 
describe the principal sounds in human languages. 

Figure 13 Gesture phases, (a) pre-stroke (b) stroke (c) post-stroke 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

From a computational viewpoint the problems is the 
detection of the frame i  in which the movement passes 
from one phase to the next. In the case of the above 
mentioned three-phase model, we would need to detect two 
frames of inflection psI  in which the movement passes 
from (p)re-stroke to (s)troke and spI  where the movement 
passes from (s)troke to (p)ost-stroke. We constrain the 
problem in a way that each movement starts from an at ease 
position and that the movements conclude with the return of 
both hands to that position. Figure 14 shows the signals of 
the position yX  and ,zX  the velocity yzv  and the angular 
change yzθΔ  which related also the first four images of 

Figure 13. All variables have continuous values and are 
taken from the door plane ,vπ  i.e., YZ. Through inspection 
of the angular change yzθΔ  represented by a red line in 
Figure 14 we can see that it produces high values during 
times of rest. Thus, yzθΔ  serves in our case as a trigger for 

.psI  The detection of the second frame of inflection spI  
where the movement passes from the stroke to the  
post-stroke we whether decide after reaching the rest 
position what was the last ‘peak’ of .yzθΔ  

Figure 14 Signals of the position ,yX  the velocity yzv  and the 

angular change yzθΔ  (see online version for colours) 

 

4 Bayesian models 

The concepts of LMA and the characteristics of our system 
to track human movements can be mathematically and 
computationally modelled using a common framework. The 
Bayesian theory gives us the possibility to deal with 
incompleteness and uncertainty, make predictions on future 
events and, most important, provides an embedded scheme 
for learning. An over view on probabilistic reasoning and its 
two basic rules is presented in Bessière et al. (2008). 

Included in the Bayesian framework are specialised 
models which have a long tradition in many areas. Some 
examples of these models are HMMs, Kalman filters and 
particle filters. Bayesian models have already been used in a 
broad range of technical applications (e.g., navigation, 
speech recognition, etc.). Especially in the closely related 
field of gesture recognition, these models have proven their 
usability (Starner, 1995; Pavlovic, 1999). Recent findings 
indicate that Bayesian models can also be useful in the 
modelling of cognitive processes. Researches on the human 
brain and its computation for perception and action, report 
that Bayesian methods have proven successful in building 
computational theories for perception and sensorimotor 
control (Knill and Pouget, 2004). 

4.1 Entropy – a measure of uncertainty 

Shannon (1949) extended the information theory by 
proposing a measure – entropy – wherein symbols have 
unequal probability of occurring. This measure associates 
information with uncertainty using the concept of 
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probability. Being X  a discrete random variable over a 
sample space the entropy was defined as: 

( ) ( ) log ( ).
X

H X P X P X= −∑  (3) 

In equation (3), the logarithm’s base determines in what unit 
entropy is measured. Hereafter, it will be also assumed the 
convention 0log0 = 0, since log 0x x →  as 0,x →  which 
means that adding terms with zero probability does not 
change the entropy. Entropy is a monotonic function and a 
formal measure of uncertainty. If all samples of a random 
experiment have the same probability, i.e., if 1 ,i np =  
wherein n  is the number of possibilities (the cardinality of 

),X  H  is a monotonic increasing function of .n  It can be 
proven that the entropy of a random variable with n  
possible outcomes verifies the condition: 

0 ( ) log≤ ≤uH X n  (4) 

4.2 Global model 

The Global model which describes the phenomenon of 
computational LMA is shown in Figure 15. Having the 
concept of a movement represented by the variable M  
certain characteristics will be exhibited through the sets of 
variables of LMA (Space and Effort). The sets of LMA can 
be observed through the set of low-level features LLF.  
This concept is accompanied by different levels of 
abstraction by introducing the concept space, the Laban 
space and the physical space. The nodes represent variables 
(e.g., movement )M  and sets of variables (e.g., low-level 
features LLF). The arcs describe the dependencies between 
the nodes. The movement M  represents the parent node 
which effects the child nodes in the Laban space. It appears 
that given the movement M  the sets inside the Laban space 
are independent from each other. 

