
i

Eduardo Jorge do Val Martins

CHOPIN-CCO
Command Center of Operations for
Search and Rescue Missions with

Human and Robotic Teams

June 2014





i

UNIVERSITY OF COIMBRA

FACULTY OF SCIENCES AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMPUTERS ENGINEERING

CHOPIN-CCO
Command Center of Operations for
Search and Rescue Missions with
Human and Robotic Teams

Eduardo Jorge do Val Martins

A dissertation presented for the degree of Master of Science

in Electrical and Computers Engineering

Coimbra, 2014

http://www.fct.uc.pt
http://www.uc.pt




ii

CHOPIN-CCO
Command Center of Operations for
Search and Rescue Missions with
Human and Robotic Teams

Supervisor:

Prof. Dr. Paulo Menezes

Co-Supervisor:

Prof. Dr. Rui Paulo Rocha

Jury:

Prof. Dr. Jorge Lobo

Prof. Dr. Paulo Coimbra

Prof. Dr. Paulo Menezes

Report written for the dissertation subject, included in the Electrical and Computers

Engineering Course, submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computers Engineering.

Coimbra, 2014



“I see a strong parallel between the evolution of robot intelligence and the biological intelli-

gence that preceded it. The largest nervous systems doubled in size about every fifteen million

years since the Cambrian explosion 550 million years ago. Robot controllers double in com-

plexity (processing power) every year or two. They are now barely at the lower range of

vertebrate complexity, but should catch up with us within a half century.”

Hans Moravec



Acknowledgements

I take this opportunity to express my special appreciation and thanks to my supervisor,

Prof. Dr. Paulo Menezes and co-supervisor, Prof. Dr. Rui Rocha, for their expert knowledge,

guidance, monitoring and constant encouragement throughout the course of this thesis.

I would like to thank to all the firefighters, particulary the Bombeiros Sapadores de Coimbra,

and members of the Autoridade Nacional de Protecção Civil, for the valuable information

provided by them in their respective fields, specially to Comandante António Lousada from

Bombeiros Voluntários da Mealhada, without whose time and effort would have been more

difficult to understand the firefighters concept of operations. I am grateful for their cooper-

ation during the period of this thesis work.

I also thank to all my colleagues of the CHOPIN project for their valuable ideas and helpful

suggestions that have indicated new directions in the development of the project, and also to

my laboratory colleagues for the stimulating discussions and insightful comments to overcome

technical implementation issues.

Lastly, I specially thank my parents for their constant encouragement without which this

thesis would not be possible.

iv



Abstract

The use of ubiquitous computing to help firefighters in the Urban Search and Rescue (USAR)

missions, has been studied in the Cooperation between Human and rObotic teams in catas-

troPhic INcidents (CHOPIN) project, with the aim of exploring cooperation between human

and robotic teams in the context of these missions, decentralizing some decisions so that they

can be made closer to the place to which they relate, based on existing information.

In this context, this dissertation presents an architecture for the USAR mission system

and develops an interface for the Command Center of Operations (”Centro de Comando

de Operações”) (CCO), integrating the context-aware software platform with the required

tools for planning and monitoring USAR missions, leaving the detection and interpretation

of data to other computing entities on the ground, thus enhancing situational awareness and

establishing a common ground to support decision making of the tactical actors.

The interface is developed by addressing interaction design techniques to fulfill situation-

awareness and human-robot interaction requirements, in order to support collaboration be-

tween human and robotic teams, thus proposing a message taxonomy to provide information

interchange among agents, displaying and registering the collected data on the ground by

individual agents, such as maps, locations and status of several features as victims and fire

outbreaks, as well as environmental conditions in the Theatre of Operations (”Teatro de

Operações”) (TO) in a relational database.

The overview of the operations on the ground is presented using the services provided by

the Google Maps Application Programming Interface (API), allowing an overall picture of

the TO, existing resources and the state of the mission.

The sharing of information between the CCO and agents on the ground is made via a bidi-

rectional and asynchronous WebSocket, and is based on the Robot Operating System (ROS)

framework and a pre-defined set of messages to share information cooperatively by firefight-

ers and robotic agents to fulfill the mission, using the format JavaScript Object Notation

(JSON). The compression of transmitted information proved critical to communications

with limited bandwidth and high traffic volumes, usually found in USAR scenarios.

Keywords: Search and rescue, command center of operations, ROS, interaction design,

JSON, context-aware, situation-awareness, human-robot interaction.



Resumo

A utilização da computação ub́ıqua para ajudar os bombeiros nas operações de busca e

salvamento em cenários urbanos, tem vindo a ser estudada no projecto de I&D Cooperation

between Human and rObotic teams in catastroPhic INcidents (CHOPIN), para explorar a

cooperação entre equipas humanas e robóticas no âmbito destas missões, descentralizando

algumas decisões para que eles possam ser tomadas mais próximas do local em que se referem,

com base nas informações existentes.

Neste contexto, esta dissertação apresenta uma arquitetura para o sistema de apoio de

missões de B&S e desenvolve um interface para o CCO, integrando na plataforma informática,

senśıvel ao contexto, as ferramentas necessárias para o planeamento e monitorização das

missões de B&S, deixando a detecção e interpretação de dados para outros sistemas com-

putacionais no terreno, aumentando assim a percepção do contexto e estabelecendo uma

base comum para apoiar as tomadas de decisão dos atores estratégicos.

O interface é desenvolvido abordando técnicas de design da interação e orientado por req-

uisitos para a percepção da situação e requisitos de interação homem-robô, para apoiar a

colaboração entre equipas humanas e robóticas, propondo uma taxionomia de mensagens

para permitir a partilha de informações entre os agentes, exibindo os dados recolhidos no

terreno pelos agentes individuais, tais como mapas, localização e estado de pontos de interesse

como v́ıtimas e focos de incêndio, bem como condições ambientais no Teatro de Operações

(TO) e registando os dados numa base de dados relacional.

A visão geral das operações no terreno é apresentada recorrendo aos serviços disponibilizados

pela API do Google Maps, permitindo uma imagem global do TO, dos recursos existentes e

do estado da missão.

A partilha de informação entre o CCO e os agentes no terreno é efectuada de forma bidi-

reccional e asśıncrona através de um WebSocket, tendo por base a framework ROS e um

conjunto de mensagens pré-definidas, para partilhar informações de forma cooperativa pelos

bombeiros e agentes robóticos no cumprimento da missão, utilizando o formato JavaScript

Object Notation.



A compressão da informação transmitida revelou-se fundamental para comunicações com

largura de banda limitada e elevado volume de tráfego, caracteŕısticas dos cenários urbanos

de B&S.

Palavras-Chave: Busca e salvamento, centro de comando de operações, ROS, design da

interação, JSON, sensibilidade ao contexto, percepção da situação, interacção homem-robô.



Contents

Acknowledgements iv

Abstract v

Resumo vi

Contents viii

List of Figures xii

List of Tables xiv

List of Code Excerpts xv

Acronyms xviii

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach followed in this dissertation . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Requirements Analysis 7

2.1 Application Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Operation Mode of Portuguese Firefighters . . . . . . . . . . . . . . . 7

2.1.2 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Situation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 User Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 User Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

viii



Contents ix

3 Interfaces Requirements 19

3.1 Hardware Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Software Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Interaction design requirements . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Context-awareness requirements . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Human-Robot Interaction requirements . . . . . . . . . . . . . . . . . . . . . 24

3.6 Human-Machine Interface requirements . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.2 Non functional requirements . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Designed Solution 34

4.1 Taxonomy of information flows . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Design of the CC human-machine interface . . . . . . . . . . . . . . . . . . . 36

4.3 Interface with human and robotics first responders . . . . . . . . . . . . . . . 38

4.4 Graphical SITAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Communication within ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Map transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Robots features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Firefighters features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Environmental variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Gesture recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Database Analysis 49

5.1 Conceptual cluster models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Incident cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Incident divisions cluster . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Incident occurrences cluster . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.4 Incident resources cluster . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.5 Incident personnel cluster . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.6 Incident location cluster . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Data modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Results 55

6.1 Incident simulation and CCO operation . . . . . . . . . . . . . . . . . . . . . 55

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion and Future Work 59

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Use Cases and System Models 61



Contents x

A.1 Use-case diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B Messages Definition 69

B.1 Command and Control Messages . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1.1 start2Scan() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1.2 area2Scan() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.1.3 task2Perform() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.1.4 tacticalMode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.1.5 searchCompleted() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2 Location messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2.1 robotPose() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2.2 firefighterPose() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.3 Status messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.3.1 batteryStatus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.3.2 scbaStatus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3.3 teamComp() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3.4 sharedLevel() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3.5 netStats() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.3.6 envStatus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.3.7 fireStatus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.3.8 fireStage() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.3.9 fireBehaviour() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.4 Conditions messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.4.1 securityCondition() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.4.2 altExit() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.4.3 siteView() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.5 Mapping messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.5.1 compressedMap() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.5.2 tempMap() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.5.3 gasMap() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.5.4 victimFound() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.5.5 smokeMap() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.5.6 hazardMat() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.5.7 fireOutbreak() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.6 Messages and Human-Robot Interaction (HRI) taxonomy . . . . . . . . . . . 106

C Entity-Relationship Diagram 107

C.1 Conceptual models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1.1 Incident cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1.2 Incident divisions cluster . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1.3 Incident occurrences cluster . . . . . . . . . . . . . . . . . . . . . . . 110

C.1.4 Incident resources cluster . . . . . . . . . . . . . . . . . . . . . . . . 111

C.1.5 Incident personnel cluster . . . . . . . . . . . . . . . . . . . . . . . . 112

C.1.6 Incident locations cluster . . . . . . . . . . . . . . . . . . . . . . . . . 113



Contents xi

C.2 Data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2.1 Incident cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2.2 Incident divisions cluster . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.2.3 Incident occurrences cluster . . . . . . . . . . . . . . . . . . . . . . . 122

C.2.4 Incident resources cluster . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.2.5 Incident personnel cluster . . . . . . . . . . . . . . . . . . . . . . . . 126

C.2.6 Incident location cluster . . . . . . . . . . . . . . . . . . . . . . . . . 127

D ANPC forms 129

D.1 CECOP forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D.2 CELOG forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.3 CEPLAN forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 148



List of Figures

1.1 Scope of the project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Layout of the CC vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Tactical Situation (SItuação TÁCtica) (SITAC) main board and forms to
register incidents on the ground in the Command Operations Station (”Posto
de Comando Operacional”) (PCO). . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The dynamic OODA loop (DOODA loop). functions are given in black, prod-
ucts in red, and inputs in green . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 DOODA loop functions and Situation-awareness levels . . . . . . . . . . . . 12

2.5 Conceptual domain model of incident operations . . . . . . . . . . . . . . . . 15

2.6 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Communication structure of the different actors. . . . . . . . . . . . . . . . . 17

3.1 Context types to characterize a situation . . . . . . . . . . . . . . . . . . . . 22

3.2 Taxonomy for multi-agent HRI . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The possible combinations of CCO, firefighters and robots, acting as individ-
uals or in teams. (adapted from [YD04]) . . . . . . . . . . . . . . . . . . . . 26

4.1 Tree structure of the messages between the CC, firefighters and robots (* in-
dicates priority messages). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Incident navigation buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Screen selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Transmission time of a map through the WebSocket. . . . . . . . . . . . . . 41

4.5 Shannon entropy measurements (672x460 occupancy grid). . . . . . . . . . . 42

4.6 Transmitted bytes measurements (672x460 occupancy grid). . . . . . . . . . 43

4.7 Gesture recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Database conceptual schema - root entity cluster. . . . . . . . . . . . . . . . 50

6.1 Human Machine Interface of the CC. . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Incident structure, Posit and Communications plan layout. . . . . . . . . . . 56

6.3 Human Robot Interaction of the CC. . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Touch screen Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Resources and Agents layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Victims layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Theatre of operations organization use-cases. . . . . . . . . . . . . . . . . . 61

A.2 Tactical Mode and Risk Assessment use-cases. . . . . . . . . . . . . . . . . . 62

xii



List of Figures xiii

A.3 Personnel Management use-cases. . . . . . . . . . . . . . . . . . . . . . . . . 62

A.4 Resources Management use-cases. . . . . . . . . . . . . . . . . . . . . . . . . 63

A.5 Manage Water supply use-cases.. . . . . . . . . . . . . . . . . . . . . . . . . 63

A.6 Fire attack use-cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.7 Search and Rescue use-cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.8 Domain class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.9 Fire Attack and Search and Rescue class diagram. . . . . . . . . . . . . . . . 67

A.10 Sequence Diagram of the Fire Attack and Search and Rescue operations. . . 68

B.1 Messages affecting the HRI taxonomy. . . . . . . . . . . . . . . . . . . . . . 106

C.1 Database conceptual schema - root entity cluster. . . . . . . . . . . . . . . . 107

C.2 Cluster 1.1 - Incident conceptual model. . . . . . . . . . . . . . . . . . . . . 108

C.3 Cluster 1.2 - Incident divisions conceptual model. . . . . . . . . . . . . . . . 109

C.4 Cluster 1.3 - Incident occurrences conceptual model. . . . . . . . . . . . . . . 110

C.5 Cluster 1.4 - Incident resources conceptual model. . . . . . . . . . . . . . . . 111

C.6 Cluster 1.5 - Incident personnel conceptual model.. . . . . . . . . . . . . . . 112

C.7 Cluster 1.6 - Incident locations conceptual mode. . . . . . . . . . . . . . . . 113

D.1 Structural incidents command guide form. . . . . . . . . . . . . . . . . . . . 130

D.2 Sectorization form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D.3 Victims map form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.4 Graphical SITAC form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D.5 Example of a graphical SITAC. . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.6 General framework of operations form. . . . . . . . . . . . . . . . . . . . . . 135

D.7 Current situation progress report. . . . . . . . . . . . . . . . . . . . . . . . . 136

D.8 Damage form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

D.9 Symbology for graphical SITAC. . . . . . . . . . . . . . . . . . . . . . . . . . 138

D.10 Communications plan form. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.11 Logistics form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.12 Resources form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D.13 Logistics and resources form. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

D.14 Reserve and concentration form. . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.15 Reserve area form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.16 Traffic point form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.17 Information form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D.18 Meteorologic Information form. . . . . . . . . . . . . . . . . . . . . . . . . . 147



List of Tables

3.1 Search and Rescue Functional Requirements . . . . . . . . . . . . . . . . . . 28

3.2 Command and Control Functional Requirements . . . . . . . . . . . . . . . . 28

3.3 Situation Awareness Functional Requirements . . . . . . . . . . . . . . . . . 29

3.4 Self-Contained Breathing Apparatus Functional Requirements . . . . . . . . 29

3.5 Resources Management Functional Requirements . . . . . . . . . . . . . . . 30

3.6 User Warnings Functional Requirements . . . . . . . . . . . . . . . . . . . . 30

3.7 End User Operation non Functional Requirements . . . . . . . . . . . . . . . 31

3.8 Information Display non Functional Requirements . . . . . . . . . . . . . . . 31

xiv



Code Excerpt

4.1 Launch ROS node to compress and publish the map . . . . . . . . . . . . . . 41

4.2 Grab gestures in Qt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 general event() handler function. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 user defined gestureEvent() handler function. . . . . . . . . . . . . . . . . . . 47

4.5 changing pages with pan Gesture handler function. . . . . . . . . . . . . . . . 48

B.1 ROS message: start2scan(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.2 Json message: start2scan(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.3 ROS message: area2scan(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.4 Json message: area2scan(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.5 ROS message: task2perfom(). . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.6 Json message: task2perform(). . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.7 ROS message: tacticalMode(). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.8 Json message: tacticalMode(). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.9 ROS message: searchCompleted(). . . . . . . . . . . . . . . . . . . . . . . . . 75

B.10 Json message: searchCompleted(). . . . . . . . . . . . . . . . . . . . . . . . . 75

B.11 ROS message: robotPose(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.12 Json message: robotPose(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.13 ROS message: firefighterPose(). . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.14 Json message: firefighterPose(). . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.15 ROS message: batteryStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.16 Json message: batteryStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.17 ROS message: scbaStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.18 Json message: scbaStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.19 ROS message: teamComp(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.20 Json message: teamComp(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.21 ROS message: sharedLevel() . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.22 Json message: sharedLevel(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.23 ROS message: netStats(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.24 Json message: netStats(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.25 ROS message: envStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.26 Json message: envStatus(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.27 Json message: fireStage(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.28 Json message: fireBehaviour(). . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.29 ROS message: securityConditions(). . . . . . . . . . . . . . . . . . . . . . . . 89

B.30 Json message: securityConditions(). . . . . . . . . . . . . . . . . . . . . . . . 89

xv



List of Code Excerpts xvi

B.31 ROS message: altExit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.32 Json message: altExit(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.33 ROS message: siteView(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.34 Json message: siteView(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.35 ROS message: compressedMap(). . . . . . . . . . . . . . . . . . . . . . . . . 94

B.36 Json message: compressedMap(). . . . . . . . . . . . . . . . . . . . . . . . . 95

B.37 ROS message: tempMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.38 Json message: tempMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.39 ROS message: gasMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.40 Json message: gasMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.41 ROS message: victimFound(). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.42 Json message: victimFound(). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.43 ROS message: smokeMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.44 Json message: smokeMap(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.45 ROS message: hazardMat(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.46 Json message: hazardMat(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.47 ROS message: fireOutbreak(). . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.48 Json message: fireOutbreak(). . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.1 incident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2 inc structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.3 tb incident family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.4 tb incident specie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.5 tb incident kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.6 inc divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.7 inc div commander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.8 inc cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.9 inc cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.10 inc cells sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.11 inc assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.12 inc zcr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.13 sgo zcr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.14 inc zcr areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.15 inc damages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.16 tb victim type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.17 tb victim state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.18 tb victim situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.19 tb victim condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.20 tb nationalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.21 tb fire class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.22 tb fire status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.23 inc resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.24 inc teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.25 inc vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.26 inc robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Code Excerpts xvii

C.27 inc vehicle team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.28 tb vehicle type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.29 tb vehicle group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.30 tb robot class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.31 tb person . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.32 tb entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.33 tb corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.34 tb firefighter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.35 tb firefighter rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.36 tb dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.37 tb conc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.38 tb freg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



Acronyms

ACD Activity-Centered Design

ANPC National Authority for Civil Protection (”Autoridade Nacional de Protecção
Civil”)

API Application Programming Interface

BLEVE Boiling Liquid Expanding Vapor Explosion

BS Base Station

BSD Berkeley Software Distribution

C2 Command and Control

CC Command Center

CCO Command Center of Operations (”Centro de Comando de Operações”)

CDOS District Command (”Comando Distrital de Operações de Socorro”)

CECOP Operations Section (”CÉlula de Combate/OPerações”)

CELOG Logistics Section (”CÉlula de LOGı́stica”)

CEPLAN Planning Section (”CÉlula de PLANeamento”)

CHOPIN Cooperation between Human and rObotic teams in catastroPhic INcidents

CODIS (”COmandante DIStrital de Operações de Socorro”)

COPE Common Operational Picture Exploitation

COS Incident Commander (”Comandante das Operações de Socorro”)

CSCW Computer-Supported Cooperative Work

CTA Cognitive Task Analysis

DMS Degree, Minutes, Seconds

ECMA European Computer Manufacturers Association

ENB Firefighters National School (”Escola Nacional de Bombeiros”)
xviii



Acronyms xix

ERD Entity-Relationship Diagram

FPS First-Person Shooter

GIS Geographic Information System

GPL General Public License

GPS Global Positioning System

GDTA Goal Directed Task Analysis

GUI Graphical User Interface

HCI Human-Computer Interaction

HMI Human Machine Interface

HRI Human-Robot Interaction

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

IDL Interface Description Language

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ISR Institute of Systems and Robotics (”Instituto de Sistemas e Robótica”)

JSON JavaScript Object Notation

LGPL Lesser General Public License

LOA Level of Automation

LODD Line Of Duty Death

MANET Mobile ad hoc Network

MRL Mobile Robotics Laboratory

MRSLAM multi-robot simultaneous localization and mapping

NOP Permanent Operational Rule (”Norma Operacional Permanente”)

OS Operating System

PCO Command Operations Station (”Posto de Comando Operacional”)

POSIT Situational report (”POnto de SITuação”)

RFC Request for Comments



ROS Robot Operating System

SA Situation Awareness

SADO Operational Decision Support System (”Sistema de Apoio à Decisão
Operacional”)

SC Sector Commanders

SCBA Self-Contained Breathing Apparatus

SGML Standard Generalized Markup Language

SGO Operations Management System (”Sistema de Gestão de Operações ”)

SIRESP Portuguese Integrated Security and Emergency Network System (”Sistema
Integrado das Redes de Emergência e Segurança de Portugal”)

SITAC Tactical Situation (SItuação TÁCtica)

SOG Standard Operating Guideline

SOP Standard Operating Procedure

SQL Structured Query Language

TCP Transmission Control Protocol

TETRA Terrestrial Trunked Radio

TO Theatre of Operations (”Teatro de Operações”)

UCD User-Centered Design

USAR Urban Search and Rescue

W3C World Wide Web Consortium

XML eXtensible Markup Language

XSD XML Schema Definition



Chapter 1

Introduction

This document describes the work done during the dissertation project ”CCO - Command

Center of Operations for Search and Rescue Missions with Human and Robotic Teams”, in-

tegrated into the Cooperation between Human and rObotic teams in catastroPhic INcidents

(CHOPIN) project, developed in the Mobile Robotics Laboratory (MRL) of the Institute of

Systems and Robotics (”Instituto de Sistemas e Robótica”) (ISR), University of Coimbra.

The main goal for this master degree dissertation is to develop the software for the Com-

mand Center of Operations (”Centro de Comando de Operações”) (CCO), to plan, control

and monitor an Urban Search and Rescue (USAR) mission presenting a global vision of the

state of the mission on the ground and individual state of the agents and resources available

on the Theatre of Operations (”Teatro de Operações”) (TO).

This work aims to explore cooperative architectures to decentralize some of the decisions,

on the basis of local information, demanding they be made as close as possible to the place

where it relates, speeding up communications between agents and with the CCO. Despite

this decentralized approach, the main center of the decision, at a higher level of abstraction,

and the place where all available information about the mission is collected and monitored,

remains in the CCO.

This chapter presents not only the context and motivation, but also the main goals of this

dissertation and how it is organized.

1



Chapter 1. Introduction 2

1.1 Context and Motivation

Firefighters face great risks in USAR missions due to the uncertainty of the scenarios where

they operate. In a dynamic stressful environment, the tasks required to a team can change

depending on the team’s situational context, forcing the team members to adapt [SSB04].

Decision making is largely impacted by the external environment, and the decision maker

is affected by several factors, e.g. time stress which results in fatigue and loss of vigilance,

forcing the decision maker to use less complicated reasoning strategies in order to save time.

Despite the evolution in information and communication technologies, and the studies in per-

vasive computing, firefighters on ground level still use archaic methods to register incident oc-

currences, depending on the expertise and resilience of the decision makers. Some steps have

been taken and Portugal adopted the Portuguese Integrated Security and Emergency Network

System (”Sistema Integrado das Redes de Emergência e Segurança de Portugal”) (SIRESP)

system to integrate the communications of all civil defense agencies, and the District Com-

mand (”Comando Distrital de Operações de Socorro”) (CDOS) of National Authority for

Civil Protection (”Autoridade Nacional de Protecção Civil”) (ANPC) is equipped with an

Operational Decision Support System (”Sistema de Apoio à Decisão Operacional”) (SADO)

which does not give direct support to firefighters and commanders on the field.

Firefighter Fatality Investigation & Prevention Program of NIOSH1 identifies inadequate risk

assessment, lack of accountability or SCBA air management (BA Control), inadequate com-

munication and lack of situational awareness as some of the most common factors associated

with Line Of Duty Death (LODD). Other study by the IAFF2 (USA) quantifies lack of sit-

uational awareness as responsible for 37.3% firefighters’ injuries [SOP09], therefore, the use

of technology to enhance situational awareness and to automate and control time-depending

tasks, by alerting the decision-makers can save firefighters lives.

The use of robot teams in cooperation with human teams for search and rescue operations

allows decisions to be made closer to the place to which they relate, based on information

provided by various sensors of the robots and the human team experience. Robotic teams can

assist human teams in USAR missions, browsing in dangerous areas and with low visibility

looking for survivors, providing important information to define the context in which the

teams operates, allowing more rapid, efficient and safer operations for the human teams and

allowing the CCO to anticipate hazardous events for agents on the ground.

1National Institute for Occupational Safety & Health
2International Association of Fire Fighters



Chapter 1. Introduction 3

However, the whole operation will always be planned, monitored and controlled from the

Command Center (CC), so this work aims to develop a computer interface capable of pro-

viding an overview of events in the theatre of operations, monitoring the status, location

and actions of all agents operating in the terrain, as well as the logistical resources mobilized

within the mission, providing this central node with all information available to support the

commander decisions.

This interface aims to automate some tasks that are nowadays carried out manually by the

commander, including recording and monitoring information coming from every agent in the

TO, and generating operational warnings when critical situations are detected. In this way,

the person in charge of the mission can avoid being distracted with collecting and organizing

such information, being focused in analyzing it and making decisions.

1.2 Objectives

The objectives of the present work are to design a system to integrate firefighters’ operations

and robot teams on the TO, defining the requirements of the HumanMachine Interface (HMI)

to plan, control and monitor search and rescue actions, providing the decision maker with the

perception of the running events on the ground, thus enhancing Situation Awareness (SA)

and leading to a higher level of cognitive control over the situation.

The design must also support SA for multiple and distributed operators, providing collabora-

tion among agents, by integrating different technologic platforms and definition of a message

taxonomy for data-interchange.

The cooperative exchange of information in order to decentralize some decisions is achieved

by using the latest technologies, such as fixed large touch screens, hand held devices, inter-

net access, and robots with several sensors, communicating over a Mobile ad hoc Network

(MANET) providing best-effort communication to the search and rescue teams.

Due communication constrains in unpredictable and dynamic environments, tag mission

information for later retrieval represents a relevant feature to define context in time and

space, therefore, main events of USAR operations are registered in a database for prior

context definition during ongoing actions and subsequent analysis of the course of the mission.



Chapter 1. Introduction 4

1.3 Approach followed in this dissertation

Interaction design is a formal discipline to support the design of products to support people

in their everyday and working lives [RSP11]. The objective of interaction design is to ensure

that a product is usable, useful and the taken actions make sense to the users.

Interaction design follows one of four approaches: user-centered design, activity-centered de-

sign, systems design and genius design. While user-centered design is focused on translating

the user needs and goals, which is helpful to improve acceptance of the end users; activity-

centered design approach is focused on tasks and activities that have to be accomplished,

allowing high level of task automation, but leading sometimes to poorly designed systems,

hard to learn and operate; systems-design is focused on the components of the system, using

the whole context to provide a holistic approach to system design, deemphasizing the users’

skills; and finally genius design relies on the skill and wisdom of the designer to make design

decisions, involving the final user at the end of the process, to ensure the system works as

the designer has predicted.

In an collaborative environment, as USAR missions, technology plays a central role in es-

tablishing a knowledge common ground based on ubiquitous computing, enhancing SA for

the CCO and teams on the ground. [EBJ03] proposed a user-centered design methodology

to determine SA requirements conducted by a form of cognitive task analysis, designated as

Goal Directed Task Analysis (GDTA), based on the goals and decisions of the systems’ op-

erators, providing a flexible Level of Automation (LOA), by enhancing the information that

should appear in the displays to support collaboration among them and decision making.

To understand the concept of operations and model first responders operations on the ground,

several meetings were promoted with the domain experts, firefighters’ corporations and mem-

bers of the National Authority for Civil Protection (”Autoridade Nacional de Protecção

Civil”) (ANPC) structure: Bombeiros Sapadores de Coimbra, Bombeiros Voluntários da

Mealhada and Bombeiros Sapadores de Faro; with the district command of ANPC: Paulo

Palrilha, 2.o (”COmandante DIStrital de Operações de Socorro”) (CODIS) de Coimbra and

José Bismark, CODIS de Aveiro; and documentation review of the manuals of the Firefighter

National School (Firefighters National School (”Escola Nacional de Bombeiros”) (ENB)),

ANPC standard operating procedures (NOPs) and Portuguese legislation.

The gathered material allows to identify the mission goals, the tasks performed by first

responders and acting patterns in unpredictable environments, leading to the elicitation of



Chapter 1. Introduction 5

user requirements and the design of user interfaces, supported by interaction design principles

and Goal Directed Task Analysis (GDTA) .

The integration of firefighters operations and the use of ubiquitous computing in the scope

of the CHOPIN project is presented in Figure 1.1, where the context of this dissertation is

delimited by the red box.

Figure 1.1: Scope of the project.

The integration of technologies introduced by the CHOPIN project with CCO were tested

in controlled laboratory environment, namely local maps transmission, robots’ pose, envi-

ronmental variables readings, victims and fire-outbreaks location and firefighters status.

1.4 Outline of the dissertation

This document is organized in six chapters and four appendices. The first chapter introduces

the context and motivation, the objectives and the approach followed to attain the objectives,

using interaction design techniques.

In chapter 2, firefighters actions methodology in USAR missions and the used documentation

are analyzed to specify the first requirements of the system (top-level requirements), and give

an overview of the product main functions and the definition of use cases, thus presenting

the main classes of the system. The operating environment is defined and characterized.



Chapter 1. Introduction 6

Chapter 3 analyzes the interface requirements for the CCO system, addressing interaction

design methodologies, context-aware and the Human-Robot Interaction constraints to de-

termine the overall Human Machine Interface requirements with top-level decision makers

and human/robotic agents on the ground, connected through a proposed message taxonomy

to support the information flow between the system participants. It is also presented the

hardware and software interfaces required by the proposed system.

The designed solutions of the HMI interface are presented in chapter 4, along with a descrip-

tion of the integration of HTML5 and JavaScript with the Qt framework for the graphical

tactical situation; the data interchange between CCO and Robot Operating System (ROS),

for publishing and subscribing topics; techniques tested for occupancy-grid transmission to

the CCO; the firefighters and robots features accepted by the system; and the gesture recog-

nition feature provided by the application.

Chapter 5, introduces the database requirements analysis and design, using a clustering

technique, to register the chain of main events in the incident, in order to support SA

tagging.

Chapter 6 presents the results of this dissertation, describing the steps taken by the tactical

actors, in a simulated incident, with several images of the proposed interface, and the relation

between pages.

Finally, Chapter 7 presents the main conclusions of this dissertation and provides directions

for future work within the scope of the CHOPIN project.



Chapter 2

Requirements Analysis

2.1 Application Context

Operational model and procedures of civil defense agencies and fire departments of different

countries are similar. Usually, the incident response mission is triggered by an emergency

call to the control centre which mobilizes first responders to the incident zone. The first

responders’ commander starts to gather as much information as possible about the incident

(reconnaissance phase) and defines an appropriate response tactics. On field level, the com-

mand post is settled and the incident commander must get an understanding of the amount

of additional resources and the level of command required [NOP12] [GHC09].

2.1.1 Operation Mode of Portuguese Firefighters

The smallest operational unit of the portuguese firefighters is the Team , which is com-

posed by five or six firefighters, where the team commander is the firefighter with highest

rank [Des08].

The structure of the command station is evolutive, and changes as the incident takes other

proportions and evolves to a different phase, thus changing the structure of command and

the layout of resources on the ground [NOP12]. The phasing of the incident depends on

the complexity and number of resources involved. In phase I, for non complex operations,

up to six teams are involved, independently of their typology. In phase II, with resources

7



Chapter 2. Requirements Analysis 8

Figure 2.1: Layout of the CC vehicle.

equivalent to three groups, with six teams each, the Operations Section (”CÉlula de Combat-

e/OPerações”) (CECOP) is activated. For phases III and IV, the Operations Management

System (”Sistema de Gestão de Operações ”) (SGO) is divided into three sections:

• Planning Section (”CÉlula de PLANeamento”) (CEPLAN)

• Logistics Section (”CÉlula de LOGı́stica”) (CELOG)

• Operations Section (”CÉlula de Combate/OPerações”).

This structure is used in complex and large catastrophic scenarios and, in this last phase,

operations are conducted by a member of the National Authority for Civil Protection (”Au-

toridade Nacional de Protecção Civil”) (ANPC) structure. The Command Center (CC) uses

nowadays a vehicle with magnetic white boards to manually record all incidents on the ground

[Figure 2.1], coordinate the operations of the Urban Search and Rescue (USAR) teams and

manage the resources on the Theatre of Operations (”Teatro de Operações”) (TO).

As the level of command changes, the new Incident Commander (”Comandante das Operações

de Socorro”) (COS) should identify clearly and unambiguously all set of resources, struc-

tures, type of ongoing and planned actions on the TO, therefore ANPC adopted a common

operational symbology for the management of USAR operations [Form D.9]. These tools

allow representing graphically and dynamically all main events and key information con-

cerning the ongoing occurrence, and understanding the transmission of operational informa-

tion at different levels of command, control and execution (strategic, tactical and maneuver

levels)[NOP09b].

All the planned and ongoing actions, as well as teams and resources (planned and avail-

able), are represented in a white board designated by Tactical Situation (SItuação TÁCtica)



Chapter 2. Requirements Analysis 9

(a) SITAC on magnetic board in CCO (b) Forms on magnetic boards in CCO

Figure 2.2: SITAC main board and forms to register incidents on the ground in the PCO.

(SITAC) [Form D.5], which is updated in the course of operations providing mission global

awareness.

Other predefined forms are used to record the structure of command, damages, victims, com-

munications plan, mobilized resources and weather reports distributed through the respective

boards in the CC, as shown in Figure 2.2.

All communications are centralized in the CC, based on analog radio communications and on

the Portuguese Integrated Security and Emergency Network System (”Sistema Integrado das

Redes de Emergência e Segurança de Portugal”) (SIRESP), which is based on the European

Terrestrial Trunked Radio (TETRA) communication system. Therefore, the update of the

boards relies on information that is requested to agents on the ground and on their reply.

Commanders on the field rely on information to take the proper actions to control the incident

and save lives of civilians and firefighters. The information that reaches the commander

normally exists in large quantity and quality, but may not arrive in time, due to limitations

of communications equipment, existence of shadow zones, and the accumulated stress of the

team commanders. This time delay, as well as the amount of information the CCO have to

process, may prevent the right decisions in the right time, thus putting at risk the mission

or delaying predefined tactical actions to be taken.

2.1.2 Decision making

Command and Control (C2) in firefighters operations is based on a hierarchical military

model with predefined acting rules. Nonetheless, if the decision maker is an expert, he/she



Chapter 2. Requirements Analysis 10

Figure 2.3: The dynamic OODA loop (DOODA loop). functions are given in black,
products in red, and inputs in green

interacts with the situation at a skill-level of cognitive control, where the decisions are

generated subconsciously.

At a rule-based level of cognitive control, the decision maker is familiar with the situation,

forming his decision on prior experiences or learned from another person’s know-how, where

the control of behavior at this level is goal-oriented, knowing that other alternatives of action

are available.

On a novel or unfamiliar situation, the decision maker acts on a knowledge-based (also called

model-based) level of cognitive control, involving the transformation of declarative knowledge

into procedural knowledge [Ras93].

The command and control model in a USAR mission is similar to the one used in military

actions, Boyd’s OODA loop (observe - orient - decide - act ). Brehmer [Bre05] propose a work

flow model to describe how members of the command teams perform their tasks, merging

the OODA loop and cybernetic approaches to Command and Control [Figure 2.3].

The data is collected from visual contact, information received from firefighters and survivors

and from the system. The mission is planned based on gathered information, pre-defined

USAR actions and the commander experience, transmitting the orders to accomplish the

mission and waits feedback effects to reformulate the plan of action until the mission is

completed.

In dynamic and unpredictable environments such as USAR missions, all three levels of con-

trol can interact with the situation depending on the decision maker expertise and his/her

training level.



Chapter 2. Requirements Analysis 11

2.1.3 Risk Assessment

One of the main problems that firefighters face in USAR missions, is the rapid fire phe-

nomenon, which has three basic types, with accepted scientific terminology: Flashover, Back

draught and Fire Gas Ignition, which conducts to high rising temperatures in a small period

of time, injuring and killing nearby firefighters. Then, becomes of utmost importance the

recognition of the warning signs of these impending events [SOG06], sharing the information

with the surrounding agents so they can try to leave the hazard area.

Some of these warnings comprise changes in smoke conditions, like color alterations (partic-

ularly darkening), high velocity of smoke through an exit, sudden lowering layer of smoke

and pulsing (raising & lowering cycle in the layer); heat alterations forcing agents to crouch

low; detection of hazard conditions with inflammable gases. These changes in the environ-

ment can be detected by fusing several sensors readings of different systems, like robots and

firefighter’s wearable devices, augmenting situation awareness.

The three main tactics used in preventing or counter rapid fire development are tactical

ventilation, fire confinement and 3D water-fog tactics, whilst the use of these tactics are

decided in the CCO, incident commander should make his/her decision based on the better

knowledge of the context where the teams are working in.

2.1.4 Situation Awareness

Generally, Situation Awareness (SA) is a human’s understanding of what is happening around

the human operator at the current point in time and in the near future. Endsley et al.

[EBJ03] divides the formal definition of SA into three separate levels:

• Level 1 - perception of the elements in the environment;

• Level 2 - comprehension of the current situation;

• Level 3 - projection of the future status.

During the decision making process, is of utmost importance that decision makers obtain

high levels of situation awareness. Figure 2.4 demonstrates the relation between the decision

making process and the SA levels proposed by Endsley et al. [EBJ03].

USAR missions occur in highly dynamic and unpredictable environments where the situation

is always changing forcing operator’s SA to change constantly or become inaccurate. Human



Chapter 2. Requirements Analysis 12

Figure 2.4: DOODA loop functions and Situation-awareness levels

operators have limited attention capacity to attend to multiple items simultaneously, and

Miller [Mil56] states that only seven (plus or minus 2) chunks of unrelated information can be

held and manipulated in humans’ working memory, which consist in two major constraints

for SA.

In these dynamic environments, where information changes constantly and is hard to ob-

tain, other factors can deteriorate significantly SA, like attentional-tunnelling, data overload,

workload, anxiety, fatigue, misplaced salience, errant mental models and out-of-the-loop syn-

drome.

The system design must take these factors into account to avoid them, create and main-

tain high levels of SA and the fact that decision makers form mental models of how the

system works to form higher levels of SA (comprehension and projection) providing default

information even when data is incomplete or missing.

For a stronger situational awareness, the messages passed among agents and the CCO should

be clear to influence the effectiveness of information.

2.2 User Scenarios

The analysis of the organization of the management operations system of firefighters in

search and rescue missions, and integrating the robots in operations to assist decision makers

and firefighters in their actions on the ground increasing situational awareness, leads to

the definition of the high-level requirements of the CCO and the conceptual domain model

[Figure 2.5].



Chapter 2. Requirements Analysis 13

Use Case 1 - Tactical mode and risks assessment

Upon arrival, the incident commander characterize the incident , access the risks

in order o take proper actions, fill the adequate identification form and write a

Situational report (”POnto de SITuação”) (POSIT) . From the analysis of

the collected data , incident’s commander define the objectives of the mission and the

tactical mode for each sector/team and communicate it to the Support Officer, the

Operations Commander and/or the Sectors commanders. The Operations commander

assigns the define tasks to the teams and the Support Officer updates the incident

status to the ANPC control center [Figure A.2].

Use Case 2 - Theatre of Operations organization

The level of command is settle by the ANPC or according with rules in the NOPs,

and the incident commander establishes the incident areas , composed by the inner

area and the outer area , with a traffic point to control the entrances in the TO and

inform the public. The commander defines the incident sectors around the incident

core and deploys the resources in the defined areas. These operations are registered

in the SITAC board with appropriate graphical symbology.

As the incident phase changes, the system changes the structure of the incident alerting

the commander defines establishes the PCO, composed by three cells (Operational Cell,

Planning Cell and a Logistic Cell with a Concentration and Reserve Area ) [Figure A.1].

Use Case 3 - Search and Rescue

The incident commander assigns the tactical goals for search and rescue victims, from

the collected data, deploying the robots in the SITAC board and sending a signal

to start the mission. If a victim is found the robots communicate the occurrence

to the CCO, with the register in the Victims Board , and to the nearby agents

which have assigned mission tasks classified as non-critical and if they are suitable

equipped regarding the environmental classification, to carry out the rescue operation,

the system inform the incident commander about the situation and suggests options, so

the proper actions can be taken, as assign a team to proceed with the rescue operation

and mobilizing an available ambulance or requesting a new one to the Control Center

[Figure A.7].