Each of the nodes on the Laban space is a parent for the 
set of low-level features LLF. If we assume that for each 
LMA set n  there exists an independent subset of the  
low-level feature set nLLF  we can decompose the Global 
model into a number of submodels as shown in Figure 15. 
The dependencies can also be expressed as a joint 
distribution and its decomposition as: 

(  )
( ) ( ) ( )
( ) ( )Sp Ef

P M

P M P M P M

P P

= ⏐ ⏐

⏐ ⏐

Space Effort LLF
Space Effort

LLF Space LLF Effort
 (5) 

In the following section the Space and Effort models will be 
discussed in detail. 

 

Figure 15 Bayes-net of the Global model (see online version for 
colours) 

 

Notes: Each component of LMA is represented as a node 
in the Laban space and contains a set of 
variables. The physical space holds the set of all 
low-level feature variables LLF. The variables of 
the LLF set depend on the variables of the Laban 
space. The high level concept of movement is 
represented by the variable .M  By assuming n  
independent subsets for the low-level feature set 

nLLF  joint models can be composed from any 
combination of the n  submodels. 

4.3 Space model 

The Space component of LMA is modelled using the 
concept of vector symbols and was already used in Rett et 
al. (2008). Referring to the Global model (see Section 4.2) 
the Space model is particular as the vector symbols represent 
both, the Laban space (Space) and the Physical space 
( ).SpLLF  We can state: 

{ }Sp B= ∈Space LLF  (6) 

It can be seen that in this work only the vector symbols B  
from the door plane vπ  are used which has been referred to 
as a ‘2-D model’ in Rett et al. (2008). In cases where the 
index bp  is used, it corresponds to the bodypart like the 
right hand rh, the left hand lh and the face f. As we describe 
the spatial pathway of a movement by ‘atomic’ 
displacements, we refer to the vectors symbols sometimes  
as atoms. Movements are expressed as up, down,  
left and right resulting in the values U, D, L and R 
respectively and the indication of no movement 0 as shown 
in equation (7). 
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{ _ , _ ,
_ , _ } 4

{1, , }
{ , , , , , , , , } 9

max max

bp

M

I I I

B

〈 〉
〈 〉

〈 〉
K

byebye dab byebye glide
byebye flick byebye float

O U UR R DR D DL L UL

∈

∈

∈

 (7) 

The Space model assumes that each movement M m=  
produces certain atoms bp bpB b=  at a certain point in time, 
i.e., frame I i=  and for a certain Bodypart .bp  In this 
model, a certain movement m  is ‘causing’ the atoms b  at 
the frame .i  The evidences that can be measured are the 
atoms b  and the frame .i  The model might be applied to 
any number of body parts bp  which are treated as 
independent evidences as thus expressed through a product 
as shown in the joint distribution of equation (8). 

(   ) ( ) ( ) { ( |  )}bp
bp

P M I B P M P I P B M I= ∏  (8) 

The left side of Figure 16 shows the corresponding 
representation in a Bayes-net. 

Figure 16 The movement M belongs to the concept space  
(see online version for colours) 

 
Notes: Space model (left side): the vector symbols are 

part of both, the Laban space and the Physical 
space. Their instances are the left (lh) and right 
hand (rh). The frame I is associated with the 
physical space only. Effort model (right side): the 
variables Effort Space E.Sp and Effort Time E.Ti 
belong to the Laban space, while curvature K  
and speed gain Acc belong to the Physical space. 

4.4 Effort model 

The Effort model describes the dynamic aspects of the 
movement. It relates the low-level features speed gain Acc 
and curvature K  to the Effort qualities Time (E.Ti) and 
Space (E.Sp). In order to not confuse the Space component 
from the previous section with the Space quality of the 
Effort component, all variable symbols of Effort have a 
leading E. before the quality. As defined in the Global 
model two sets of variables are used in the model: 
 
 

{ , } { . , . }Ef KAcc E Ti E Sp∈ ∈LLF Effort  (9) 

The relation between the two sets has already been 
investigated, established and developed in Section 3. The 
concept space relates the Effort qualities to a specific 
movement .M  This has been introduced in Section 2.2 and 
2.3. The Effort model is related with a specific plane and 
body part where the Effort qualities can be detected best. 
The variables and their sample space are shown in (10): 

{ , , , } 4
{ , , , } 4

. { , } 2
. { , } 2

K

〈 〉
〈 〉

〈 〉
〈 〉

Acc no low medium high
no small medium big

E Sp direct indirect
E Ti sudden sustained

∈
∈
∈
∈

 (10) 

Each movement M  will produce a certain set of Effort 
qualities during a certain phase. Thus, we have a conditional 
dependency of Effort Space E.Sp and Effort Time E.Ti from 
the movement M  as can be seen in the right side of  
Figure 16. 