Chapter 2. Requirements Analysis 14

Use Case 4 - Fire attack

The Operations commander (COS) evaluates the situation and defines the tactical

goals of the mission briefing the firefighters and deploying the robots. The commander

defined tactics may include a fire exposure protection, to protect the nearby structures,

an exit protection so the firefighters and victims can move away from the incident area,

an offensive or defensive fire attack tactic or eventual tactical ventilation, which is

registered in the SITAC board. The commander or the user designated by him/her

operates a large touch screen with combined views of the actions on the ground.

Use Case 5 - Manage personnel

The incident commander assign the tactical goals of the mission and brief the crew

in a clear manner to maintain SA, monitors the crew deployment and the progress of

the agents on the ground. The operations commander updates the tactical goals for

the sectors commanders, so the defined tactics can be implemented by the operational

teams. The command support officer updates the status of the personnel to the ANPC

control center.

Use Case 6 - Manage resources

The incident commander mark available sources of water in the surroundings and re-

quest new sources of water to provide a continuous flow of water supply. All the vehicles

and other equipments are placed on the map, requesting more resources if the existing

ones are insufficient. This data is updated by the operations commander in response

of updates demand supply of the sectors commanders, and forwarded to the ANPC

control center by the command support officer.

The domain classes of the system are depicted in italic and presented in the domain model

in Figure 2.5

2.3 User Classes

The use cases in Appendix A demonstrate the distinct roles of robots, firefighters and com-

manders within the system. These diagrams also mention the various boards which are

updated during the operations. The strategic and tactical commanders are outside the hot

zone with access to these boards controlling the progress of ground operations. According

to their function and location, systems’ user classes are identified.



Chapter 2. Requirements Analysis 15

Incident
Area

Outer
Area (ZCR)

Inner
Area  (ZA)

Hot
Spot (ZS)

Sector

Traffic
Point

Planning
Cell

Operations
Cell

Logistics
Cell

Team

RobotPCO

Vehicle FirefighterSector
Commander

Team
Commander

Tactical 
Reinforcement

Incident
Commander

Operations
Commander

Planning
Officer

Logistics
Officer

Map

Victim FireOutbreak Environmental
condition

SmokeMapSpatialMap GasMap TempMap

Meteo Info

Water supply

SCBASCBA
Status

Damage

Posit

Control
Center

Support
Officer

builds

detects

reports

reports

reports

usesmonitors

writes

updates

Figure 2.5: Conceptual domain model of incident operations

• The incident commander and the supporting officers are located in the same

physical space with access to fixed large touch screens, sharing the same information.

• The sector commanders are located within the limits of the accident area, moni-

toring the course of actions within its sector, using tablets connected to the network

to interact with the system and the agents on the ground.

• The breath apparatus entrance control officer coordinates the Self-Contained

Breathing Apparatus (SCBA) activities, when adverse conditions in the building re-

quire a tight entrance control to limit the time of exposure to the incident. This can

be achieved by registering SCBA activities and the firefighters information in the re-

spective board with a tablet connected to network. SCBAs with level control are too

expensive and the activities must be time controlled, echoing an alarm, when the de-

fined limit is reached, in the firefighters’ board and in the mobile device attached to

the firefighter.

• Firefighters operate inside the sinister area, to search and rescue potential victims,

determine hazardous conditions and inform the COS about their actions and course of



Chapter 2. Requirements Analysis 16

the mission. The firefighters use a mobile device with sensors, e.g. smart phone, con-

nected to the system by a Mobile ad hoc Network (MANET) to update the firefighter

status and send/receive some small messages and signals (e.g. if the firefighter stay

still for more than thirty seconds an alarm will echo to warn the command center and

the other firefighters nearby.

• Robots provide crucial information, building temperature, gas and 2D maps and iden-

tifying potential victims and hazardous conditions for the agents on the ground. This

information is registered in the robots’ board, the SITAC board, victims’ board and

the operations board. Robots are connected to the Base Station (BS) through the

MANET and communicate with the CCO using a predefined set of messages.

• ANPC control center receives request for new resources and status reports updates

through the support commander officers and is external to the system.

2.4 Operating Environment

USAR missions operates in extreme conditions, under severe interferences caused by the sur-

rounding environment, with communications with low signal strength, the communications

between the nodes (CCO, firefighters and robots) relies on a MANET, to ensure data trans-

mission, taking advantage of the proximity between agents on the ground, bridging through

neighbors to reach the message destiny.

BaseStation

Internet

Wireless connection

CCO

Robot_2

Robot_1

Robot_3

Firefighter team 2

Firefighter team 1

Firefighter team 3

Alpha team
commander

Figure 2.6: System architecture

Robots use Robot Operating System (ROS) to communicate, publishing and subscribing

topics to share information about the surrounding environment and interacting with the



Chapter 2. Requirements Analysis 17

firefighters on the ground. ROS framework provides standard operating system services

such as hardware abstraction, low-level device control, implementation of commonly used

functionality and message-passing between processes.

Interconnection between these different systems relies on Rosbridge which is an applications

layer network protocol specification and allows the non-ROS participants to publish and

subscribe topic messages and invoke services running on the base station using JavaScript

Object Notation (JSON)-formatted messages over Transmission Control Protocol (TCP) web

sockets.

Web socket is a protocol providing full-duplex communications channels over a single TCP

connection. It provides a way for the server to send unsolicited data to the client, and

allowing for messages to be passed back and forth while keeping the connection open, which

is suitable for to publish/subscribe ROS topics messages.

The system relies on a BS where all services are running, the ROS framework (RosCore,

RosBridge and RosAPI) and MySQL server to store all the incident main events. The CCO

can be installed in the BS, or in another device, connected via Ethernet to the BS. Base

Station operating system must support the ROS framework which is primarily tested on

Linux and Mac OS X systems.

The information sharing between human and robotic teams and the command center is ex-

tremely important and it is required to use a common base for validation and communication

between the used platforms like JSON which is an open standard format that uses human-

readable text to transmit data, language-independent, used by Rosbridge as message format

and it’s possible to take advantage of Qt native parser/serializer to decode/encode topic

messages.

Figure 2.7: Communication structure of the different actors.



Chapter 2. Requirements Analysis 18

2.5 Summary

This chapter started by defining the context where the application is going to operate, ana-

lyzes the operation model of the portuguese firefighters, with the elicitation of technologies

and equipments they use, introducing some constraints related to the decision-maker tasks,

the risk-assessment necessary to preserve human lives and property, addressing the bases

of the necessary common operational picture exploitation to prevent the deterioration of

situational-awareness of the end-users. Hereafter, the analysis of the possible user scenarios

in USAR operations provides guidance to the identification of the user classes of the system,

that together with the characterization of the operating environment leads to the definition

of the interface requirements presented in the next chapter.



Chapter 3

Interfaces Requirements

3.1 Hardware Interfaces

The interaction interface is supported by the hardware interface where several views of the

Human Machine Interface (HMI) are distributed over fixed touch screens for the tactical

operators, mobile devices (e.g. iPADs) for the Sector Commanders (SC), smart phones (e.g.

iPhones) for the firefighters and multiple sensors (lasers, sonars, dust, alcohol and pyroelectric

sensors) for the robots on the Theatre of Operations (”Teatro de Operações”) (TO). All these

devices can be used to share information and implement collaborative context awareness.

The use of computers, tablets and smart phones increases the ability to transmit other

data types, complementing the standard audio channel used in search and rescue scenarios.

Robots provide important information for strategic decision and enable a better context

definition. The visual information for representing tasks status; planning and ongoing actions

are transmitted more accurately than verbal communication [Ash07].

Adding ”Touch” technologies functionality provides a more intuitive operation mode. More-

over, the development of online mapping websites has become popular, facilitating access to

geospatial maps that were only available through a Geographic Information System (GIS),

allowing a detailed view of the surrounding TO. Databases with Global Positioning System

(GPS) coordinates, combined with mapping web sites, can be a helpful tool to indicate

several crucial points (e.g. Hydrants) and the location of available resources within the TO.

Devices indicated here only serve as a proof of concept, and should be replaced by more

rugged and appropriate devices in real Urban Search and Rescue (USAR) missions.

19



Chapter 3. Interface Requirements 20

3.2 Software Interfaces

The Command Center of Operations (”Centro de Comando de Operações”) (CCO) is de-

veloped using the Qt application which is a cross-platform framework that uses standard

C++ and a special code generator (called the Meta Object Compiler or moc) together with

several macros to enrich the language. Qt runs on major desktop platforms and on some

of the mobile platforms, like Linux, Windows 8, iOS and Android. Other important fea-

tures includes: signals & slots programming; HTML5 and JavaScript support, necessary to

make use of the Google Maps Application Programming Interface (API); Structured Query

Language (SQL) database access; eXtensible Markup Language (XML) and JavaScript Ob-

ject Notation (JSON) parsing; thread management and network support, expanding options

to mainstream the different technologies needed to develop the project.

Communications between the agents on the ground and the CCO are based on tufao web

socket, an asynchronous web framework for C++ that takes advantages of Qt’s object com-

munication system (signals & slots) and is free software published in terms of the Lesser

General Public License (LGPL). [Oli12].

In Base Station (BS), the applications layer network protocol rosbridge provides a JSON

API to Robot Operating System (ROS) functionalities for the non-ROS applications through

the WebSocket interface rosbridge server. While the CCO application gains access to ROS

services calls with the package rosapi, to determine topic types and to request messages.

Integration of Google Maps with the application is provided by QtWebkit, which is an open

source web browser engine. Its API allows Qt applications to render regions of dynamic

web content providing a mechanism of signals & slots to communicate with the JavaScript

loaded in the WebView widget.

3.3 Interaction design requirements

The interface design development is focused on finding a suitable representation that engages

the end-user inputs to achieve the desired system output, making the application usable and

useful [Saf07].

To meet these criteria the CCO interface development addresses to some interaction design

laws that should be observed for a good Human Machine Interface (HMI) . Therefore,

clickable objects, like operating buttons, are designed to have reasonable sizes and placed



Chapter 3. Interface Requirements 21

preferentially on the edges and corners of the screen to make it easier and faster to operate,

since they are huge targets, with theoretically infinite height or width, because the mouse

stops at the edge of the screen even with a fast movement, by referring to Fitts’ law [Fit54]

which states ”the time it takes to move from a starting position to a final target is determined

by two factors: the distance to the target and the size of the target”.

This law is a model of the human movement that predicts that the time required to move

to a target area is a function of the distance to the target and the size of the target, and

Equation 3.1 is the Shannon formulation of Fitt’s law proposed by Scott MacKenzie [Mac92].

MT = a+ b× log2

(

1 +
D

W

)

(3.1)

WhereMT is the movement time to the target (sec); D is the distance between the pointing

device and the target (cm); W is the size (diameter) of the target (cm); a = 0.230sec and

b = 0.166sec are constants, experimental determined and target dependent.

Gesture recognition is added to the application combined with large touch screens to meet

the Fitts’ law statement, because it is more natural and faster for a user to point to an object

with his finger rather than with the mouse pointer. The selectable objects has an associated

information window or pop-up menu next to them, with no more than ten options to allow

a direct manipulation of the object and a faster decision of which action to take.

Hick-Hyman law [Hic52, Hym53] says that the time it takes the user to make a decision

is determined by the number of options available, which is consistent with George Millers

Magical Number Seven rule, where he states that the human mind is best able to remember

information in chunks of seven pieces, plus or minus two, having some difficulties to keep

more than that information amount in short-term memory [Mil56].

The design of an application to operate in a dynamic and unpredictable environment, capable

of enhancing Situation Awareness (SA) and maintaining knowledge common ground for

decision makers and operating agents presents large complexity, so according to Teslers law

of Conservation of Complexity it is important to transfer some complexity to the system.

Teslers law states that there is a point beyond which it’s not possible to simplify a process

any further, and some complexity can only be transferred from one place to another [Saf07].

This is achieved automating some processes, drawing alarm signs and eliminating redundant

tasks to focus the decision makers’ attention in really compelling operations.



Chapter 3. Interface Requirements 22

The system interaction design must be driven by the Poka-Yoke principle, avoiding (yokeru)

inadvertent errors (poka), to adjust some behaviors of the end users and prevent eventual

errors. This principle was created in 1961 by the Japanese industrial engineer and quality

guru Shigeo Shingo. To accomplish this principle the system must inform the end user

after a performed action (feedback) to trace operation success and before an action is taken

(feedforward) so the operator knows what is about to happen, limiting the options of the

end-user.

3.4 Context-awareness requirements

The overall system design is context-aware, exploiting decentralized collaboration between

human and robotic teams, sharing the surrounding context with the nearby agents and the

CCO.

Abowd et al. [ADB+99] define context as any information that can be used to characterize

the situation of an entity, where an entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user and ap-

plications themselves. The most relevant context types to characterize the situation of a

particular entity, according to this author, are location , identity , time and activity

defining the primary level of context, responding to the questions, where , who, when and

what [Figure 3.1].

Figure 3.1: Context types to characterize a situation

So every feature in the system presents this primary information content to characterize the

context.

The definition of Context-aware is not a consensual issue, requiring application’s behavior

be modified to be considered context-aware, Abowd et al. [ADB+99] states that ”a system



Chapter 3. Interface Requirements 23

is context-aware if it uses context to provide relevant information and/or services to the

user, where relevancy depends on the users’ task”. This context-aware definition is more

general, therefore applications that only displays context information about the mission’s

environment without modifying its behavior, are also classified as context-aware application.

Context-aware applications support features depending on the context, so Abowd et al.

[ADB+99] propose a context-awareness taxonomy, fusing the taxonomy proposals of

Schilit et al. [SAW94] and Pascoe [Pas98], into three categories:

1. presentation of information and services to a user :

• agents and the CCO have the knowledge of discovered features locations and

status, thus enhancing SA;

• robot agents fuse data sensors readings to activate CCO and nearby agents ap-

plication widgets when relevant features in the environment changes, alerting

end-users in a convenient form for context alteration, reducing data overload;

• also visible options to the end-user reflect the possible actions to be taken in

accordance with the surrounding context;

2. automatic execution of a service:

• using an appropriate level of automation and decentralizing some decisions from

tactical actors, the system responds to particular context changes activating ser-

vices, which without any reasonable doubt, the human actor should take (e.g.

firefighter with a Self-Contained Breathing Apparatus (SCBA) should receive a

retreat order after half time work of the used device capacity;

• after an evacuation command, if a human agent is moving towards a blocked exit

or a hazard area, agents on the ground with different SA should warn and provide

an alternative exit for the firefighter);

3. tagging of context to information for later retrieval:

• information context sharing provides the users with contextual augmentation with

additional digital information. Environmental alterations and new discovered

features are registered in the database to encompass contextual events of the

surroundings and forwarded to the agents enhancing SA.



Chapter 3. Interface Requirements 24

3.5 Human-Robot Interaction requirements

USAR missions are classified as synchronous (at the same time) and non-collocated

(in different spaces) in the canonical Computer-Supported Cooperative Work (CSCW) Ellis

et al. [EGR91] ”Time-space taxonomy”, but taxonomy does not cover the dimension of

collaborators communication mode, which is an important feature in USAR missions, which

can also be classified as collocated (in the same space) in our approach to collaborative

work between human and robotic teams.

Yanco and Drury [YD04] present a taxonomy to classify Human-Robot Interaction (HRI)

and overcome the ”Time-space” and other proposed taxonomies constrains. In the scope of

the Cooperation between Human and rObotic teams in catastroPhic INcidents (CHOPIN)

project, this taxonomy is adapted to support the situation awareness’s five components of

the HMI [Figure 3.2]: human-robot, robot-human, human-human, robot-robot and humans

overall mission awareness [DHYS04].

Context Identity

Time/Space

Activity Task type

Task criticality

Shared level of interaction

Autonomy

Team composition

Tactical mode

Mission

Decision support Provided sensors

Sensor fusion

Pre processing

Figure 3.2: Taxonomy for multi-agent HRI

The relevant categories for the USAR system are:

1. Task Type [TT]: robots and firefighters on the ground perform different tasks as victim

search, detection of fire outbreaks and hazard conditions and reading environmental

variables, reflecting the assigned objective of the agent. These tasks have different

procedures or are incompatible with the declared tactical mode



Chapter 3. Interface Requirements 25

2. Task Criticality [TC]: the first aim of USAR missions is to protect human life,

rescuing incident victims and assuring firefighters physical integrity, therefore some

tasks have higher priority than others, by giving primacy to the protection of human

life on the protection of property. Task criticality of an agent’s mission can only be

changed by the CCO.

3. Composition of Teams [CRT]: agents on the ground should know who their team-

mates are. Although they can collaborate with other team members it is important, for

context characterization, that robot agents can recognize their teammates, as human

agents do.

4. Level of Shared Interaction Among Teams [LSI]: in the scope of the CHOPIN

project, CCO gives orders to a team of robots [Figure 3.3.B] that need robot-robot HRI

awareness to coordinate themselves, although, in order to decentralize some decisions,

the remain combinations are possible to occur in USAR scenarios [Figure 3.3].

5. Decision Support for Operators [DSO]: The agents on the ground should have:

• a list of provided sensors - includes a list of sensing type to the operator for

decision making.

• a list of the type of sensor fusion, e.g. {{sonar, ladar} → map}

• the amount of pre-processing of sensors for decision support, e.g. {ladar → map}

6. Time/Space [TS]: One of the major features to define context is the interveners’

location and time, therefore both robots and firefighters should communicate these

aspects within the incident area, during the assigned mission.

7. Autonomy Level [AL]: In this work, the level of autonomy is considered to be the

capacity (battery level for robots and SCBA level for firefighters) to ensure a safe exit

for the agent, considering the duration of working time, the distance to the nearest

safe exit, the consumption rate and the remaining time to travel the escape path.

3.6 Human-Machine Interface requirements

The system interaction design should be directed by users’ concerns to make it more at-

tractive and easier to use (user-centered) but also focused on the tasks the user must

accomplish (activity-centered ).



Chapter 3. Interface Requirements 26

CCO

R

CCO

R R R R

CCO FF

R

R R R R R

CCO FFCCO FFCCO FFCCO FF

R R

A B. C D

E F G H

CCO

Figure 3.3: The possible combinations of CCO, firefighters and robots, acting as individ-
uals or in teams. (adapted from [YD04])

Changing methodologies always find some resistance, therefore the use of the National Au-

thority for Civil Protection (”Autoridade Nacional de Protecção Civil”) (ANPC) forms and

the analysis of its usual procedures may contribute to a greater acceptance of the proposed

model for search and rescue operations. Using the same symbology defined by ANPC will

improve the acceptance of the system because users will feel comfortable with the vocab-

ulary used. The graphical environment should be easy to operate, using informative icons

with large dimensions representing actions, since they are better remembered than text

commands , allowing drag&drop operations, resizing and rotating objects.

The actions on the tactical situation board will have a side effect on the forms of the ANPC to

create a level information automation eliminating redundant tasks and enhancing situation

awareness with the use of dynalinks where information depicted in one window explicitly

changes in relation to what happens in another [SR96].

Information visualization is used to amplify human cognition, enabling the users to see

patterns, trends, and anomalies in the visualization [CS99] enhancing discovery, decision-

making, and explanation of phenomena using touch screens with a shareable interface, pro-

viding a large interactional space that can support flexible group working and simultaneously

view the interactions and have same shared point of reference as others. The use of graph-

ical simulations - ”provide the illusion of participating in a synthetic environment rather

than external observations of such environment” [EGJ93], to create a highly engaged user

experience enhancing SA.

Endsley et al. [EBJ03] describe 50 principles of designing for SA, where four are directly

intended to the display of information to support shared SA:



Chapter 3. Interface Requirements 27

• Principle 45: Build a common picture to support team operations

• Principle 46: Avoid display overload in shared displays

• Principle 47: Provide flexibility to support SA across functions

• Principle 48: Support transmission of different comprehensions and projections across

teams.

The defined HMI must have these principles into account to support shared understanding,

to interact with all agents on the ground and characterize awareness. Situation awareness

in this HMI has five components: human-robot , robot-human , human-human , robot-

robot and humans overall mission awareness [DHYS04].

Therefore, the HMI should:

• Provide maps of where the firefighters and robots have been, providing spatial infor-

mation of the immediate surroundings, thus enhancing awareness;

• Avoid the ”mental” (or manual) data fusing by human agents by providing automated

multi-sensor information fusion;

• Display multiple robots on a single window, increasing efficiency and providing the

Command Center (CC) operator with the most appropriate level of automation at any

given time [DHYS04].

However, the use of a higher level of automation may lead to a poorer acceptance by end

users. Therefore, it is important to seek a balance between human/manual and automated

operation; a mixture of human and automated control is desirable [MP07].

3.6.1 Functional Requirements

The system will interact with all the actors on the ground through transactions on the screen

by the end user meeting the functional requirements listed in the following tables.



Chapter 3. Interface Requirements 28

Search and Rescue requirements

Table 3.1: Search and Rescue Functional Requirements

N.o Requirement

SRFR 01 The system will record automatically victims discovered by the robots,

as well as their location and status, with an associated warning to the

end-user with a visual and acoustic alarm.

SRFR 02 The end-user is be able to mark victims communicated by the firefighters,

as well as their location and status publishing information with agents on

the ground.

SRFR 03 The end-user must be able to activate the robot video camera (if it is

present in the robot provided sensors list) to identify a potential victim

and evaluate their state.

SRFR 04 The end-user must be able to define a new goal for a robot or a team of

robots publishing a new area to scan.

Command and Control requirements

Table 3.2: Command and Control Functional Requirements

N.o Requirement

C2FR 01 Change tactical mode of operations and communicate it to all the involved

agents (Offensive, Defensive and Transitional).

C2FR 02 Classify the incident and fill an appropriate form to help him to make a

risk assessment.

C2FR 03 Write a situational report and should be able to send it.

C2FR 04 Define initial coordinates of deployed robots on the ground and initiate

their mission

C2FR 05 Record the developments of tactical situation: all tactical actions will

be recorded in the command board to get an overview of the incident

evolution

C2FR 06 Write/draw task information and communicate it to the agents.



Chapter 3. Interface Requirements 29

Situation Awareness requirements

Table 3.3: Situation Awareness Functional Requirements

N. Requirement

SAFR 01 Track robots on the ground

SAFR 02 Track firefighters on the ground

SAFR 03 Know the firefighter status

SAFR 04 Know the robot status (battery level, mission,...)

SAFR 05 Display local plant of activity

SAFR 06 Display temperature map

SAFR 07 Display gas map

SAFR 08 Know the location of hazardous materials

SAFR 09 Know the location of fire outbreaks, their state of evolution and the class

of fire

SAFR 10 Record areas where searches were carried out

SAFR 11 Display images supplied by the robot

SAFR 12 Record existing damage on site

SAFR 13 Display incident time line

Self-Contained Breathing Apparatus requirements

Table 3.4: Self-Contained Breathing Apparatus Functional Requirements

N.o Requirement

BAFR 01 Know the SCBA users and team composition

BAFR 02 Know the SCBA characteristics (capacity, level,..)

BAFR 03 Know the mission time of the SCBA users

BAFR 04 The system should know the level of the SCBA, the consumption rate and

the distance from the exit to estimate the turn-around-time.

BAFR 05 Calculate the turn-around-time (TAT), display it on the screen and alert

the SCBA Entry Control Officer and the firefighter when that time is

reached.



Chapter 3. Interface Requirements 30

Resources Management requirements

Table 3.5: Resources Management Functional Requirements

N.o Requirement

PMFR 01 Know the resources deployed in action and in reserve, and their commit-

ment within the mission.

PMFR 02 Know the communication plan and the assigned communication channels.

PMFR 03 Record the existing command structure on site.

User Warnings requirements

Table 3.6: User Warnings Functional Requirements

N.o Requirement

UWFR 01 Status of all visual aids should be displayed to the controller

UWFR 02 Alarms and warnings to alert the end user of risk situations

UWFR 03 Alarms to warn the user:

1. Acoustic alarms

2. Visual alarms

UWFR 04 The user can disable alarms, but they will be activated again if no action

is taken and the risk associated with alarm increases.

3.6.2 Non functional requirements

In a search and rescue scenario, all operations are controlled and coordinated by the com-

mander of the rescue operations (Incident Commander (”Comandante das Operações de

Socorro”) (COS)) that should be aware of the conditions of the incident and register it in the

Tactical Situation (SItuação TÁCtica) (SITAC) form using adequate symbology [NOP09b].

The situation of the incident should be represented according to the forms, diagrams and

symbols used by firefighters for easy reading and operation.



Chapter 3. Interface Requirements 31

End User Operation

Table 3.7: End User Operation non Functional Requirements

N.o Requirement

EUnFR 01 A sequence of actions should be designed to be logical from the perspective

of the user, not from the perspective of computer processing or ease of

programming

EUnFR 02 Interactive control logic should permit completion of a task with the min-

imum number of actions. However, this should not be to the detriment of

situation awareness or consistency

Information Display

Information should be presented simply and in a well-organized. Ways to achieve simplicity

include the following non functional requirements listed in Table 3.8:

Table 3.8: Information Display non Functional Requirements

N.o Requirement

IDnFR 01 The screen should be orderly

IDnFR 02 Information should be presented in consistent, predictable locations

IDnFR 03 The language used should be plain and simple

IDnFR 04 Data items on a screen should be grouped on logical principles basis

IDnFR 05 Information shall be presented to a user in directly usable form; a user

shall not have to decode or interpret data.

IDnFR 06 Data should be gathered logically to help the user in his tasks

IDnFR 07 Fonts used for texts should be legible with adequate size and contrast

IDnFR 08 The data needed for an interaction shall be displayed in a directly usable

form

IDnFR 09 Information density should be minimized, in particular, for displays used

for critical task sequences

IDnFR 10 Paging or scrolling can be used when the amount of information to display

does not allow display on a single page

IDnFR 11 A system shall interrupt a user only when necessary to guide the user for

a response, to provide essential feedback, or to inform the user of errors

Continued on next page



Chapter 3. Interface Requirements 32

Table 3.8 – Continued from previous page

N.o Requirement

IDnFR 12 The wording of displayed data and labels shall be chosen to reflect the

user’s point of view and shall correspond to the user’s operational language

IDnFR 13 Words in the command language dialog shall reflect the user’s point of

view and shall correspond to the user’s operational language

IDnFR 14 The response time of a system to a user action shall be appropriate to this

type of action.

IDnFR 15 A maximum response time shall be determined for each type of action.

IDnFR 16 In case of a system failure during an interaction, the system should keep,

as far as possible, the maximum of information in order not to have to

start again the same interaction.

IDnFR 17 Colors, different levels of brightness, blinking colors shall be used to the

following aims:

1. Show the agents status on the ground

2. Draw attention to emergencies

3. Identify critical situations

4. Improve readability and perception of the end user

IDnFR 18 The information should be presented in a way that non critical objects do

not overlap with critical objects

IDnFR 19 To provide a clear awareness of the situation on the ground, the following

information shall be displayed:

1. Different symbols for firefighters and robots

2. Target information (position, speed, identification, task, status) on

labels and windows

3. Conflict alerts (visual and audible)

IDnFR 20 The user should be able to select the view he/she want, but the critical

warnings of other views should appear to draw the attention to a new

event.



Chapter 3. Interface Requirements 33

3.7 Summary

This chapter defines the functional and non functional requirements of the application, pro-

viding an overview of the desired hardware characteristics and software interfaces to achieve

the project goals. The choice of hardware technologies with touch capabilities, reliable open-

source operating systems, standard software languages and consolidated frameworks, aims

not only to ensure the system’s robustness, but also to streamline the application develop-

ment time and reduce production costs. Hereafter, the application interface requirements

are defined, addressing some consolidated HMI techniques and methodologies, namely the

Fitt’s law, the Hick-Hymann law, the Tesler’s law of complexity and the poka-yoke principle

guiding the user in the system’s operation, alerting for important events and preventing

inadvertent user errors. A broader definition of context is also presented, fusing the tradi-

tional taxonomies of Schilit and Pascoe, combined with a HRI taxonomy proposed by Yanco

and Drury [YD04] to support the overall situation awareness of the system, supporting the

designed solutions presented in the next chapter.



Chapter 4

Designed Solution

4.1 Taxonomy of information flows

The information sharing between human and robotic teams and the Command Center (CC)

is extremely important and it is required to use a common base for information validation and

communication between the used platforms. This common base should be appropriate for

data-interchange, language independent and human-readable, with two possible solutions

to solve this issue, eXtensible Markup Language (XML) and JavaScript Object Notation

(JSON).

XML is a subset of the Standard Generalized Markup Language (SGML) and is a universal

data representation format. It is a user-defined hierarchical data format and is used to create

user-defined markups for documents and encoding schemes, applied in object serialization

for data transfer between applications.

JSON is designed to be a light-weight data-interchange format and easy for humans to

understand. Although based on a subset of the JavaScript Programming Language, JSON

is a text format that is language-independent, and is used for transmit data objects between

applications, consisting of attribute-value pairs.

In an Urban Search and Rescue (USAR) scenario, fast and reliable communication is required

and JSON claims a lightweight payload reducing bandwidth needs and allowing faster trans-

fers, leading to lesser processing time [Cro06], but according to Lee [Lee13], given a document

object, one can produce identical sized JSON and XML representations. Furthermore, this

34



Chapter 4. System Features 35

representations compress to nearly identical size which is an indicator that they contain ap-

proximately the same entropy or information content, so transferring these documents to a

wide variety of devices takes effectively the same time per device [Lee13].

The ROSBridge protocol grants access to the underlying Robot Operating System (ROS)

messages and services as serialized JSON objects, providing communication among the dif-

ferent agents in the system through a single web socket connection (Figure 2.7) enabling

non-ROS users to publish and subscribe topics and call services as a true ROS node, conse-

quently the messages are described in JSON format.

The analysis of the actions performed by agents on ground level, the relevant information

to the performance of the mission and their interaction with the command center, leads

to the identification of an initial set of messages for controlling and monitoring operations

allowing collaborative context awareness. Messages are classified into five classes: command

& control, location, status, conditions and mapping, according with their content, priority

and function. The tree structure of the messages is presented in Figure 4.1.

Message Taxonomy

Command and Control

start2Scan()

area2Scan()

task2Perform()

tacticalMode()

Status Messages

searchCompleted()

batteryStatus()

scbaStatus()

teamComp()

sharedLevel()

Conditions Messages

securityCondiitions()

altExit()

siteView()

Mapping Messages

tempMap()*

spatialMap()*

gasMap()*

smokeMap()*

Location Messages

robotPose()

firefighterPose()

victimFound()*

fireOutbreak()*

hazardMat()*

Figure 4.1: Tree structure of the messages between the CC, firefighters and robots (* in-
dicates priority messages).

The messages are published/subscribed as ROS topics, with a defined namespace to identify

the topic publisher and a field to indicate the receiver classes with their respective id. The

CC will always have id=”0” and the other agents id’s will start with ”1”. If a message is

sent to a robot or firefighter with id=”0”, the message should be broadcasted to all instances

of the class. If an agent receive a ROS message with an id 6= 0 and different from its own id

the message should be ignored.



Chapter 4. System Features 36

A complete description of the messages is presented in Appendix B.

4.2 Design of the CC human-machine interface

The design of the CC human-machine interface allows the operator to define new incidents

and navigate through previously registered occurrences, using a navigation bar [Figure 4.2].

This bar is located on the top of the screen, to meet the criteria of the Fitt’s law, and uses

typical graphic icons to illustrate the correspondent action, making operation easier for the

end users.

Figure 4.2: Incident navigation buttons.

Tactical actors can switch between the pages they are using, by selecting an option directly

from the page selector at the bottom of the screen, or by turning across the pages using the

arrow buttons on the left and right side of page selector bar [Figure 4.2].

Figure 4.3: Screen selector.

The Identification screen [Figure 6.1(a)] is based on an National Authority for Civil Protec-

tion (”Autoridade Nacional de Protecção Civil”) (ANPC) form, depending on the incident

classification [Figure D.1]. This screen adopts the same layout and colors of the form to meet

information display non-functional requirements.

To enhance situation awareness, the decision maker has a global overview of the structure of

the incident and of the communication plan in the Structure screen [Figure 6.2(a)], organized

in a tree structure, combining several forms already used in firefighters’ operations [Figure D.6



Chapter 4. System Features 37

and Figure D.10]. The entries in this screen are generated by actions taken in other screens

in the application and depends on the incident phase level.

The incident commander and the sector commanders make situational reports whenever is

required or in a thirty minutes time span, presented in the POSIT screen [Figure 6.2(b)],

based on the ANPC form in Figure D.7. This screen layout provides also a summarized view

of the entities and resources involved in the mission.

The definition of the Theatre of Operations (”Teatro de Operações”) (TO) areas and sectors

in the hot zone, as well as the deployment of resources on the ground and the adopted

tactical mode are achieved in the Tactical Situation (SItuação TÁCtica) (SITAC) screen

[Figure 6.1(b)], adopting the ANPC form [Figure D.4] and graphical symbology [Figure D.9]

already used by the firefighters in their missions. This screen uses Googlemaps to overcome

the constraint of lack of maps, faced by firefighters in many operations, providing a graphical

tool for automating redundant tasks, since the operations in SITAC are stored in the database

and the modified features has effects on other screens.

The remaining pages [Figure 6.5(a), Figure 6.5(b) and Figure 6.1] uses table view widgets to

implement the forms used by the decision makers [Appendix D] addressing the Resources,

Agents, Fire outbreaks, Victims and Hydrants, wherein the data are automatically filled by

actions on other pages, or manually filled by the tactical actors to register a radio commu-

nication during the mission. The damages and meteo info screen are only filled manually by

the operators.

The resources engaged in the incident, as well as their commitment to the mission and actual

status are based in a proper form [Figure D.13] from ANPC and presented in Figure 6.5(a).

In the Ros Info screen [Figure 6.3(a)], the operators connects the CC with the Base Station

(BS) through a WebSocket, to get a complete set of the available ROS messages published

by the robots and firefighters on the field. These messages has a namespace to identify the

publisher, and are presented to the user organized in a tree structure, on the left side of the

screen. The tactical operator selects the desired message and subscribes it, to receive the

data transmitted in that topic. All the subscribed topics are presented on a tree view on the

right side of the screen. This approach allows the operator to see which topics are published

and which are subscribed.



Chapter 4. System Features 38

4.3 Interface with human and robotics first responders

The interface with human and robotic first responders in urban search and rescue activities

represent a fundamental role in obtaining situation awareness. Whatever are the robots

capabilities, the interface must provide the command center with sufficient information to

make the correct decisions [MWH04]. High level in tasks autonomy of the robot relieves the

commander of the operations to focus his attention in more high-level aspects.

The different requirements of the USAR mission determines different interfaces for different

tasks, so it’s critical that the commander of the operations keep a status awareness of the

mission, so it’s proposed an interface based on strategic games which have been developed

in the last years for a better and intuitive interaction of the user and the scenario and their

interveners, where it’s possible to identify the agents, their location and status, as presented

in Figure 6.3(b).

Communications with the BS and the ROS framework is achieved through the layout in

Figure 6.3(a), where all the published topics and their publisher appear on the left and the

subscribed topics appear on the right. The end user selects the desired topic to subscribe and

move it to the subscribe window to start receiving information from the agent. Whenever

a topic is subscribed, the publisher agent is added to the operational map, reflecting the

agent status on the ground allowing the interaction between Command Center of Operations

(”Centro de Comando de Operações”) (CCO) and the agents.

Although robots try to find victims with their sensors, and the humans are commonly viewed

as commanders, planners and managers, they are more noteworthy for their sensory feats

[LW09] and could be helpful determining the victim condition, especially if the victim is

trapped or unconscious, and only an arm or a leg is visible. So the interface is based on

First-Person Shooter (FPS) video game which provides the primary source of surroundings

awareness, as presented on the lower right corner of Figure 6.3(b).

Video and image transmission can overload the communication channel, therefore, the end

user has the ability to connect/disconnect the video transmission.

4.4 Graphical SITAC

Google maps are a powerful Application Programming Interface (API) which facilitates the

access to online maps with Global Positioning System (GPS) coordinates. These maps use



Chapter 4. System Features 39

a spherical Mercator projection based on WGS84. Firefighters use geographic coordinates

in the Degree, Minutes, Seconds (DMS) format based on the global datum WGS84, which

is the reference used by the GPS systems. Because earth is not a perfect sphere, datums

are known as geographic shapes of the earth, which can be applied to maps so coordinate

systems can still work perfectly, and they are classified as local datums and global datums.

Conversion between dms (degree, minute, seconds) and dd (decimal degrees) coordinate

formats is straightforward using Equation 4.1 and Equation 4.2.

dd = d+
m

60
+
s

3600
(4.1)

dms =






d = trunc(dd)

m = trunc(|d| ∗ 60) mod 60

s = (|dd| ∗ 3600) mod 60

(4.2)

Using google maps, the CCO can construct the graphical SITAC with drag&drop operations

with immediate knowledge of the geographic coordinates of resources deployed on the ground.

So every time a symbol is placed or dragged in the map, a signal is emitted, with the

coordinates and description of the JavaScript object, to a slot in the application updating

the database with the object data.

A similar feature is used, to update the graphical SITAC, with a signal emitted in the

application and connected to a JavaScript function loaded in the WebView.

Another important aspect for the CCO and operators of the application is the calculation

of distances between two latitude/longitude points. The calculations are based on a spher-

ical model of the earth, ignoring the ellipsoidal effects. Distance calculations between two

latitude/longitude points are based on the haversine (’half-versed-sine ’ (1−cosθ)
2

= sin2( θ
2
) )

as described by Roger Sinnot [Sin84]:

a = sin2(
Δϕ

2
) + cos(ϕ1) ∗ cos(ϕ2) ∗ sin

2(
Δλ

2
) (4.3)

Where ϕ is the latitude, λ is the longitude, Δϕ = ϕ2 − ϕ1 and Δλ = λ2 − λ1.

The shortest distance between two points over the earth’s surface is given by:

c = 2 ∗ atan2(
√
a,
√
1− a) (4.4)



Chapter 4. System Features 40

d = R ∗ c (4.5)

Where R = 6 371 137 m, is the earth’s mean radius, and the angles are in radians.

Taking advantage of this feature, one can use the distance from one arbitrary common

point chosen by the Incident Commander (”Comandante das Operações de Socorro”) (COS),

defined as origin (0,0 ), and click on the entrance where the robots are deployed and thereby

determine the relationship between the robot coordinate frame and map coordinate frame.

4.5 Communication within ROS

Class RosMsg() is responsible for handling all communications with the web socket. Once the

connection is established, the class queries ROS for published topics and receives all messages

available in the WebSocket in the onMessage() slot. This query is fired out every 5 seconds

to detect new published topics or the loss of communication with an agent on the ground. As

stated before, messages topics are received in JSON format and have to be parsed, to become

understandable for the application and the end user. Due the heterogeneous structures of

ROS messages, a recursive function parseMsg() is used to handle the topics structure. The

parsed data is inserted into a model to be presented in the interface in a tree style.

4.6 Map transmission

Robots use multi-robot simultaneous localization and mapping (MRSLAM)[Mar13] to gener-

ate a coherent global map of the environment using a team of cooperative robots, transmitted

later to the CCO whenever a network link is available. The generated map is an occupancy-

grid representation where the value in each cell represents the probability of occupancy, from

0 (unoccupied) to 100 (occupied), and -1 (unknown). Transmission of an occupancy-grid over

a wireless connection through a WebSocket proved to take a long time due the default size

of the grid. To overcome this constraint, the map is compressed before transmission and

decompressed after it is received. The data is compressed with the zlib library, using the

deflate algorithm which is a combination of the Lempel-Ziv (LZ77) algorithm [ZL77] and

Huffman coding [Huf52]. This algorithm is lossless which means the original data can be

fully reconstructed.

The LZ77 algorithm eliminates duplicate bytes by inserting a back-reference link to the

previous location of the identical byte sequence, then the Huffman coding replaces the most



Chapter 4. System Features 41

frequently used symbols by shorter bit-sequence representations and the less used symbols

with longer bit-sequence representations, completing the second stage compression.

Deflate is not the most efficient compression algorithm, but is implemented in a manner not

covered by patents [Deu96], leading to its widespread use, with free implementations like

the zlib library distributed under the Berkeley Software Distribution (BSD) license without

advertising clause.