The Effort variables cannot be directly measured but 
observed through some low-level features (i.e., ).EfLLF  
Thus, there is a dependency of the non-observable variables 
from the Effort set and .EfLLF  The joint distribution can be 
expressed as: 

( . . )
( ) ( . ) ( . )
( . ) ( . ).

P M K

P M P M P M

P P K

=
E Sp E Ti Acc

E Sp E Ti
Acc E Ti E Sp

| |

| |

 (11) 

4.5 Joint model using Space and Effort 

With the previously discussed models many combinations 
can be built, tested and compared with each other. As 
defined in the Global model four sets of variables are used 
in the model: 

{ }

{ . , . } { , }
Sp

Ef

B

K

=

E Ti E Sp Acc

∈

∈ ∈

Space LLF

Effort LLF
 (12) 

Figure 16 shows the combination of the Space and Effort 
model. The Space and Effort model are coupled through the 
movement variable .M  This means that a certain movement 
M m=  will exhibit certain atoms B b=  and certain Effort 
variables E.Ti = e.Ti, E.Sp = e.Sp along the time. The 
temporal dependency is modelled through the variables 
frame .I  The joint distribution can be expressed as: 

( . . )

( ) ( ) { ( | )}

( . ) ( . )
( . ) ( . ).

P M I B K

P M P M

P P K

= ∏ bp
bp

E Sp E Ti Acc

P M P I P B M I

E Sp E Ti
Acc E Ti E Sp

| |

| |

 (13) 
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4.6 Learning of probability tables 

The previous section concluded with a joint distribution 
made of several distributions, e.g., probability of vector 
symbols from door plane given movement and frame  

( ).P B M I⏐  Some of those distributions need to be 
‘learned’. In our case, ‘learning’ means that trials with a 
known label are fed into the system which in return 
identifies the parameters of a chosen distribution. 

One type of distribution that can be chosen is a 
histogram. The probability distribution can be learned by 
counting the observations a variable has a certain value. For 
a finite number of discrete values the process can be 
described as building a histogram. By dividing the counts 
for each value i  of the variable ( )=V V i  by the total 
number of samples n  a probability distribution can be 
computed. The assumptions that apply are: 

1 All samples n  come from the same phenomenon. 

2 All samples are from a single variable .V  

3 The order of the samples is not important. 

When learning a probability distribution through the 
histogram, some values of V  might have zero probability 
simply because they have never been observed. Whenever 
these values occur in the later classification stage, the 
corresponding hypothesis(es) will receive also a zero 
probability. In continuous classifiers that are based on 
multiplicative update of beliefs, this leads to an immediate 
and definite out-rule of the hypothesis(es). One way of 
solving this is to use an equation which produces a 
minimum probability for non-observed evidences.  
Equation (14) is based on the Laplace succession law. 

1
( )

+
= =

+ ⎢ ⎥⎣ ⎦
inP V i

n V
 (14) 

The minimum probability which is produced when no 
observation has happened ( 0)=in  is ( )1/ .= + ⎢ ⎥⎣ ⎦minP n V  

Taking the atom variable rhB  which has nine values 
9=⎢ ⎥⎣ ⎦V  as an example, it can be seen that by learning from 

six samples 6=n  each non-observed value will receive a 
probability of ( ) 0.0667=P V  for all values i  where 

0.=in  

4.7 Questions for classification 

Classification is the final step after the model has been 
established and the tables have been learned: classification 
accesses the knowledge of model and learning through 
inference. Given our joint distribution: 

( . . )E Sp E Ti AccP M I B K  (15) 

we need to formulate a question, i.e., what we want to 
classify and what we can observe. The following set of 
equations shows particularly interesting questions. 