To test this feature and improve the transmission of maps between the BS and the CCO

application, a ROS node was developed to subscribe the /map or /Globalmap topic, com-

press the map and publish the new topic /compressedMap. CCO subscribe this topic and

uncompresses the received map, showing it on the Operational Map screen.

listener robot_1 robot_1/map

Code Excerpt 4.1: Launch ROS node to compress and publish the map

Comparative results of transmission time through the WebSocket of uncompressed and com-

pressed map (672× 460 occupancy grid), are presented in Figure 4.4:

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Transmission n.º

T
ra

sm
is

si
on

 ti
m

e 
(m

se
c)

Occupancy grid transmission

 

 
Uncompressed map
Compressed map

Figure 4.4: Transmission time of a map through the WebSocket.

Shannon [Sha48] formulated the theory of data compression, stating that there is a limit to

lossless data compression, called entropy rate, denoted by H [Equation 4.6].

H(X) = −
n∑

i=1

pi ∗ log2pi (4.6)

where pi is the probability of the i-th value of the information source and log2pi is the

information content. The values in the information source are statistically independent.



Chapter 4. System Features 42

Over time, the occupancy-grid presents different sized information sources with different

distributions, thus calculating the Shannon entropy for each information source, to quantify

the expected value of information content to be transmitted through the WebSocket, one

can expect a larger compressed file whenever the information is transmitted.

As the grid-based map become more accurate, the information content rises, leading to a

higher entropy rate [Figure 4.5(a)] and consequently larger files to transmit through the

WebSocket [Figure 4.6(a)] creating a bigger latency in the CCO application.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Occupancy grid transmission

E
nt

ro
py

 v
al

ue

(a) Full map entropy evolution.

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Occupancy grid transmission

E
nt

ro
py

 v
al

ue

(b) Full map difference entropy evolution.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Occupancy grid transmission

E
nt

ro
py

 v
al

ue

(c) Full map difference entropy evolution (key frame=10).

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Occupancy grid transmission

E
nt

ro
py

 v
al

ue

(d) Full map difference entropy evolution (key frame=15).

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Occupancy grid transmission

E
nt

ro
py

 v
al

ue

(e) Windowed map difference entropy evolution.

Figure 4.5: Shannon entropy measurements (672x460 occupancy grid).

Different strategies where tested to improve the map transfer and reduce the bottleneck

effect originated in the WebSocket. Calculating the differences between the last transmitted



Chapter 4. System Features 43

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Occupancy grid transmission

N
.º

 B
yt

es

(a) Full map transmission (130 488 bytes).

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Occupancy grid transmission

N
.º

 B
yt

es

(b) Full map difference transmission (58 837 bytes).

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Occupancy grid transmission

N
.º

 B
yt

es

(c) Full map difference w/ key frame (10) (64 224 bytes).

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Occupancy grid transmission

N
.º

 B
yt

es

(d) Full map difference w/ key frame (15) (61 587 bytes).

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Occupancy grid transmission

N
.º

 B
yt

es

(e) Window map difference transmission (48 567 bytes).

Figure 4.6: Transmitted bytes measurements (672x460 occupancy grid).

map and the new map, leads to an information source with lesser entropy [Figure 4.5(b)],

and consequently a higher compression ratio, with a small number of bytes through the

communication channel [Figure 4.6(b)].

Due to communication link failures over a time span, parts of the occupancy-grid fail to

reach the CCO and the map will be incoherent. To overcome this constraint a key frame is

established and in a communication time span, the entire map is transmitted filling even-

tual missing parts of the map. As expected, this approach leads to higher entropy values

[Figure 4.5(c) and Figure 4.5(d)], compared with the simple map difference strategy, and

consequently to a smaller compression ratio, increasing the number of bytes through the

WebSocket [Figure 4.6(c) and Figure 4.6(d)], but enabling a more reliable map transmission.



Chapter 4. System Features 44

Large occupancy-grids (e.g. 2048× 2048 cell grid) cause an overhead in the communication

channel, even with compressed data, so another algorithm was tested, where the map differ-

ences defines the window boundaries of the data to send to the CCO and only the relevant

information is transmitted through the web socket. This information is added to the CCOs’

map in the positions determined by the sender.

4.7 Robots features

Robots can communicate their pose in the map frame using a geometry msgs/Pose message

calculated by the robot or directly through a tf/tfMessage where all the information about

the coordinate frames of the robots is available on any computer on the system, or yet using

the node robot pose publisher which convert the transform into a pose message. So it is

necessary to ensure that exists a valid transform between the /base link frame and the /map

frame. As stated before the published topics should contain a prefix to identify the robot

even in the /tf message (e.g. /robot 1/base link).

The transformation in free space between two coordinate frames is composed of a trans-

lation (geometry msgs/Vector3 ) and a rotation (geometry msgs/Quaternion) and a class

QQuaternion is available in Qt, so the calculation of the robot pose from the transform is

straightforward. Since:

Podom = Qbase link ∗ Pbase link ∗Q
−1
base link (4.7)

where Pbase link is the vector 3D transformed into the quaternion 0 + iPx + jPy + kPz, com-

bined with the rotation quaternion. Taking advantage of the quaternion properties, one can

determine the pose of the robot in the map frame from Equation 4.8.

Pmap = (Qodom ∗Qbase link) ∗ Pbase link ∗ (Qodom ∗Qbase link)
−1 (4.8)

Finally, the robot pose is translated to the screen frame.



Chapter 4. System Features 45

4.8 Firefighters features

The use of a mobile device equipped with sensors by firefighters, as used in the development of

the thesis work iBombeiro [Pin13], integrates the agents in the system through the framework

ROSBridge allowing them to publish and subscribe topics as a true ROS node. The status

of the agent is communicated to the CCO making use of the firefighterPose message [Code

excerpt B.14].

As is not foreseen communicate the firefighters pose, the end-user has to update the agent

position with drag&drop operations and broadcasting it on a topic message, along with the

undergoing assigned mission, to reinforce context awareness and the established knowledge

common ground on all actors in the mission. However, the firefighterPose message informs

the CCO about the situation of the firefighter with a string field indicating if he or she is

standing, climbing, descending, crouched or crawling allowing the user to infer on surrounding

environmental conditions. If the firefighters stand still over a time span larger than 30 seconds

an alarm is fired to warn CCO and the nearby agents, or if two or more agents progress on

the ground crouching or crawling for a long period, indicates an unsafe exit or area to avoid,

so the end-user provides actions to determine the location of the hazard zone and broadcast

it on a topic to the agents on the ground.

When the firefighter initiates an assigned mission with an Self-Contained Breathing Apparatus

(SCBA), starting time is registered establishing the effective work autonomy for the fire-

fighter - Aeff (min), depending on the device capacity - Cdevice(liters), the pressure gauge

initial reading - Pgauge(bar) and the estimated average consumption of air by a firefighter

during heavy work - 40 l/min, where the air reserve of the apparatus lasts approximately

10 minutes, thus securing the return of the firefighter [Gue05].

Aeff =
Cdevice × Pgauge

40
− 10 (4.9)

Therefore the system publishes a topic with a warning sign to the CCO and the firefighter

when the mission time exceeds half the effective work autonomy, reinforcing the warning as

time approaches the reserve time, finally broadcasts an alert message to the nearby agents

with the last known position of the agent.



Chapter 4. System Features 46

4.9 Environmental variables

In a close environment, fire characteristics, rising temperatures and the resulting toxic gases

can endanger the life integrity of firefighters and victims, creating unpredictable and risky

conditions under low visibility for the first responders. Robots equipped with sensors read the

environment variables to enhance situation awareness for the decision makers and firefighters

anticipating the use of the right tools to face hazard situations and prevent more serious

incidents.

Using multi-sensor fusion information, as proposed in the thesis work MRsensing [Fer13],

within Cooperation between Human and rObotic teams in catastroPhic INcidents (CHOPIN)

project, classification of several environmental readings determine the surrounding charac-

teristics and publish them in a topic [Code excerpt B.25] along with the position of the

event.

The subscribed topics information is registered in the database and the end-user can choose

to display or not the referred information.

4.10 Gesture recognition

In the operational map class, the occupancy-grids, the robots pose and all the events as-

sociated with victims and fire-outbreaks detection, as well the environment variables are

represented enhancing situation awareness. Gesture recognition capabilities are added to

the application to enable the end user to communicate with the computer and interact in a

more natural way.

Qt includes a framework for gesture programming with some specialized classes to implement

standard gestures. Although new gestures can be implemented, only standard gestures are

used in this application, Code excerpt 4.2 illustrates how to activate specific gestures in Qt.

(a) Pan gesture. (b) Pinch.

Figure 4.7: Gesture recognition.



Chapter 4. System Features 47

In this case, the application only uses the Pan [Figure 4.7(a)] and Pinch [Figure 4.7(b)]

gestures to manipulate the map allowing the user to rotate, zoom in and zoom out the

drawing area. One can achieve this reimplementing the general event() handler function

[Code excerpt 4.3] and delegating gesture events to a user defined gestureEvent() function

[Code excerpt 4.4]:

setAttribute(Qt:: WA_AcceptTouchEvents);

grabGesture(Qt:: PanGesture);

grabGesture(Qt:: PinchGesture);

Code Excerpt 4.2: Grab gestures in Qt.

bool MapView ::event(QEvent *event){

if (event ->type() == QEvent :: Gesture) {

gestureEvent(static_cast <QGestureEvent *>(event));

return true;

}

return QWidget ::event(event);

}

Code Excerpt 4.3: general event() handler function.

The proper response to gesture events is obtained examining the information contained in

the specific QGesture object delivered in the QGestureEvent, according to the gesture state.

bool MapView :: gestureEvent(QGestureEvent *event){

if (QGesture *pan = event ->gesture(Qt:: PanGesture))

panTriggered(static_cast <QPanGesture *>(pan));

if (QGesture *pinch = event ->gesture(Qt:: PinchGesture))

pinchTriggered(static_cast <QPinchGesture *>(pinch));

return true;

}

Code Excerpt 4.4: user defined gestureEvent() handler function.

When gesture state is in Qt::GestureUpdated, the object acquires a large set of values from

the input device and some abrupt changes can occur, due to read errors, originating jump

responses of the system. Using the discrete implementation of a simpleRC low-pass filter

[Equation 4.10] the system response is smoothed, eliminating undesired variations in the

rotating and zooming actions.

yi = α ∗ xi + (1− α) ∗ yi−1 (4.10)



Chapter 4. System Features 48

where α = ΔT
RC+ΔT

, by definition, the smoothing factor is 0 ≤ α ≤ 1.

The user changes between screens in the interface with the swipe gesture, which is simulated

using a pan gesture, allowing horizontal and vertical movements in changing pages [Code

excerpt 4.5].

case Qt:: GestureFinished:

if (abs(gesture ->lastOffset ().x())>abs(gesture ->lastOffset ().y())){

setVerticalMode(false);

if (gesture ->lastOffset ().x() >0) slideInPrev ();

else slideInNext ();

} else {

setVerticalMode(true);

if (gesture ->lastOffset ().y() >0) slideInPrev ();

else slideInNext ();

}

Code Excerpt 4.5: changing pages with pan Gesture handler function.

4.11 Summary

This chapter presents the designed solutions used to fulfill the requirements stated in the

previous chapter, proposing a message taxonomy, to ensure communication among the users

of the system and maintaining situation-awareness. These messages are presented in ROS

and JSON format to allow information interchange between the heterogeneous platforms.

Hereafter, the design of the screens adopt the layout of ANPC forms and symbology to

improve the acceptance of end-users, leading to the implementation of a graphical SITAC,

by integrating HTML, JavaScript with C++ language, thus providing a graphical tool to

plan and control the operations on the ground.

In order to improve communications with ROS, when maps are transmitted through the

WebSocket, some algorithms were tested, wherein the use of differences between maps pro-

duces smaller compressed data to be transmitted, thus reducing the transmission time and

the application latency.

The developed features applied to robots, firefighters and environmental features are pre-

sented, where the information interchange is supported by the proposed message taxonomy

and the database presented in the next chapter.



Chapter 5

Database Analysis

An Urban Search and Rescue (USAR) mission can involve a large number of resources and

personnel, from different entities, and can attain a high degree of division complexity and

communications channels can be overloaded by the information flow to report occurrences

originated in the incident. Capability to register events is added to the Command Center

of Operations (”Centro de Comando de Operações”) (CCO) with a database to capture the

structure of the mission and maintain historical data.

Due to the large number of entities involved, one can follow a top-down approach to define

the conceptual data model using the clustering concept where collections of entities and rela-

tionships comprise higher-level objects, allowing to represent the entire database conceptual

schema [Figure 5.1], where the entity clusters are depicted in yellow and maintain the same

relationships between entities inside and outside the entity cluster, as occur between the

same entities in the lower-level diagram. No attributes are presented in this higher-level

diagram to provide a clear view of the major functionalities areas of the database.

From the database requirement analysis, six major groups and their relationships are iden-

tified:

• the incident itself;

• the deployed resources (teams, vehicles, robots);

• the personnel (decision makers, specialists, firefighters);

• the incident divisions (sectors, cells, sections, areas);

• the occurrences originated by the incident (victims, fire outbreaks, tactics);
49



Chapter 5. Database Analysis 50

Incident
(entity cluster)

1.1

Resources
(entity cluster)

1.4

Divisions
(entity cluster)

1.2

Occurrences
(entity cluster)

1.3

divided_in

inc_resources_sectors

inc_report_occurrence

originated_in operate_in

Persons
(entity cluster)

1.5
inc_div_commander

inc_team_ff

Location
(entity cluster)

1.6

in_conc in_fregin_dist

in_conc in_dist

inc_resources_zcr

inc_res_commander

inc_posit

incident

1

inc_divisions

1...*

in
c_

se
ct

or
s

0...1

inc_resources

0...*

inc_resources

0...*

inc_occurrences

1...*

in
ci

de
nt

1

in
c_

oc
cu

rr
en

ce

1...*

incident

1

inc_resources

1...*

tb_person

0...*

inc_division

0...1

inc_teams

1...*

tb
_f

ire
fig

ht
er

s

0...*

tb_conc

1

in
ci

de
nt

1...*

tb_freg

1

incident

1...*

tb_dist

1

incident

1...*

tb_conc

1

1...*

tb_dist

1

1...*

tb_corporation

in
c_

zc
r

0...1

0...*

inc_resources

0...*

tb
_p

er
so

n

0...1

in
c_

co
s

0...*

incident
1

Figure 5.1: Database conceptual schema - root entity cluster.

• the location of the incident.

The incident occurs in a location classified by the Portuguese regional country division,

characterized by three relationships with the location cluster

Each division of the incident is commanded by a person of a firefighters’ corporation or an

external entity and has a location in Theatre of Operations (”Teatro de Operações”) (TO),

changing over time depending on the incident evolution (inc div commander).

The resources working in the incident are located in a sector (inc sectors) or in the con-

centration and reserve area (inc zcr). The resources are commanded by a person, and

eventually this commander can change over time, yielding a 1:M relationship optional on

both sides, therefore inc res commander holds the tb person and inc resources primary keys.

The same rationale applies to the all ”many-to-many” (N:M ) relationships inc team ff and

inc report occurrence regardless the involved entities are mandatory or optional. All actions

are coordinated by the Incident Commander (”Comandante das Operações de Socorro”)

(COS) which have to communicate the inc posit in a predefined time span.



Chapter 5. Database Analysis 51

5.1 Conceptual cluster models

5.1.1 Incident cluster

The incident cluster is expanded in Figure C.2 showing the associated entities and respective

relationships and also the relationships with other clusters. The first entity involved is the

”incident”, and the kind of occurrence determines the used form. This table registers all

data of the main event, time of occurrence, location and classification. Different topics are

gathered depending on the incident classification [NOP09a], and the incident is a general-

ization of four types of occurrences (forest fires, structural incidents (Figure D.1), hazard

materials incidents and traffic accidents), so depending on its complexity, a different struc-

ture is defined (Divisions cluster ) and resources are mobilized and deployed on the ground

(Resources cluster ). The sequence of events is registered in the occurrence table (Occurrences

cluster).

5.1.2 Incident divisions cluster

The structure of the incident is defined by its complexity, depending on the phase of the

incident, and the number of resources deployed on the ground, so every incident is divided

into sectors with operating resources, which can change over the incident time span, and an

incident commander (inc cos) to coordinate the operations, chosen by his rank and expertise,

which can have a group of assistants (inc assistants) as liaison agents with external entities.

As the incident grows in complexity and number of resources, other operational and strategic

units are settled (inc cells) with an assigned commander, like the operational cell which is

responsible to coordinate the incident sectors (inc sectors), the planning cell, assisted by

specialists (inc specialists) depending on the nature of the incident, and the logistics cell

which is responsible for the coordination of the concentration and reserve zone (inc zcr).

The inc zcr comprise several areas (sgo zcr) depending upon the incident complexity and

deployed resources.

5.1.3 Incident occurrences cluster

The incident occurrence cluster is expanded in Figure C.4 and the main entity inc occurrence

is a generalization of the different events transmitted by the operating resources, to regis-

ter the maps transmitted by the robots (inc maps table), the encountered fire-outbreaks



Chapter 5. Database Analysis 52

(fire outbreak ), the reported structural damages in the building (damages), the potential

hazard environment in an area (hazard condition) and the victims found and their state

(inc victims). Some occurrences can have a position or a pose stored in inc occurrence pose.

To enhance context-awareness of the incident commander, fire outbreaks are classified with

a class (tb fire class) and a status (tb fire status), and the discovered victims are charac-

terized with a state (tb victim state), a condition (e.g. ”surface”, ”trapped”, ”entombed”,

”unknown”) (tb victim condition), a situation (e.g. ”aware”, ”semi-aware”, ”unconscious”,

”unknown”) (tb victim situation), a type (e.g. ”civilian”, ”firefighter”)(tb victim type) and

a nationality (tb nationalities).

Although these latter entities have only one attribute, besides the added primary key, they

are transformed into tables to support modifications in classification, if needed, determined

by a NOP change, without altering the application .

5.1.4 Incident resources cluster

The incident resources cluster is expanded in Figure C.5 and the main entity inc resources is a

generalization of firefighter teams (inc teams), vehicles (inc vehicles) and robots (inc robots).

Each firefighter’s team is assigned to a vehicle, but a team can be replaced for another

or the vehicle can fail and be replaced with by another, so this is represented by a 1:M

relationship, mandatory on the one side and optional on the M side, leading to a relationship

(inc vehicle team). The remaining relationships are 1:M mandatory on the M side so the

primary key of the entity on the ”one” side is an attribute of the entity on the ”many” side.

The entities tb robot class, tb vehicle type and tb vehicle group define the characteristics of

the vehicles and robots deployed on the ground.

5.1.5 Incident personnel cluster

Personnel in the TO comprise firefighters (tb firefighter ), members of the National Author-

ity for Civil Protection (”Autoridade Nacional de Protecção Civil”) (ANPC) (tb anpc) and

elements of other entities (tb others) aggregated in the generalization entity tb person. Each

person is a member of an entity (tb entities). Firefighters and ANPC members have an

identification number which could be used as primary key, but actors who belong to other

entities could not have one, also person can be a firefighter in an incident and an in another,



Chapter 5. Database Analysis 53

leading to a key violation error in tb person, so an auto-incremented primary key is defined

to uniquely identify the actors attached to the incident. Each person represents a role in

the incident, which can be a division commander (operations cell, logistics cell, incident

commander, supporting officer, . . . ) or a resource commander (team commander).

In hazard environments, firefighters use a Self-Contained Breathing Apparatus (SCBA) and

their lives depend on the breath apparatus characteristics and autonomy, these devices are

registered in a table (inc scba) and affected to a firefighter. It is possible to a firefighter to

use different breath apparatus, and one device be used by two or more agents (inc ff scba).

Firefighters have a hierarchical structure depending on a rank (tb firefighter rank), which

can be used to define the chain of command of the incident or of a team.

5.1.6 Incident location cluster

The incident location cluster is expanded in Figure C.7 and describes the Portuguese admin-

istrative country division. These divisions comprise districts (tb dist), where each district

divided in municipalities (tb conc) and each municipality divided in civil parishes (tb freg).

Although the territory was redefined under statistical regions and sub regions known as

Nomenclature of Territorial Units for Statistics (NUTS), during European integration, they

do not have legal status in law, so fire fighting and ANPC missions’ locations are still clas-

sified using the former administrative division of the territory.

5.2 Data modeling

The conceptual data model is implemented using Structured Query Language (SQL), by

transforming the Entity-Relationship Diagrams (ERDs) into three different kinds of tables

addressing to the following rules:

• Tables with the same information content as the original entity, when the binary rela-

tionships are many-to-many (M:M), one-to-many (1:M) on the one side; or one-to-one

(1:1) on either side - the only exception to this rule is when the relationship is 1:1

mandatory on both sides, and in this case the two entities are transformed in only

one table, and entities with any ternary or higher-degree relationship or generalization

hierarchy.