Question (16) asks for the distribution of the variable 
movement M  knowing the frame I  and the atom B  from 
the door plane .πv  

( )P M I B⏐  (16) 

This represents the classification of a movement taking into 
account the Space component of LMA from a frontal view. 

Question (17) asks for the distribution of the variable 
Effort.Time E.Ti knowing the speed gain Acc. 

( . | )E Ti AccP  (17) 

This represents the classification of the Effort quality Time 
knowing the speed gain. With this question we are able to 
label a certain movement with the Effort quality Time. A 
similar question can be established for Space knowing the 
curvature .K  

Question (18) asks for the distribution of the variable 
movement M  knowing the two Effort variables 
Effort.Space E.Sp and Effort.Time E.Ti. 

( | . . )E Sp E TiP M  (18) 

This represents the classification of a movement taking into 
account only the Effort component of LMA by using the 
two qualities Space and Time. With the latter Question (18) 
and the former Question (16) we are able to compare 
movement classifications based on components from the 
kinematic and the non-kinematic group (see Section 2). 

Question (19) asks for the distribution of the variable 
movement M  knowing the two Effort variables Effort.Time 
E.Ti, Effort.Space E.Sp and the frame I  and the atom B  
from the door plane .πv  

( | . . )E Sp E TiP M I B  (19) 

This can be seen as the ‘ultimate’ question asked in this 
work: the classification of a movement taking into account 
components from the kinematic and the non-kinematic 
group of LMA represented by Space and Effort. 

4.8 Continuous classification of movements 

After the interesting questions have been defined the 
problem of continuous update will be tackled. Continuous 
update of believe is a desirable characteristic of  
human-machine interaction. With this the system can 
continuously refine its classification results through the 
newly incoming evidences. 

The concept for Question (16) ( | )P M I B  has already 
been developed in Rett et al. (2008) and yielded: 

1 1: 1 1: 1 1 1( | ) ( ) ( | )+ + + + +n n n n n nP M i b P M P b M i∝  (20) 

We can see that the prior of step 1+n  is the result of the 
classification of step .n  Given a sufficient number of 
evidences (atoms) and assuming that the learned tables 
represent the phenomenon sufficiently good, the 
classification will converge to the correct hypothesis. 
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By adding the evidences from Effort we get the answer 
for Question (19) 

1 1: 1 1: 1 1: 1 1: 1

1 1

1 1

( | )
( ) ( | )
( | ) ( | )

+ + + + +

+ +

+ +

E.Sp E.Ti

E.Sp E.Ti

n n n n n

n n n

n n

P M i b

P M P b M i

P M P M

∝

 (21) 

The final classification result is given by the maximum a 
posteriori (MAP) method. In some cases, it might be useful 
to produce a result before the final frame maxI  is reached. 
In order to have a measure which determines the right 
moment, we have chosen the already presented entropy 

( ).H M  For a given evolution of a probability distribution 
over time, the ‘cut-off’ frame is triggered where the entropy 
ratio ( ) | ( )maxH M H M  drops under a threshold of 0.1. We 
define two levels of certainty: 

• Uncertain: 1 ( ) | ( ) 0.1.≥ <maxH M H M  

• Certain: 0.1 ( ) | ( ) .≥ maxH M H M  

5 Movement recognition system 

The previous sections of this article reflect the five steps of 
designing a probabilistic model as shown in Figure 17. 

Figure 17 The five steps of designing a probabilistic model 
(shown in the previous sections) relate to the five steps 
of implementing the processes (presented in this 
section) (see online version for colours) 

 

The implementation of the processes and its results can also 
be organised in five steps. 

a The first step is the extraction and computation of the 
low-level features and was already addressed in  
Section 3. 

b The second step is the definition of the probabilistic 
variables and conditional probability tables. Those 
definitions can be derived directly from the second step 
of the design process, i.e., building of the probabilistic 
model. Each step in implementation has, in fact, a 
corresponding step in design. 

c Section 5.1 will present the third step, i.e., the process 
of learning and the resulting conditional probability 
tables. The discussion will show that the Bayesian 
approach allows a comparison of those learned tables, 
even before entering the classification stage. 

d The fourth step, in which the joint distributions and 
questions are built can also be derived from the fourth 
step of the design process. 

e Section 5.2 has its focus on the fifth step of 
implementation, i.e., the computation of probabilities 
along the frames (time). The discussion on the 
evolution of probabilities is presented and gives some 
insight on certainty for a specific trial. 

With this the process of implementation is concluded. To 
emphasise the important characteristic of the system it is 
called online movement anticipation and recognition 
(OMAR) system. 

5.1 Learning conditional probability tables 

Figure 18 (top) shows the flow chart of the learning process. 
From the movement database (HID) a set of trials for 
learning is chosen and fed into the system for low-level 
feature extraction. The database consists of five trials per 
person and movement. Three trials are usually chosen for 
learning. Each trial produces one data point per feature and 
frame. Learning based on a histogram approach creates 
conditional probability tables simply by adding those points 
until all trials are processed. 

Figure 18 (top) learning process*, (bottom) classification 
process** (see online version for colours) 

 
Notes: *From a trial for learning low-level features are 

extracted and ‘added’ to the histogram. The 
conditional table is ‘stored’ after all trials are 
processed. 
**The low-level features are extracted from a 
trial for testing. Each frame the probability 
distribution is computed and the prior ‘updated’. 
The final classification result is stored for each 
trial in a confusion table. 

The set of movements under investigation is the ‘byebye’ 
set. When stacking the probabilities for each value one over 
each other, patterns can be observed along the time given by 
the frame I  and between the movements .M  Figure 19  
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shows the Space patterns for the movements’ byebye_dab, 
byebye_glide, byebye_flick and byebye_float. The 
movement patterns look similar and especially byebye_dab 
and byebye_glide can be easily confused. Both have strong 
probabilities at left L and right R atoms together with 
always apparent zero atoms 0. This is different to the 
byebye_flick and byebye_float movements which have zero 
atoms only at minimum probability. It also appears that the 
other atoms are distributed more uniformly. 

Figure 19 Learned conditional probability table ( | )P B M I  for 
movement set ‘byebye’ (see online version for colours) 

 

5.2 Continuous classification and certainty 

The fifth and final step of implementation concerns the 
investigation of the evolution of probabilities and the 
confusion table that can be obtained for all trials of the test 
set. Figure 18 (bottom) shows the flow chart of the 
classification process. The inner loop of continuous update 
produces the evolution of probabilities. The outer loop of 
next trial produces the confusion table. Figure 18 (top) 
shows that classification uses the same process for the 
computation of low-level features as learning before. With 
the low-level features and the previously stored conditional 
probability table, it is possible to compute the desired 
probability distribution. This goes according to the defined 
joint distribution and the desired question. Through feeding 
in (replacing) the result of the probability distribution as the 
new prior, a continuous update of the classification results 
for all frames can be obtained. The result of the ‘last’ frame 
gives the final result and while looping through all trials for 
testing, confusion table can be built. 

We can conclude that the two processes of learning and 
classification are based on the same type of observations as 
shown in Figure 18. The previously presented scheme starts 
by learning and, after the conditional probability table has 
been build, continues with classification. An important 
feature of Bayesian histogram learning is that it can be 
‘switched back’ at any time to learn new and more data. 
When applied to, e.g., a social robot, the system creates a 
skill that can be expressed as ‘lifelong learning’. When 
placed in a human-robot interaction scenario the robot can 
use this skill to continuously learn new data during his daily 
operation. 

The evolution of movement probabilities and the 
certainty of the belief are shown in Figure 20. The two cases 

classify trials from the ‘byebye’ set. Figure 20(a) shows a 
case where the correct movement is classified fast and 
confident. The probability distribution for the four 
movements starts with a uniformly distributed prior (25%) 
and the maximum entropy ratio (1). In the 21st frame, the 
belief passes from uncertain to certain. The trial is finally 
correctly classified as byebye_flick with a probability of 
100%. 

Figure 20 Evolution of the movement probabilities ( )P M   
along the time ( )i  for two trials of the ‘byebye’ set 
(see online version for colours) 

 
(a) 

 
(b) 

A different case is shown in Figure 20(b), where the belief 
never reaches the certain state though it concludes with the 
correct movement byebye_flick. It can be seen that the 
entropy was not monotonically decreasing and surpassed the 
minimum around the 13th frame. The behaviour of the 
system to actually change its belief while producing a peak 
of entropy is a natural characteristic of this type of Bayesian 
classifier. 