Chapter 5. Database Analysis 54

• Tables with foreign key from the mandatory side of the relationship, when the binary

relationships are one-to-many (1:M) for the entity on the M side; or one-to-one (1:1)

for the entity that is not mandatory.

• Tables derived from relationship containing the foreign keys of all the entities in the

relationship, when the binary relationships are many-to-many (M:M), relationships

binary recursive and all relationships that are ternary or higher degree.

Whilst there are some dependent weak entities and relationships, unique identifiers are de-

fined with an auto incremented field to overcome this constrain and streamline the program-

ming work with the model-view-delegate in Qt. The data model for each table in the system

is presented in Appendix C.

5.3 Summary

This chapter introduces the database analysis to register all relevant events of the incident,

introducing a clustering technique to aggregate the entities within the same functional areas

and their correspondent relationships, leading to the conceptual data model. Hereafter, the

transformation rules to convert the conceptual data model into SQL are presented, leading

to the CCO database where all the events of the incident are registered.



Chapter 6

Results

6.1 Incident simulation and CCO operation

When first responders arrive at the incident scene, after an emergency call, the incident

commander size-up the incident and assess the risks, filling out the Identification Screen

[Figure 6.1(a)].

(a) Incident identification window. (b) Graphical SITAC.

Figure 6.1: Human Machine Interface of the CC.

On the screen, in Figure 6.1(b), three sectors are defined (in yellow) and the resources are

deployed using drag&drop operations providing their geographic coordinates location and the

assigned tactical mode (offensive attack - arrow) to the tactical user, changing the Structure,

POSIT and Resources screens.

55



Chapter 6. Results 56

The defined locations and deployed resources are stored in the database [Figure 6.5(a)] and

the information necessary to characterize the context is transmitted to the correspondent

agents, minimizing one of the DOODA’s loop introduced delay, by affecting other screens,

thus eliminating some redundancy.

As stated before, the incident structure is modified when the incident phase changes, there-

fore when the user changes the incident phase, the database will reflect the structure of

the incident with all the resources involved and the communication plan with the assigned

channels [Figure 6.2(a)].

Situation reports from commanders are stored in the database, providing the decision maker

with the current situations within the incident [Figure 6.2(b)], providing also the summarized

view of the entities and resources involved in the mission, defined in other screens, enhancing

overall situation-awareness.

(a) Structure layout and communications plan. (b) Posit layout.

Figure 6.2: Incident structure, Posit and Communications plan layout.

The screen in Figure 6.3(a) allows to establish the connection between the Base Station (BS)

and Robot Operating System (ROS), receiving data from the agents on field, displaying the

operational map [Figure 6.3(b)] and incident features, while the tactical actor operates the

application [Figure 6.4(a) and Figure 6.4(b)].

During the course of the mission, several occurrences should be discovered and reported to

the Command Center of Operations (”Centro de Comando de Operações”) (CCO), which

are grouped according with their category, presented in proper layouts and registered in the

database, alerting and prompting the incident commander to take proper actions.



Chapter 6. Results 57

(a) ROS layout. (b) Operational Map.

Figure 6.3: Human Robot Interaction of the CC.

(a) Subscribing ROS topics. (b) Rotate and Zoom operations.

Figure 6.4: Touch screen Operation.

These automated tasks simplify the command and control of various features, such as entry

control of Self-Contained Breathing Apparatus (SCBA) teams, by defining a time-based

turning point for of the SCBA users [Figure 6.5(b)], where a coloured control bar indicates

the SCBA status and the firefighter commitment within the mission, or creating an entry on

victims map, holding the evolution and state of the discovered victims incident [Figure 6.1].

6.2 Summary

This chapter presents the result of the several interaction design techniques applied in the

definition of the Human Machine Interface (HMI) for the CCO application, presented in



Chapter 6. Results 58

(a) Resources. (b) Agents.

Figure 6.5: Resources and Agents layout

Figure 6.6: Victims layout

several screens, aiming to enhance the overall situation-awareness and achieve the desired

level of automation, promoting a better acceptance of the system by the end-users. The

application records and monitors information coming from agents on the ground, producing

operational warnings when critical situations are detected. Thus, minimizing the factors that

can deteriorate situation-awareness, such as, attentional-tunnelling, data overload, workload,

anxiety, fatigue, misplaced salience, errant mental models and out-of-the-loop syndrome, al-

lowing the decision maker to be focused in analyzing data and making decisions.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation aimed the development of the Human Machine Interface (HMI) for the

Command Center of Operations (”Centro de Comando de Operações”) (CCO) of Urban

Search and Rescue (USAR) missions, exploring decentralized and collaborative techniques

of collecting data to enhance Situation Awareness (SA), thus aiding decision making at the

top-level command of the mission structure.

The system interface followed interaction design principles to facilitate the operation and

ensure users’ engagement. Were also taken into account context-awareness requirements in

order to prioritize the relevant information for decision makers in the CCO, and Human-

Robot Interaction (HRI) requirements to provide a common ground for the CCO-human-

robot awareness. This was achieved with a messages taxonomy proposal, which provides a

common base for data interchange among the operating actors on the ground.

The system implementation, in controlled laboratory environment, provides functionality

results demonstrated by the interface’s ability to represent the maps generated by the robots

and status features transmitted by the robots and firefighters.

The integration of different technologies and operating environments, connected with a Web-

Socket introduces a relevant delay constraint due to the dimensions of the generated map.

Therefore, a solution with a combination of reduced map window differences and consequent

compression with the zlib library was tested reducing the number of bytes received and appli-

cation latency during maps transmission, although improvements were not those expected,

59



Chapter 7. Conclusions and Future Work 60

mainly due to orientation alterations of the maps, leading to increased regions of interest to

be transmitted.

7.2 Future Work

To meet the requirements that guide the Cooperation between Human and rObotic teams

in catastroPhic INcidents (CHOPIN) project and provide a wide and integrated context-

awareness becomes of major relevance to know the position of the firefighters on the ground,

supported by the availability of multiple indoor positioning technologies and techniques and

taken advantage of link quality parameter with the connected neighbors made available by

the Mobile ad hoc Network (MANET) developed in the project.

Although mobile internet connections and Googlemaps presents improved quality and re-

liability, based on redundant systems and servers, one must consider a system failure and

an alternative way to draw the Tactical Situation (SItuação TÁCtica) (SITAC) map on the

screen, either by loading a previously saved map or allowing the user to draw a freehand

map.

Aside the use of video cameras, one should consider the use of thermal cameras and/or

other group of sensors with the ability to read and interpret classic fire behavior warnings,

providing an augmented context-awareness useful to save firefighters lives.



Appendix A

Use Cases and System Models

A.1 Use-case diagrams

NOPs

Incident Commander

sector Commander

Traffic Point

setCommandLevel
setIncidentCells

sectorize

setIncidentAreas

setOuterArea

setInnerArea

informPublic

setOpCell

setLogCellsetPlanCell

Planning Commander Logistics Commander

Operations Commander

setZCR

«include»
«include»

«includes»

«includes»

«includes»

«includes»

«includes»

Control Center ANPC

Figure A.1: Theatre of operations organization use-cases.

61



Appendix A. Use Cases and System Models 62

IncidentCommander

assessRisks

defineObjectives

defineTacticalMode

communicate
TacticalMode

SectorCommander

OperationalCommander

updateAssignTasks

SITAC
Board

statusUpdate

Control Center ANPC

SupportOfficer

deployRobot

Identification
Board

review
TacticalMode

Figure A.2: Tactical Mode and Risk Assessment use-cases.

Incident Commander

assignTacticalGoals

briefCrew

monitor
CrewDeployment

monitor
Firefighter

Control Center ANPC

updatePersonnelStatus

SITAC Board

Firefighter Board

operationsCommander

updateTacticalGoals

sectorCommander

SupportOfficer

Figure A.3: Personnel Management use-cases.



Appendix A. Use Cases and System Models 63

Incident Commander

manageWater

manageEquipment

Control Center ANPC

updateResourcesStatus

SITACBoard

operationsCommander

updateDemandSupply

sectorCommander

SupportOfficer

Resources Board

Hydrants Board

Figure A.4: Resources Management use-cases.

SectorCommander

requestWaterSupply

maintainWaterSupply

pumpOperation

maintainFlowRate

assignTacticalGoals

Resources Board

SITAC Board

provideBackupLine

Firefighter

Hydrants Board

Incident Commander

Figure A.5: Manage Water supply use-cases..



Appendix A. Use Cases and System Models 64

SITAC
BoardIncident

Commander

SCBA
Board

assingTactical
Goals

coordinateSCBA
activities

monitorRobot

tempMap

monitor
SCBA

entranceControl

fireExposure
Protection

monitorFirefighter

tacticalVentilation

Robot
Board

Robot

fireTactics

buildMaps

fireConditions

safetyConditions

fireAttack

hazardMap

SectorCommander

egressProtection

BAeco

fireFighter

spatialMap

hazardMap

monitor
BatteryStatus

opMap
Board

«include»

«include»

«include»

«include»

«include»

«includes»

Firefighter
Board

Figure A.6: Fire attack use-cases.



Appendix A. Use Cases and System Models 65

SectorCommander
exteriorRescue

primarySearch

secondarySearch

rescueVictim

Incident Commander

assignTacticalGoals SITAC Board

Firefighter

coordinateSCBA
Activities

SCBA Board

BAeco

entranceControl

monitor
SCBA

Robot opMap Board

victims Board

monitor
Firefighter

Firefighter Board

monitor
Robot

Robot Board

monitor
BatteryStatus

«include»

«include»

egressProtection

Figure A.7: Search and Rescue use-cases.



Appendix A. Use Cases and System Models 66

A.2 Class diagrams

In
ci

d
en

t
A

re
a

O
u

te
r

A
re

a 
(Z

C
R

)
In

n
er

A
re

a 
 (

Z
A

)

H
o

t
S

p
o

t 
(Z

S
)

S
ec

to
r

T
ra

ff
ic

P
o

in
t

P
la

n
n

in
g

C
el

l
O

p
er

at
io

n
s

C
el

l

L
o

g
is

ti
cs

C
el

l

T
ea

m

R
o

b
o

t
P

C
O

V
eh

ic
le

F
ir

ef
ig

h
te

r
S

ec
to

r
C

o
m

m
an

d
er

T
ea

m
C

o
m

m
an

d
er

T
ac

ti
ca

l 
R

ei
n

fo
rc

em
en

t

In
ci

d
en

t
C

o
m

m
an

d
er

O
p

er
at

io
n

s
C

o
m

m
an

d
er

P
la

n
n

in
g

O
ff

ic
er

L
o

g
is

ti
cs

O
ff

ic
er

M
ap

V
ic

ti
m

F
ir

eO
u

tb
re

ak
E

n
vi

ro
n

m
en

ta
l

co
n

d
it

io
n

S
m

o
ke

M
ap

S
p

at
ia

lM
ap

G
as

M
ap

T
em

p
M

ap

M
et

eo
 In

fo

W
at

er
 s

u
p

p
ly

S
C

B
A

S
C

B
A

S
ta

tu
s

D
am

ag
e

P
o

si
t

C
o

n
tr

o
l

C
en

te
r

S
u

p
p

o
rt

O
ff

ic
er

bu
ild

s de
te

ct
s

re
po

rt
s

re
po

rt
s

re
po

rt
s

us
es

m
on

ito
rs

w
rit

es

up
da

te
s

Figure A.8: Domain class Diagram.



Appendix A. Use Cases and System Models 67

Control Center

incident

+start timestamp
+local
+classification
+gps coordinates
+alert source

incident Commander

+communication channel

solicitation

+timestamp
+resource
+cause

1

1..*

assignment

+timestamp

+area2Scan()
+task2Perform()
+tacticalMode()

team

+team commander
+front sector
+location
+communication channel

briefing

+timestamp

resources

+vehicle_id
+fire department
+localization
+front sector
+fighting group
+start timestamp
+end timestamp

robot

+timestamp
firefighter

+communication channel

+firefighterPose()

map

temp Map

+tempMap()

gas Map

+gasMap()

spatial Map

+spatialMap()

SCBA

+start timestamp
+end timestamp

+scbaStatus()

victim Search

+start timestamp
+end timestamp
+location

+searchCompleted()

fire attack

+start timestamp
+end timestamp
+location

tactical ventilation

+start timestamp
+end timestamp
+location

exposure protection

+start timestamp
+end timestamp
+location

fire isolation

+start timestamp
+end timestamp
+location

occurrence

+timestamp
+location

victim

+victimPose()

fire Outbreak

+fireStatus()
+fireBehavior()
+fireClass()

safeCondition

+securityCondition()
+altExit()
+hazardMaterial()

1

1..* 1..*

1..*

1..*

1..*

1..*

1..*

11

1
0..*

0..*

0..*

0..*

0..*

0..*

1..*

1..* *

0..1

0..1

reports evaluates

mobilizes

0..*

builds

uses

finds

assigned to

briefed

makes

ordered by0..* 1..*

Figure A.9: Fire Attack and Search and Rescue class diagram.



Appendix A. Use Cases and System Models 68

visual inspection of the incident area,
determine conditions, like access,
exposures, barriers, etc.
Define tactical and strategic operations
and brief the agents

robots starts building the maps (spatial,
temperature, and gas) to be shown in
the tactical board

request for an EMS everytime a victim is
found

exchange between firefighters, incident 
commander and robots when a fire out-
break is found. This indicates the alarms 
that should draw special attention of
the incident commander

fire status, stage and special conditions

exchange between firefighters, incident 
commander and robots when hazardous
material is found. Indicates the alarms
that should draw special attention of
the incident commander

Control Center Incident Commander Tactical Board FireFighter Robot

update()

brief/assign()

assign/default mode()

build maps()

victim found()

victim alert()

victim found()

update victim()

request EMS()

rescue victim()

return request

fire outbreak()

fire outbreak()

update fire outbreak()fire alert()

request fire conditions()
forward request()

return fire conditions
return fire conditions

update()

hazardous material()

update HM()HM alert()

actions()

update()

hazardous material()

request resource()

return request

request for an specialists when specific
hazardous materials are found

Figure A.10: Sequence Diagram of the Fire Attack and Search and Rescue operations.



Appendix B

Messages Definition

B.1 Command and Control Messages

Command and Control messages class allow the Command Center (CC) to change the goals

of the mission, define new areas of interest and start a new mission for a robot, from a

predefined location. During a search and rescue mission, scanned areas are signalized to

avoid duplicated tasks.

B.1.1 start2Scan()

Description

Coordinates of the starting point of the robot in its exploit mission.

CC ð robot

Message to define the starting point of the robots’ mission when its deployed on an entrance

of the structure to exploit, submitted only when required by the CC. The coordinates of the

starting point is obtained by clicking on the desired point on Google Maps, and the robot

must complete the initial pose from its magnetic compass.

69



Appendix B. Messages Definition 70

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

Code Excerpt B.1: ROS message: start2scan().

Json Message

{ "topic": "cc_0/start2scan",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": 1,

"seq": 232

},"pose": {

"position": {

"x": 0.0017761230701580644 ,

"y": -0.0019882202614098787 ,

"z": 0.0

},"orientation": {

"y": ,

"x": ,

"z": ,

"w":

}

}

},"op": "publish"

}

Code Excerpt B.2: Json message: start2scan().



Appendix B. Messages Definition 71

B.1.2 area2Scan()

Description

Coordinates of an area of interest that should be scanned immediately. If one robot receives

two or more messages of areas to scan, it should prioritize the orders addressing to the defined

level of shared interaction and task criticality.

CC ð firefighter; CC ð robot; firefighter ð robot

Message to define a new area to scan, submitted only when required by the CC or the

firefighter in the hot zone. This message is also used with the site view() message to scan

the area with the robot video camera.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

Code Excerpt B.3: ROS message: area2scan().

Json Message

{ "topic": "robot_1/area2scan",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": 1,

"seq": 232

},"pose": {

"position": {

"x": 0.0017761230701580644 ,



Appendix B. Messages Definition 72

"y": -0.0019882202614098787 ,

"z": 0.0

},"orientation": {

"y": ,

"x": ,

"z": ,

"w":

}

}

},"op": "publish"

}

Code Excerpt B.4: Json message: area2scan().

B.1.3 task2Perform()

Task to perform - Action that should be carried out by the agent on the ground, whether it

is a firefighter or a robot.

CC ð firefighter; CC ð robot

Action to be performed by firefighters and/or robots. Submitted only when required.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

nav msgs/Path An array of poses that represents a path for a

robot/firemen to follow.

actionlib msgs/GoalStatus GoalID, status, PENDING, ACTIVE, PRE-

EMPTED, SUCCEEDED, REJECTED,

ABORTED, ...

Header header

std_msgs/String agent_class

std_msgs/Int8 id

nav_msgs/Path path

actionlib_msgs/GoalStatus goal_status

Code Excerpt B.5: ROS message: task2perfom().



Appendix B. Messages Definition 73

Json Message

{ "topic": "robot_1/task2perform",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "string",

"seq": 232

},"path": [{

"pose": {

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},"frame_id": "string",

"seq": 232

},"position": {

"x": 0.0017761230701580644 ,

"y": -0.0019882202614098787 ,

"z": 0.0

},"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

}

],"goal_status": {

"id": "string",

"status": 5,

"text": "string"

}

},"op": "publish"

}

Code Excerpt B.6: Json message: task2perform().

B.1.4 tacticalMode()

Ground teams operation mode (e.g. ”defensive”, ”offensive” or ”transactional”) define by

the CCO.



Appendix B. Messages Definition 74

CC ð firefighter; CC ð robot

Message submitted only when required, to change the teams operating mode due to tactics

change.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

actionlib msgs/GoalID The stamp should store the time at which this goal

was requested.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

actionlib_msgs/GoalID goal_id

Code Excerpt B.7: ROS message: tacticalMode().

Json Message

{

"topic": "cc_0/tactical_mode",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"goal_id": {"stamp" : "time",

"id" : "string"

}

},

"op": "publish"

}

Code Excerpt B.8: Json message: tacticalMode().



Appendix B. Messages Definition 75

B.1.5 searchCompleted()

Notifies a complete area search, with or without victims, to prevent other agents to duplicate

the task.

robot ð firefighter; robot ð CC; firefighter ð CC

Message responsible to prevent duplicated searches, optimizing the use of resources. Should

be sent whenever the area search is completed.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

nav msgs/GridCells An array of cells in a 2D grid.

actionlib msgs/GoalStatus GoalID, status, PENDING , ACTIVE, PRE-

EMPTED, SUCCEEDED, REJECTED,

ABORTED, ...

Header header

std_msgs/String agent_class

std_msgs/Int8 id

nav_msgs/GridCells searched_area

actionlib_msgs/GoalStatus goal_status

Code Excerpt B.9: ROS message: searchCompleted().

Json Message

{

"topic": "robot_1/searchCompleted",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"searched_area": {

"header": {

"seq" : uint32 ,

"stamp": time ,



Appendix B. Messages Definition 76

"frame_id": string

},

"cell_witdh" : float32 ,

"cell_height": float32 ,

"cells" : [{"x":float64 ,

"y":float64 ,

"z":float64

}]

},

"goal_status": {

"id": "string",

"status": 5,

"text": "string"

}

},

"op": "publish"

}

Code Excerpt B.10: Json message: searchCompleted().



Appendix B. Messages Definition 77

B.2 Location messages

Information class messages are divided into two classes: conditions messages - to help classify

the incident and define tactical strategies of operation; and location messages - to locate the

agents, victims and relevant events in the incident zone.

B.2.1 robotPose()

Pose coordinates of the robot on the ground.

robot ð firefighter; robot ð CC

Message to send pose coordinates of the robot. This is a priority message and should be sent

frequently, to provide CC and fire fighters with situation awareness of the robot.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

Code Excerpt B.11: ROS message: robotPose().

Json Message

{

"topic": "robot_1/robot_pose",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": 1,



Appendix B. Messages Definition 78

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

},

"op": "publish"

}

Code Excerpt B.12: Json message: robotPose().

B.2.2 firefighterPose()

Firefighter pose - pose coordinates of the firefighter on the ground and its way of progression

(e.g. standing, climbing, descending, crouched, ”on all fours”).

firefighter ð robot; firefighter ð CC

Message to send pose coordinates of the firefighter. This is a priority message and should be

sent frequently, to provide the CC and robots with situation awareness of the firefighter.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinate frame and time

stamp.

std msgs/Int16. Integers type message, to enumerate fireman state,

id, etc.