5.3 Classification of movements using only Space 

This section conducts the experiment of movement 
classification using the Space model from a single (door 
plane )πv  projection. The obtained results can then be 
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compared to models using Effort, to models using Space 
and Effort, and so on. The results for all trials are shown in 
Table 4. By using Space 15 of 60 trials are classified 
wrongly leaving a recognition rate of 75%. Though the 
number of hypotheses is low (only four movements) the 
recognition rate is also low. The confusion between 
byebye_dab and byebye_glide was already anticipated given 
the learned tables from the previous section. The ‘byebye’ 
set provides only few spatial distinctiveness. 

Table 4 Confusion table for classification of movements 
using Space 

Movement 1 2 3 4 Σe  

1 dab 3 12   12 
2 glide  15   0 
3 flick 2  12 1 3 
4 float    15 0 
     15 

5.4 Classification of Effort qualities for movements 

This and the following sections will evaluate the effect on 
the performance of the OMAR system when the Effort 
model is introduced. Each of the four movements of the 
dataset ‘bye-byes’ has a special ‘flavour’ in the way it is 
performed. This flavour is defined by basic effort actions 
know from LMA (see Section 2.2). Table 5 shows a 
fragment of the basic effort action drives for the Effort 
qualities Time and Space. In order to get results on 
movement classification using Effort, first Effort itself needs 
to be classified. Thus, this section presents the performance 
of a classifier for Effort which will be used in the following 
section to classify movements. 

Table 5 Subset of the basic effort action drives 

Action Space Time 

Dab Direct Sudden 
Flick Indirect Sudden 
Glide Direct Sustained 
Float Indirect Sustained 

For this the probabilities for the two Effort qualities will be 
calculated each frame a movement happens (non-zero 
velocity frame). Each Effort quality uses only one low-level 
descriptor: Time E.Ti is associated to speed gain Acc and 
Space E.Ti is associated to curvature .K  The belief will be 
updated and converges to the hypothesis that explains the 
observations (Acc and )K  best. Figure 21 shows the 
probabilistic evolution of the two Effort qualities for the 
trial byebye_glide Jorg1. In this case the qualities converge 
early to the correct hypotheses. 

The results for all trials are shown in Table 6. For the 
Effort quality Space 9 results and for the Effort quality Time 
3 results are classified wrongly. This yields a recognition 
rate of 90% for the former and 70% for the latter. This 

suggests that the low-level feature speed gain Acc 
represents a stronger descriptor for Time than curvature K  
for Space. 

Figure 21 Evolution of the probabilities for Effort, Time and 
Space qualities by the submodel of the trial  
bye-bye_glide Jorg1 (see online version for colours) 

 

Table 6 Confusion table for classification of Effort 

Movement 1 2 Σe  

1 direct 25 5 5 
2 indirect 4 26 4 
1 sudden 29 1 1 
2 sustained 2 28 2 
   12 

5.5 Classification of movements using only Effort 

The next step is a model which classifies movements M  
given the results from the previous model as evidences. For 
this, the OMAR system uses the function best() provided by 
the probabilistic library. The function returns the variable 
value with the highest probability. With this the resulting 
Effort values will be used as certain (hard) evidences. 

Figure 22 Effort Time and Space variables as a stream of hard 
evidences computed by the submodel of the trial 
byebye_dab Diego2 (see online version for colours) 

 

Figure 22 shows the Effort Time and Space variables as a 
stream of hard evidences computed by the submodel of the 
trial byebye_dab Diego2. It can be seen that for the trial 
byebye_dab Diego2 not every frame the correct Effort 
qualities are calculated. The ideal stream should only 
consist of light green evidences, i.e., Time.sudden and 
Space.direct. The black rectangles represent frames with 
zero velocity where the probability remains constant. The 
computation of hard evidences using the function best() 
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obscures the uncertainty of the (soft) Effort qualities.  
Figure 22 also shows that Effort Time becomes more 
sustained (light red) close to the end of the trial. This will 
finally also result in a change of belief concerning the type 
of movement. 

Figure 23 shows the probability evolution of the trial 
byebye_dab Diego2. The OMAR system classifies correctly 

_= byebye dabM  most of the time and only changes its 
belief in favour of _= byebye glideM  in the last eight 
frames. This behaviour can be observed for three more trials 
and seems to indicate the performers ‘anticipation’ of the 
end. 

Figure 23 Evolution of the probabilities for movement M  using 
Effort and Space of the trial byebye_dab Diego2  
(see online version for colours) 

 

The results for all trials are shown in Table 7. By using 
Effort 14 of 60 trials are classified wrongly leaving a 
recognition rate of 77%. We can see that the recognition 
rate has improved slightly compared to using a Space 
model. 

Table 7 Confusion table for classification of movements 
using Effort 

Movement 1 2 3 4 Σe  

1 dab 13 3 2 2 7 
2 glide  15   0 
3 flick   12 3 3 
4 float 4   11 4 
     14 

5.6 Classification of movements using Space, Effort 
and entropy 

The next step is to use the Joint model as presented in 
Section 4.5 to fuse the evidences from the Space and Effort 
model. The results shown in Table 8 where obtained by 
using not all Effort qualities and low-level features. By 
using both, Space and Effort 10 of 60 trials are classified 
wrongly leaving a recognition rate of 83%. It appears that 
with a Joint model of Effort and Space a better recognition 
rate can be obtained as with each of the single models. 

Some of the trials that have been classified wrongly are 
of the type already shown in Figure 23. The system 
classifies correctly most of the time and only changes its 
belief during last frames. A reasonable solution is to let the 
system decide when it is ‘certain’ about its classification. 
The right measure for this certainty is the entropy. A value 
of 0.1 was chosen for the entropy to finish the classification. 
Table 9 shows the results for deciding based on a low 
entropy level (0.1). When deciding based on a low entropy 
level only five of 60 trials are classified wrongly leaving a 
recognition rate of 92%. The best recognition rate can be 
obtained by deciding at the first appearance of certainty. 

Table 8 Confusion table for classification of movements 
using Space and Effort 

Movement 1 2 3 4 Σe  

1 dab 9 6   6 
2 glide  15   0 
3 flick   13 2 2 
4 float  2  13 2 
     10 

Table 9 Confusion table for classification of movements 
using Space and Effort and entropy 

Movement 1 2 3 4 Σe  

1 dab 13 2   2 
2 glide  15   0 
3 flick   14 1 1 
4 float  2  13 2 
     5 

5.7 Scenario Nicole@Play 

The current target application for the continuous 
classification of movements is the social robot ‘Nicole’. The 
social robot ‘Nicole’ is designed as an autonomous platform 
with which human-robot interaction can be investigated. 
The vision system is using a static single camera. The 
system for continuous classification of movements runs on a 
notebook where the process of tracking can be observed. 
The navigation system is held by a PC board inside the 
Scout platform. 

The complete scenario ‘Nicole@Play’ includes also 
stationary PC which runs the script interaction. It holds 
way-points for navigation, asks for the presence of a person 
and the result of the movement recognition. The different 
processes exchange information by using ‘sockets’.  
Version 1.0 of the system architecture is a redefined version 
the gesture perception system (GP-System) presented in 
Rett and Dias (2005). Apart from the already discussed 
modules for perception the system architecture also includes 
the ‘action planner’ which controls the sequential execution 
of the tasks inside the interaction scenario. It holds the script 
that tells in which way the robot acts upon the perceptions. 
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In our first trials, Nicole was using audio outputs like asking 
for confirmation on the recognised commands and robot 
movements. Movies of the trials can be downloaded from 
the project’s web page http://paloma.isr.uc.pt/nicole/. 