Header header

std_msgs/String agent_class



Appendix B. Messages Definition 79

std_msgs/Int8 id

geometry_msgs/Pose pose

float32 situation

Code Excerpt B.13: ROS message: firefighterPose().

Json Message

{

"topic": "firefighter_1/firefighterPose",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

},

"situation": "number"

},

"op": "publish"

}

Code Excerpt B.14: Json message: firefighterPose().

B.3 Status messages

B.3.1 batteryStatus()

Robot battery level. Message defined to monitor the robot battery level, to allow the CC to

provide a safe exit for the robot.



Appendix B. Messages Definition 80

robot ð CC

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

pr2 msgs/PowerState This message communicates the state of the

robot’s power system.

std_msgs/Header header

std_msgs/String agent_class

std_msgs/Int8 id

pr2_msgs/PowerState status

Code Excerpt B.15: ROS message: batteryStatus().

Json Message

{

"topic": "robot_1/batteryStatus",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"status": {

"power_consumption": "number",

"time_remaining": "number",

"prediction_method": "string",

"relative_capacity": "number"

}

}

"op": "publish"

}

Code Excerpt B.16: Json message: batteryStatus().

B.3.2 scbaStatus()

Firefighters SCBA level and mission time using SCBA.



Appendix B. Messages Definition 81

firefighter ð CC

Message defined to monitor the firefighters SCBA level and mission time, to allow the CC

to provide a safe exit for the firefighter.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

pr2 msgs/PowerState This message communicates the state of the scba

system.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

pr2_msgs/PowerState status

Code Excerpt B.17: ROS message: scbaStatus().

Json Message

{

"topic": "firefighter_1/scbaStatus",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"status": {

"power_consumption": "number",

"time_remaining": "number",

"action": "string",

"relative_capacity": "number"

}

}

"op": "publish"

}

Code Excerpt B.18: Json message: scbaStatus().



Appendix B. Messages Definition 82

B.3.3 teamComp()

Description

Coordinates of an area of interest that should be scanned immediately.

CC ð robot

Message to define the starting point of the robots’ mission when its deployed on an entrance

of the structure to exploit, submitted only when required by the CC. The coordinates of the

starting point is obtained by clicking on the desired point on Google Maps, and the robot

must complete the initial pose from its magnetic compass.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

std msgs/String[] An array of string with the identifiers of the team-

mates of the agent.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

std_msgs/String [] team

Code Excerpt B.19: ROS message: teamComp().

Json Message

{

"topic": "robot_1/teamComp",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"team": ["robot_2",

"robot_5",

"firefighter_3"



Appendix B. Messages Definition 83

]

},

"op": "publish"

}

Code Excerpt B.20: Json message: teamComp().

B.3.4 sharedLevel()

Description

Coordinates of an area of interest that should be scanned immediately.

CC ð robot

Message to define the starting point of the robots’ mission when its deployed on an entrance

of the structure to exploit, submitted only when required by the CC. The coordinates of the

starting point is obtained by clicking on the desired point on Google Maps, and the robot

must complete the initial pose from its magnetic compass.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

std msgs/Int8 An integer to indicate the shared level of inter-

action with the operators. e.g. 1- 1H:1R; 2-

1H:RT; 3- 1H:MR; 4- HT:1R; . . . , where 1H: one

human, 1R: one robot, MR: multiple robots, RT:

robot team and HT: human team.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

std_msgs/Int8 sharedlevel

Code Excerpt B.21: ROS message: sharedLevel()



Appendix B. Messages Definition 84

Json Message

{

"topic": "robot_1/gas_map",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "string",

"seq": 232

},

"sharedLevel": number

},

"op": "publish"

}

Code Excerpt B.22: Json message: sharedLevel().

B.3.5 netStats()

Network Stats - message with network connection metrics from the node to the CCO and

from the node to their neighbours.

robot ð CC; robot ð firefighter

This message should be sent whenever there is a network connection.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

ROS message type to be defined.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Vector3Stamped vector

nav_msgs/Path poses

actionlib_msgs/GoalStatus goal_status

Code Excerpt B.23: ROS message: netStats().



Appendix B. Messages Definition 85

Json Message

{

"topic": "network/stats",

"msg": {

"agent_class" : "cco",

"id" : 0,

"quality": {

"link": "number" ,

"level": "number",

"noise": "number"

},

"metrics": {

"tx": "number",

"rx": "number"

},

"neighbors :{[

"items": {

"ip": "string",

"quality":{

"link": "number",

"level": "number",

"noise": "number"

},

"metrics": {

"tx": "number",

"rx": "number"

}

}

]}

},

"op": "publish"

}

Code Excerpt B.24: Json message: netStats().

B.3.6 envStatus()

Message to classify the environment status. Aggregates the messages FireClass, FireStage,

FireBehaviour to reduce the number of published

robot ð firefighter; robot ð CC; firefighter ð CC

Information message to indicate combustible materials feeding the fire. This message should

be sent whenever a fire outbreak is found.

Ros Message

geometry msgs/PoseStamped - A Pose with reference coordinates frame and time stamp.

std msgs/Int16MultiArray - Simple array to fire class designation.



Appendix B. Messages Definition 86

Header header

geometry_msgs/PoseStamped pose

std_msgs/Int16MultiArray hazard_conditions

std_msgs/Int16MultiArray temp_conditions

std_msgs/Int16MultiArray gas_condition

Code Excerpt B.25: ROS message: envStatus().

Json Message

{

"topic": "robot_1/env_status",

"msg": {

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},"frame_id": "map",

"seq": 232

},pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

},"fire_class":[{"items": 3}],

"hazard_conditions ": [{"items": 2}],

"temp": [{"items": 2}],

"gas": [{"items": 4}]

},"op": "publish"

}

Code Excerpt B.26: Json message: envStatus().

B.3.7 fireStatus()

Fire class - classification of fire due to combustible materials.

robot ð firefighter; robot ð CC; firefighter ð CC

Information message to indicate combustible materials feeding the fire. This message should

be sent whenever a fire outbreak is found.



Appendix B. Messages Definition 87

Ros Message

geometry msgs/PoseStamped - A Pose with reference coordinates frame and time stamp.

std msgs/Int16MultiArray - Simple array to fire class designation.

This message is deprecated. Included in the message envStatus

B.3.8 fireStage()

Indicates the state of the fire at a given location (e.g. ”incipient”, ”smoldering”, ”growth”,

”fully developed”, ”decay”).

robot ð firefighter; robot ð CC; firefighter ð CC

Information message to indicate the stage of a fire outbreak, determining the evolution of

the incident and safety conditions. This message should be sent whenever a fire outbreak is

found.

Ros Message

geometry msgs/PoseStamped - A Pose with reference coordinate frame and time stamp.

std msgs/Int16 - Simple float type message, to enumerate situation.

Json Message

{

"topic": "robot_1/fire_stage",

"msg": {

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}



Appendix B. Messages Definition 88

} ,

"fire_stage": 2

},

"op": "publish"

}

Code Excerpt B.27: Json message: fireStage().

B.3.9 fireBehaviour()

Indicates the fire behavior based on predetermined conditions and in a given location (e.g.

”backdraft”, ”rollover”, ”flashover”).

robot ð firefighter; robot ð CC; firefighter ð CC

Complementary information messages to predict fire behavior, determining safety conditions.

This message should be sent whenever one of these conditions is found.

Ros Message

geometry msgs/PoseStamped - A Pose with reference coordinates frame and time stamp.

Json Message

{

"topic": "robot_1/fire_behaviour",

"msg": {

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

} ,

"fire_behaviour": 2

},



Appendix B. Messages Definition 89

"op": "publish"

}

Code Excerpt B.28: Json message: fireBehaviour().

B.4 Conditions messages

B.4.1 securityCondition()

Security conditions - Indicates the firefighter if it is safe to move in a direction or enter an

area for the known fire conditions. (E.g. ”climb above a fire without a charged hose - unsafe,

do not proceed”).

robot ð firefighter; robot ð CC; firefighter ð CC

Message to define safety conditions of an area which is about to be scanned by a firefighter.

This message should be sent while firefighters move forward on the ground.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinate frame and time

stamp.

std msgs/Int16 Simple float type message, to enumerate situation.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/PoseStamped [] poses

Code Excerpt B.29: ROS message: securityConditions().

Json Message

{

"topic": "robot_1/securityConditions",

"msg": {

"agent_class" : "robot",

"id" : 1,



Appendix B. Messages Definition 90

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

} ,

"security_conditions": 2

},

"op": "publish"

}

Code Excerpt B.30: Json message: securityConditions().

B.4.2 altExit()

Detection of doors and/or windows that allow the escape of fire in adverse situations. Always

depends on the maps defined by agents nearby.

robot ð firefighter; robot ð CC; firefighter ð CC

Information message to signal a room secondary exit or an egress exit determining a safety

path for firefighters and victims. This message should be sent whenever one of these exits is

found.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

Continued on next page



Appendix B. Messages Definition 91

Table B.14 – Continued from previous page

Ros type Description

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

std msgs/Int16 Simple float type message, to enumerate situation.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

float32 gas

Code Excerpt B.31: ROS message: altExit.

Json Message

{

"topic": "robot_1/altExit",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"pose": {

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

},

poses: [

{"pose": {

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "string",

"seq": 345

},



Appendix B. Messages Definition 92

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

},

"exit": 0

}]

},

"op": "publish"

}

Code Excerpt B.32: Json message: altExit().

B.4.3 siteView()

Image sequence to allow the human user the fire conditions and/or identify a victim condition.

robot ð firefighter; robot ð CC

Image message to provide primary source of surroundings awareness to the CC and firefight-

ers, for victim search and safety conditions.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

sensor msgs/CompressedImage This message contains a compressed image.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

sensor_msgs/CompressedImage image

Code Excerpt B.33: ROS message: siteView().



Appendix B. Messages Definition 93

Json Message

{

"topic": "robot_1/siteView",

"msg": {

"agent_class" : "cco",

"id" : 0,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "string",

"seq": 232

},

"image":{

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "string",

"seq": 232

}

"format": "string",

"data":["number"]

}

},

"op": "publish"

}

Code Excerpt B.34: Json message: siteView().



Appendix B. Messages Definition 94

B.5 Mapping messages

Mapping messages class are used only by robots providing information about the interior of

the building, aiding the CC to establish eventual hazardous conditions for the firefighters

and victims.

B.5.1 compressedMap()

Spatial map - 2D grid map to identify the location of the agents in the building, entry and

egress accesses and respective conditions.

robot ð CC; robot ð fireghter; CC ð firefighter

Priority message to build the interior map and provide the CC with situation awareness of

the incident. This message should be sent whenever there is a network connection.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

nav msgs/MapMetaData This represents the map metadata information.

geometry msgs/Point A point to represent top-left coordinate of the

transmitted window

geometry msgs/Point A point to represent bottom-right coordinate of

the transmitted window

std msgs/ByteMultiArray A byte array with the occupancy-grid compressed

data.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

nav_msgs/MapMetaData info

geometry_msgs/Point iniwindow

geometry_msgs/Point endwindow

std_msgs/ByteMultiArray data

Code Excerpt B.35: ROS message: compressedMap().



Appendix B. Messages Definition 95

Json Message

{

"topic": "robot_1/compressedMap",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,

"iniwindow": { "x": number ,

"y": number ,

"z": 0 },

"endwindow": { "x": number ,

"y": number ,

"z": 0 },

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.36: Json message: compressedMap().



Appendix B. Messages Definition 96

B.5.2 tempMap()

Temperature map - 2D grid map with temperature levels to identify hazardous conditions

in the area.

robot ð CC; robot ð firefighter; CC ð firefighter

Priority message to build the temperature map and provide the CC with heat and hazardous

awareness. This message should be sent whenever there is a network connection.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

nav msgs/OccupancyGrid This represents a 2-D grid map, in which each cell

represents the probability of occupancy.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

float32 temp

Code Excerpt B.37: ROS message: tempMap().

This message is deprecated. Included in the message envStatus

Json Message

{

"topic": "robot_1/tempMap",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,



Appendix B. Messages Definition 97

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.38: Json message: tempMap().

B.5.3 gasMap()

Gas map - 2D grid map with the type of gas and respective concentration (e.g. CO,

CO2[organic material], HCN [acrylic fibers, polyurethane or nylon], HCI and COCI2 [PVC,

vinyl wallpaper and cable installation].

robot ð CC; robot ð firefighter; CC ð firefighter

Priority message to build the temperature map and provide the CC with gas concentra-

tion and hazardous awareness. This message should be sent whenever there is a network

connection.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

Continued on next page



Appendix B. Messages Definition 98

Table B.18 – Continued from previous page

Ros type Description

nav msgs/OccupancyGrid This represents a 2-D grid map, in which each cell

represents the probability of occupancy.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

float32 gas

Code Excerpt B.39: ROS message: gasMap().

This message is deprecated. Included in the message envStatus

Json Message

{

"topic": "robot_1/gasMap",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,



Appendix B. Messages Definition 99

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.40: Json message: gasMap().

B.5.4 victimFound()

Victim pose - pose coordinates of the victim on the ground and its state condition (e.g.

”aware”, ”semi-aware”, ”unconscious”, ”unknown”), situation condition (e.g. ”surface”,

”trapped”, ”entombed”, ”unknown”).

robot ð CC; robot ð firefighter; firefighter ð CC

Message to send pose coordinates of the victim. This is a priority message to be sent whenever

a victim is found, and provide the CC and firefighters with situation awareness of the victim.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

std msgs/Int16MultiArray Array of integers type message, to enumerate vic-

tim state,id,etc.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/PoseStamped [] poses

std_msgs/Int16MultiArray status

Code Excerpt B.41: ROS message: victimFound().

Json Message

{

"topic": "robot_1/victimFound",

"msg": {

"agent_class" : "robot",

"id" : 1,



Appendix B. Messages Definition 100

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"victims": [{

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}]

} ,

"status":[{

"state" : number ,

"situation": number ,

"condition": number ,

"type" : number

}]

},

"op": "publish"

}

Code Excerpt B.42: Json message: victimFound().

B.5.5 smokeMap()

Hazard condition - position of materials and hazardous conditions (e.g. containers of flammable

or explosive materials near fire outbreak that requires special attention or imminent ”BLEVE”).

robot ð CC; robot ð firefighter; firefighter ð CC



Appendix B. Messages Definition 101

Message to send location coordinates of the hazardous materials and conditions. This is a

priority message and should be sent whenever these conditions are found, to provide the CC

and firefighters with situation awareness of the overall safety conditions.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped Simple float type message, to enumerate situation.

std msgs/Int16 This message is deprecated. Included in the mes-

sage envStatus

A Pose with reference coordinate frame and time stamp.

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/PoseStamped [] poses

Code Excerpt B.43: ROS message: smokeMap().

Json Message

{

"topic": "robot_1/smokeMap",

"msg": {

"agent_class" : "cco",

"id" : 0,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,



Appendix B. Messages Definition 102

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.44: Json message: smokeMap().

B.5.6 hazardMat()

Hazard condition - position of materials and hazardous conditions (e.g. containers of flammable

or explosive materials near fire outbreak that requires special attention or imminent ”BLEVE”).

robot ð CC; robot ð firefighter; firefighter ð CC

Message to send location coordinates of the hazardous materials and conditions. This is a

priority message and should be sent whenever these conditions are found, to provide the CC

and firefighters with situation awareness of the overall safety conditions.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinate frame and time

stamp.

std msgs/Int16 Simple float type message, to enumerate situation.

This message is deprecated. Included in the message envStatus

Header header

std_msgs/String agent_class

std_msgs/Int8 id



Appendix B. Messages Definition 103

geometry_msgs/Pose pose

float32 temp

Code Excerpt B.45: ROS message: hazardMat().

Json Message

{

"topic": "robot_1/hazardMap",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.46: Json message: hazardMat().



Appendix B. Messages Definition 104

B.5.7 fireOutbreak()

Fire outbreak - coordinates of the fire outbreak, which requires immediate attention of the

CC and the firefighters.

robot ð CC; robot ð firefighter; firefighter ð CC

Message to send location coordinates of a fire outbreak. This is a priority message and

should be sent whenever a new fire outbreak is found, to allow the CC and firefighters to

take adequate measures.

Ros Message

Ros type Description

std msgs/String A string with the class of the agent (team, robot

or firefighter).

std msgs/Int8 An integer with the number id of the agent.

geometry msgs/PoseStamped A Pose with reference coordinates frame and time

stamp.

This message is deprecated. Included in the message envStatus

Header header

std_msgs/String agent_class

std_msgs/Int8 id

geometry_msgs/Pose pose

Code Excerpt B.47: ROS message: fireOutbreak().

Json Message

{

"topic": "robot_1/fireOutbreak",

"msg": {

"agent_class" : "robot",

"id" : 1,

"header": {

"stamp": {

"secs": 1358783297 ,

"nsecs": 415561250

},

"frame_id": "map",

"seq": 232

},

"info": {

"map_load_time": {

"secs": 1358783297 ,



Appendix B. Messages Definition 105

"nsecs": 415561250

},

"resolution": float64 ,

"width": uint32 ,

"height": uint32 ,

"origin":{

"position": {

"y": -0.0019882202614098787 ,

"x": 0.0017761230701580644 ,

"z": 0.0

},

"orientation": {

"y": 0.0,

"x": 0.0,

"z": -0.0001439173933738437 ,

"w": 0.9999999896438919

}

}

} ,

"data": [uint8]

},

"op": "publish"

}

Code Excerpt B.48: Json message: fireOutbreak().



Appendix B. Messages Definition 106

B.6 Messages and HRI taxonomy

Context Identity

Time/Space

Activity Task type

Task criticality

Shared level of interaction

Autonomy

Team composition

Tactical mode

Mission

robotPose()

batteryStatus()

scbaStatus()

area2Scan()

task2Perform()

tacticalMode()

start2Scan()

Decision support Provided sensors

Sensor fusion

Pre processing

siteView()

spatialMap()

victimFound()

fireOutbreak()

hazardMat()

tempMap()

gasMap()

smokeMap()

sharedLevel()

teamComp()

securityConditions()

altExit()

searchCompleted()

firefighterPose()

Figure B.1: Messages affecting the HRI taxonomy.



Appendix C

Entity-Relationship Diagram

C.1 Conceptual models

Incident
(entity cluster)

1.1

Resources
(entity cluster)

1.4

Divisions
(entity cluster)

1.2

Occurrences
(entity cluster)

1.3

divided_in

inc_resources_sectors

inc_report_occurrence

originated_in operate_in

Persons
(entity cluster)

1.5
inc_div_commander

inc_team_ff

Location
(entity cluster)

1.6

in_conc in_fregin_dist

in_conc in_dist

inc_resources_zcr

inc_res_commander

inc_posit

incident

1

inc_divisions

1...*

in
c_

se
ct

or
s

0...1

inc_resources

0...*

inc_resources

0...*

inc_occurrences

1...*

in
ci

de
nt

1

in
c_

oc
cu

rr
en

ce

1...*

incident

1

inc_resources

1...*

tb_person

0...*

inc_division

0...1

inc_teams

1...*

tb
_f

ire
fig

ht
er

s

0...*

tb_conc

1

in
ci

de
nt

1...*

tb_freg

1

incident

1...*

tb_dist

1

incident

1...*

tb_conc

1

1...*

tb_dist

1

1...*

tb_corporation

in
c_

zc
r

0...1

0...*

inc_resources

0...*

tb
_p

er
so

n

0...1

in
c_

co
s

0...*

incident
1

Figure C.1: Database conceptual schema - root entity cluster.

107



Appendix C. Database Analysis 108

C.1.1 Incident cluster

in
ci

de
nt

R
es

ou
rc

es
(e

nt
ity

 c
lu

st
er

)
1.

4

D
iv

is
io

ns
(e

nt
ity

 c
lu

st
er

)
1.