The scenario was tested in a natural environment at the 
entrance hall of the Department of Electrical Engineering, 
University of Coimbra in June 2006. Figure 24 shows some 
of the states during the interaction. After Nicole has been 
called she navigates to the position where she expects the 
user (Phase 1: long distance approach). She will then, look 
around in search for a person (Phase 2: user search). The 
first person she detects will be approached (Phase 3: short 
distance approach). After taking the optimal interaction 
position she will greet the user and ask for a gesture  
(Phase 4: initiate interaction). In the next phase, Nicole will 
observe and anticipate the movement of the user’s hand(s) 
(Phase 5: tracking and gesture recognition). After being 
certain about the perceived gesture Nicole will perform a 
related action (e.g., turning around) (Phase 6: action). After 
this, Nicole will end up in phase two or three start all over 
again. 

Figure 24 Nicole V1.0 interacting at the entrance of our 
department (a) Phase 5: tracking and gesture 
recognition (b) Phase 6: action (see online version for 
colours) 

 

6 Discussion and conclusions 

6.1 Resume 

The work presented in this thesis started with the premise 
that the field of C-HMA is in need of an annotated  
database fur human movements. Low-level features like 
‘acceleration’ can easily be extracted by machines and 
action descriptors like ‘dabbing paint on a canvas’ can 
easily be understood by humans. A good descriptive 
language needed to be chosen that provides the labels on a 
medium level in between features and actions. Section 2 
shows that LMA is a good choice for this descriptive 
language. The section presents a thorough overview over 
the properties and capabilities of each component and their 
relation to each other. This part concludes with examples 
from our HID to outline the applicability of LMA for an 
annotated database. 

This work will contribute to applications like ‘social 
robots’, ‘smart rooms’ or ‘rehabilitation’. The required 
technical solution brings together a single camera mounted 
on a mobile platform, multiple cameras mounted on the 

walls of a room and high precision data from an active 
sensor. Section 3 bases the computation of the low-level 
features on two very different sensor types, i.e., single 
camera and active sensor. The sensor data can be registered 
by calibrating the two devices which allows working with a 
database of rich 3-D position data and sensory input from  
2-D projections. The low-level features are extracted from 
trials of our database and the evaluation shows that these 
features are useful as evidences for LMA descriptors. 

To extract the LMA descriptors automatically the 
Bayesian framework is used as presented in Section 4. It: 

1 presents the models as Bayesian nets which allows 
multidisciplinary evaluations 

2 can be designed in a modular fashion so the influence 
of each component can be studied 

3 takes into account that LMA is based on human 
observations where incompleteness and uncertainty are 
issues. 

Section 5 presents the implementation which proves the 
feasibility of this approach. The probabilistic approach 
provides the learned data in a way that allows its  
visual inspection and evaluation. With this, expected  
results for classification can be anticipated. The chosen 
histogram-based approach for learning provides a simple 
way of adding data points. The characteristics to add data at 
any time opens the possibility for a continuously learning 
artificial agent. As a benefit of the modularity of the OMAR 
system results for movement classification can be presented 
and compared separately for Space, Effort and joining Space 
and Effort. Also a ‘stand-alone’ classification of the Effort 
qualities is possible. One observed characteristics of the 
implemented type of Bayesian classifier was that the system 
actually changed its belief while producing a peak of 
entropy. The evolution of the OMAR system for the  
‘bye-bye’ set when using the different models is: 

1 a recognition rate of 75% when using only Space 

2 a recognition rate of 77% when using only Effort 

3 a recognition rate of 83% when using both 

4 a recognition rate of 92% when deciding based on a 
low entropy level, i.e., at the first appearance of 
certainty. 

To prove that the system could also perform well in a 
natural indoor environment a series of demonstration of the 
social robot ‘Nicole’ was conducted since Summer 2006 at 
various expositions. 

6.2 Future works 

The main goals of the future research will be to establish 
LMA as a general tool for the evaluation of human 
movements and provide those communities that collect 
large amounts of experimental data with technical solutions 
for labelled datasets. 
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The research will be justified by showing that 
rehabilitation processes do benefit from evaluations based 
on LMA. That comparison of experimental data with very 
distinct experimental setups is possible by using the 
descriptors of LMA. Data from computational LMA opens 
the possibility to cluster motor deficits and neurological 
disorders that are similar with regards to LMA. A successful 
research towards these goals must be based on the creation 
of a large database, the implementation of systems to collect 
this data, an interface design that appears ‘natural’ to the 
patient and an intensive multidisciplinary discussion and 
cooperation. 
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