2

O
cc

ur
re

nc
es

(e
nt

ity
 c

lu
st

er
)

1.
3

di
vi

de
d_

in

in
c_

re
so

ur
ce

s_
se

ct
or

s

in
c_

re
po

rt
_o

cc
ur

re
nc

e

or
ig

in
at

ed
_i

n

op
er

at
e_

in

P
er

so
ns

(e
nt

ity
 c

lu
st

er
)

1.
5

in
c_

te
am

_f
f

Lo
ca

tio
n

(e
nt

ity
 c

lu
st

er
)

1.
6

in
_c

on
c

in
_f

re
g

in
_d

is
t

in
_c

on
c

in
_d

is
t

in
c_

re
so

ur
ce

s_
zc

r

in
c_

re
s_

co
m

m
an

de
r

in
c_

po
si

t

is
a

in
c_

st
ru

ct
ur

al
in

c_
fo

re
st

fir
e

in
c_

ha
za

rd

in
c_

fa
m

ily

in
c_

ha
s_

fa
m

ily

in
c_

sp
ec

ie

ha
s_

sp
ec

ie
s

ha
s_

ki
nd

in
c_

ki
nd

in
c_

ha
s_

sp
ec

ie

in
c_

ha
s_

ki
nd

in
c_

tr
af

fic

1
in

c_
di

vi
si

on
s

1.
..*

inc_sectors

0.
..1

in
c_

re
so

ur
ce

s

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

in
c_

oc
cu

rr
en

ce
s

1.
..*

1

inc_occurrence

1.
..*

1

in
c_

re
so

ur
ce

s

1.
..*

in
c_

te
am

s

1.
..*

tb_firefighters

0.
..*

tb
_c

on
c

1

1.
..*

tb
_f

re
g

1

1.
..*

tb
_d

is
t

1

1.
..*

tb
_c

on
c

1

1.
..*

tb
_d

is
t

1 1.
..*

tb
_c

or
po

ra
tio

n

inc_zcr

0.
..1

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

tb_person

0.
..1

in
c_

co
s

0.
..*

1

1.
..*

1

1

1.
..* 1

1.
..*

1.
..*

1

1.
..*

1

in
c_

di
v_

co
m

m
an

de
r

tb
_p

er
so

n

0.
..*

in
c_

di
vi

si
on

0.
..1

Figure C.2: Cluster 1.1 - Incident conceptual model.



Appendix C. Database Analysis 109

C.1.2 Incident divisions cluster

Incident
(entity cluster)

1.1

Resources
(entity cluster)

1.4

inc_division

Occurrences
(entity cluster)

1.3

divided_in

inc_resources_zcr

inc_report_occurrence

originated_in operate_in

Persons
(entity cluster)

1.5
inc_div_commander

inc_team_ff

Location
(entity cluster)

1.6

in_conc in_fregin_dist

in_conc in_dist

inc_resources_sectors

inc_res_commander

inc_posit

inc_cells inc_sectors

inc_cells_sectors

isa

inc_assistantsinc_zcr

has_zcr

inc_cos

has_sections

inc_sections

of_sgo_cells

sgo_cells

of_sgo_sections

sgo_sections

of_sgo_sectors

sgo_sectors

inc_zcr_areas

sgo_zcr

inc_sections_specs

inc_specialists

inc_assistants_sgo

sgo_assistants

incident

1 1...*

inc_resources

0...*

inc_resources

0...*

inc_occurrences

1...*

in
ci

de
nt

1

in
c_

oc
cu

rr
en

ce 1...*

incident

1

inc_resources

1...*

tb_person

0...*0...1

inc_teams

1...*

tb
_f

ire
fig

ht
er

s

0...*

tb_conc

1

in
ci

de
nt

1...*

tb_freg

1

incident

1...*

tb_dist

1

incident

1...*

tb_conc

1

1...*

tb_dist

1

1...*

tb_corporation

0...*

inc_resources

0...*

tb
_p

er
so

n

0...1

incident

1

0...1

0...1 0...*

0...1

1...* 0...1

0...*

1

1...*

1...*

1

1...*

0...1

1...*

1

1...*

0...*

0...1

1...*

1...*

0...1

Figure C.3: Cluster 1.2 - Incident divisions conceptual model.



Appendix C. Database Analysis 110

C.1.3 Incident occurrences cluster

In
ci

de
nt

(e
nt

ity
 c

lu
st

er
)

1.
1

R
es

ou
rc

es
(e

nt
ity

 c
lu

st
er

)
1.

4

D
iv

is
io

ns
(e

nt
ity

 c
lu

st
er

)
1.

2

in
c_

oc
cu

rr
en

ce

di
vi

de
d_

in

in
c_

re
so

ur
ce

s_
se

ct
or

s

in
c_

re
po

rt
_o

cc
ur

re
nc

e

or
ig

in
at

ed
_i

n
op

er
at

e_
in

P
er

so
ns

(e
nt

ity
 c

lu
st

er
)

1.
5

in
c_

di
v_

co
m

m
an

de
r

in
c_

te
am

_f
f

Lo
ca

tio
n

(e
nt

ity
 c

lu
st

er
)

1.
6

in
_c

on
c

in
_f

re
g

in
_d

is
t

in
_c

on
c

in
_d

is
t

in
c_

re
so

ur
ce

s_
zc

r

in
c_

po
si

t

is
_a

ha
za

rd
_c

on
di

tio
n

in
c_

m
ap

s_
ta

bl
e

da
m

ag
es

in
c_

oc
cu

rr
en

ce
_p

os
e

lo
ca

te
d_

in

in
c_

vi
ct

im
s

fir
e_

ou
tb

re
ak

tb
_v

ic
tim

_c
on

di
tio

n

ha
s_

a

tb
_v

ic
tim

_s
ta

te

is
_i

n 
_a

tb
_v

ic
tim

_t
yp

e

is
_f

ro
m

tb
_v

ic
tim

_s
itu

at
io

n

is
_i

n_
a

tb
_f

ire
_s

ta
tu

s

is
_i

n_
a

tb
_f

ire
_c

la
ss

ha
s_

a

tb
_n

at
io

na
lit

ie
s

ha
s_

a

in
ci

de
nt

1

in
c_

di
vis

io
ns

1.
..*

inc_sectors

0.
..1

in
c_

re
so

ur
ce

s

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

1.
..*

incident

1

1.
..*

incid
ent

1

in
c_

re
so

ur
ce

s

1.
..*

tb
_p

er
so

n

0.
..*

in
c_

di
vi

si
on

0.
..1

in
c_

te
am

s

1.
..*

tb_firefighters

0.
..*

tb
_c

on
c

1

incident

1.
..*

tb
_f

re
g

1

in
ci

de
nt1.
..*

tb
_d

is
t

1

in
ci

de
nt

1.
..*

tb
_c

on
c

1

1.
..*

tb
_d

is
t

1 1.
..*

tb
_c

or
po

ra
tio

n

inc_zcr

0.
..1

0.
..*

inc_
co

s

0.
..*

in
ci

de
nt

1

1
0.

..1

1.
..* 1

11.
..*

1

1.
..*

1

1.
..*

1

1.
..*

1

1.
..*

1.
..* 1

in
c_

re
s_

co
m

m
an

de
r

in
c_

re
so

ur
ce

s

0.
..*

tb_person

0.
..1

Figure C.4: Cluster 1.3 - Incident occurrences conceptual model.



Appendix C. Database Analysis 111

C.1.4 Incident resources cluster

Incident
(entity cluster)

1.1

inc_resources

Divisions
(entity cluster)

1.2

Occurrences
(entity cluster)

1.3

divided_in

inc_resources_sectors

inc_report_occurrence

originated_in operate_in

Persons
(entity cluster)

1.5
inc_div_commander

inc_team_ff

Location
(entity cluster)

1.6

in_conc in_fregin_dist

in_conc in_dist

inc_resources_zcr

inc_res_commander

inc_posit

isa

inc_teamsinc_vehiclesinc_robots

inc_vehicle_teamv_has_type

tb_vehicle_type

v_has_group

tb_vehicle_group

r_has_type

tb_robot_class

incident

1

inc_divisions

1...*

in
c_

se
ct

or
s

0...1

0...*

0...*

inc_occurrences

1...*

in
ci

de
nt

1

in
c_

oc
cu

rr
en

ce

1...*

incident

1 1...*

tb_person

0...*

inc_division

0...1

tb
_f

ire
fig

ht
er

s

0...*

tb_conc

1

in
ci

de
nt

1...*

tb_freg

1

incident

1...*

tb_dist

1

incident

1...*

tb_conc

1

1...*

tb_dist

1

1...*

tb_corporation

in
c_

zc
r

0...1

0...*

0...*

tb
_p

er
so

n

0...1

in
c_

co
s

0...*

incident
1

1...*

1 0...*

1...*

0...1

1...*

0...1

1...*

0...1

Figure C.5: Cluster 1.4 - Incident resources conceptual model.



Appendix C. Database Analysis 112

C.1.5 Incident personnel cluster

of
_e

nt
ity

tb
_e

nt
iti

es

ff_
ha

s_
ra

nk

tb
_f

ire
fig

ht
er

_r
an

k

be
lo

ng
s_

to
tb

_c
or

po
ra

tio
n

in
c_

ff_
sc

ba

in
c_

sc
ba

In
ci

de
nt

(e
nt

ity
 c

lu
st

er
)

1.
1

R
es

ou
rc

es
(e

nt
ity

 c
lu

st
er

)
1.

4

D
iv

is
io

ns
(e

nt
ity

 c
lu

st
er

)
1.

2

O
cc

ur
re

nc
es

(e
nt

ity
 c

lu
st

er
)

1.
3

di
vi

de
d_

in

in
c_

re
so

ur
ce

s_
se

ct
or

s

in
c_

re
po

rt
_o

cc
ur

re
nc

e

or
ig

in
at

ed
_i

n
op

er
at

e_
in

tb
_p

er
so

n
in

c_
di

v_
co

m
m

an
de

r

in
c_

te
am

_f
f

Lo
ca

tio
n

(e
nt

ity
 c

lu
st

er
)

1.
6

in
_c

on
c

in
_f

re
g

in
_d

is
t

in
_c

on
c

in
_d

is
t

in
c_

re
so

ur
ce

s_
zc

r

in
c_

re
s_

co
m

m
an

de
r

in
c_

po
si

t
is

a

tb
_f

ire
fig

ht
er

tb
_a

np
c

1

0.
..1

0.
..1

0.
..*

in
ci

de
nt

1

in
c_

di
vis

io
ns

1.
..*

inc_sectors

0.
..1

in
c_

re
so

ur
ce

s

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

in
c_

oc
cu

rr
en

ce
s

1.
..*

incident

1

inc_occurrence

1.
..*

incid
ent

1

in
c_

re
so

ur
ce

s

1.
..*

1.
..*

tb
_p

er
so

n

0.
..*

in
c_

di
vi

si
on

0.
..1

in
c_

te
am

s

1.
..*

tb
_c

on
c

1

incident

1.
..*

tb
_f

re
g

1

in
ci

de
nt1.
..*

tb
_d

is
t

1

in
ci

de
nt

1.
..*

tb
_c

on
c

1

1.
..*

tb
_d

is
t

1 1.
..*

inc_zcr

0.
..1

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

tb_person

0.
..1

inc_
co

s

0.
..*

in
ci

de
nt

1

1.
..*

1.
..*

0.
..*

0.
..*

Figure C.6: Cluster 1.5 - Incident personnel conceptual model..



Appendix C. Database Analysis 113

C.1.6 Incident locations cluster

In
ci

de
nt

(e
nt

ity
 c

lu
st

er
)

1.
1

R
es

ou
rc

es
(e

nt
ity

 c
lu

st
er

)
1.

4

D
iv

is
io

ns
(e

nt
ity

 c
lu

st
er

)
1.

2

O
cc

ur
re

nc
es

(e
nt

ity
 c

lu
st

er
)

1.
3

di
vi

de
d_

in

in
c_

re
so

ur
ce

s_
se

ct
or

s

in
c_

re
po

rt
_o

cc
ur

re
nc

e

or
ig

in
at

ed
_i

n
op

er
at

e_
in

P
er

so
ns

(e
nt

ity
 c

lu
st

er
)

1.
5

in
c_

te
am

_f
f

in
_c

on
c

in
_f

re
g

in
_d

is
t

in
_c

on
c

in
_d

is
t

in
c_

re
so

ur
ce

s_
zc

r

in
c_

re
s_

co
m

m
an

de
r

in
c_

po
si

t

tb
_d

is
t

tb
_c

on
c

ha
s_

co
ns

tb
_f

re
g

ha
s_

fr
eg

in
ci

de
nt

1

in
c_

di
vis

io
ns

1.
..*

inc_sectors

0.
..1

in
c_

re
so

ur
ce

s

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

in
c_

oc
cu

rr
en

ce
s

1.
..*

incident

1

inc_occurrence

1.
..*

incid
ent

1

in
c_

re
so

ur
ce

s

1.
..*

in
c_

te
am

s

1.
..*

tb_firefighters

0.
..*

incident

1.
..*

in
ci

de
nt1.
..*

in
ci

de
nt

1.
..*

1.
..*

1.
..*

tb
_c

or
po

ra
tio

n

inc_zcr

0.
..1

0.
..*

in
c_

re
so

ur
ce

s

0.
..*

tb_person

0.
..1

inc_
co

s

0.
..*

in
ci

de
nt

1

1

1

1

1

1

1.
..*

1

1.
..*1

in
c_

di
v_

co
m

m
an

de
r

tb
_p

er
so

n

0.
..*

in
c_

di
vi

si
on

0.
..1

Figure C.7: Cluster 1.6 - Incident locations conceptual mode.



Appendix C. Database Analysis 114

C.2 Data models

C.2.1 Incident cluster

CREATE TABLE ‘incident ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘setting_time ‘ datetime NOT NULL ,

‘local_ocorr ‘ varchar (50) DEFAULT NULL ,

‘lat_dms ‘ varchar (20) DEFAULT NULL ,

‘lng_dms ‘ varchar (20) DEFAULT NULL ,

‘id_incident_type ‘ varchar (4) DEFAULT NULL ,

‘no_ocorr ‘ int (11) DEFAULT NULL ,

‘man_channel ‘ int (11) DEFAULT NULL ,

‘info ‘ mediumtext ,

‘id_tb_freg ‘ int (11) DEFAULT NULL ,

‘id_tb_conc ‘ int (11) DEFAULT NULL ,

‘id_tb_dist ‘ int (11) DEFAULT NULL ,

‘id_family ‘ int (11) DEFAULT NULL ,

‘id_kind ‘ int (11) DEFAULT NULL ,

‘id_type ‘ int (11) DEFAULT NULL ,

‘id_sgo_phase ‘ int (11) DEFAULT NULL ,

‘lat_wgs84 ‘ decimal (10,7) DEFAULT NULL ,

‘lng_wgs84 ‘ decimal (10,7) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘id_tb_freg ‘ (‘id_tb_freg ‘),

KEY ‘id_tb_conc ‘ (‘id_tb_conc ‘),

KEY ‘id_tb_dist ‘ (‘id_tb_dist ‘)

) ENGINE=InnoDB AUTO_INCREMENT =11 DEFAULT CHARSET=latin1 COMMENT= ’Tabela de sinistros ’

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘incident_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘incident ‘

FOR EACH ROW

-- Edit trigger body code below this line. Do not edit lines above this one

begin

SET NEW.setting_time = NOW();

end

$$

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘incident_AINS ‘

AFTER INSERT ON ‘cco ‘.‘incident ‘

FOR EACH ROW

-- Edit trigger body code below this line. Do not edit lines above this one

begin

insert into timeline (setting_time , frame_id ,seq ,id_incident) VALUES (NEW.

setting_time , "inicio" ,1,NEW.id);

insert into inc_structural (id) VALUES (NEW.id);

end

CREATE



Appendix C. Database Analysis 115

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘incident_AUPD ‘

AFTER UPDATE ON ‘cco ‘.‘incident ‘

FOR EACH ROW

-- Edit trigger body code below this line. Do not edit lines above this one

begin

IF (NEW.id_sgo_phase != OLD.id_sgo_phase) THEN

CASE NEW.id_sgo_phase

WHEN 1 THEN

-- insert six teams in the incident structure

SET @i = 0;

WHILE (@i < 6) DO

insert into inc_teams (num_team , id_incident) VALUES (@i+1,NEW.id);

SET @i = @i + 1;

END WHILE;

-- insert the first COS

insert into inc_cos (id_incident) VALUES (NEW.id);

WHEN 2 THEN

-- insert CECOP in the incident structure

insert into inc_cells (id_sgo_cells , id_incident) VALUES (1,NEW.id);

WHEN 3 THEN

-- insert CEPLAN and CELOG and eventually CECOP in the incident structure

insert into inc_cells (id_sgo_cells , id_incident) SELECT id, NEW.id FROM

sgo_cells WHERE id NOT IN (SELECT id_sgo_cells FROM inc_cells WHERE id_incident=NEW.id);

-- insert assistants

insert into inc_assistants (id_sgo_assistants , id_incident) SELECT id, NEW.

id FROM sgo_assistants WHERE id IN (1,2);

WHEN 4 THEN

-- insert CEPLAN and CELOG and eventually CECOP in the incident structure

insert into inc_cells (id_sgo_cells , id_incident) SELECT id, NEW.id FROM

sgo_cells WHERE id NOT IN (SELECT id_sgo_cells FROM inc_cells WHERE id_incident=NEW.id);

-- insert assistants

insert into inc_assistants (id_sgo_assistants , id_incident) SELECT id, NEW.

id FROM sgo_assistants WHERE id NOT IN (SELECT id_sgo_assistants FROM inc_assistants

WHERE id_incident=NEW.id);

END CASE;

END IF;

end

Code Excerpt C.1: incident

CREATE TABLE ‘cco ‘.‘inc_structural ‘ (

‘id‘ int (11) NOT NULL ,

‘i_curso ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘i_resolucao ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘i_conclusao ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘i_finalizado ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘com_fogovista ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘sem_fogovista ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘em_habitacao ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘em_comercio ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘em_industria ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘em_outro ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘em_outro_desc ‘ varchar (60) NOT NULL ,

‘tipo_unifamiliar ‘ tinyint (1) NOT NULL DEFAULT ’0’,



Appendix C. Database Analysis 116

‘tipo_hospital ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘tipo_edificio ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘tipo_militar ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘tipo_utilidade ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘tipo_outro ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘tipo_outro_desc ‘ varchar (60) NOT NULL ,

‘p_horizontal ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘p_vertical ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘m_agua ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘agua_outros ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘agua_desc ‘ varchar (60) NOT NULL ,

‘ps_habitacoes ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘ps_comercio ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘ps_industria ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘ps_outro ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_reconhecimento ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_salvamentos ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_meiosacao ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_protecao ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_ofensiva ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_defensiva ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_rescaldo ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘faco_vigilancia ‘ tinyint (1) NOT NULL DEFAULT ’0’,

PRIMARY KEY (‘id ‘),

CONSTRAINT ‘fk_inc_structural_1 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘incident ‘ (‘id ‘) ON DELETE

CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Code Excerpt C.2: inc structural

eg. fire, accident, infra-structures, . . .

CREATE TABLE ‘cco ‘.‘tb_incident_family ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Code Excerpt C.3: tb incident family

(eg. Products, Transportation, Buildings, . . . )

CREATE TABLE ‘cco ‘.‘tb_incident_specie ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_family ‘ int (11) NOT NULL ,

‘id_specie ‘ int (11) NOT NULL ,

‘design ‘ varchar (100) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_tb_incident_specie_1_idx ‘ (‘id_family ‘),

CONSTRAINT ‘fk_tb_incident_specie_1 ‘ FOREIGN KEY (‘id_family ‘) REFERENCES ‘

tb_incident_family ‘ (‘id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Code Excerpt C.4: tb incident specie



Appendix C. Database Analysis 117

(eg. Schools, Hospitals, Military Facilities, Commercial Facilities, Hotels, . . . )

CREATE TABLE ‘tb_incident_kind ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_family ‘ int (11) NOT NULL ,

‘id_specie ‘ int (11) NOT NULL ,

‘id_type ‘ varchar (2) NOT NULL ,

‘design ‘ varchar (100) NOT NULL ,

‘code ‘ varchar (4) NOT NULL ,

‘info ‘ text NOT NULL ,

‘id_kind ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_tb_incident_kind_1_idx ‘ (‘id_specie ‘),

CONSTRAINT ‘fk_tb_incident_kind_1 ‘ FOREIGN KEY (‘id_specie ‘) REFERENCES ‘

tb_incident_specie ‘ (‘id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT =96 DEFAULT CHARSET=latin1

Code Excerpt C.5: tb incident kind

C.2.2 Incident divisions cluster

CREATE TABLE ‘inc_divisions ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_division_type ‘ int (11) NOT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

‘id_person ‘ int (11) DEFAULT NULL ,

‘rob_channel ‘ varchar (5) DEFAULT NULL ,

‘siresp_channel ‘ varchar (5) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_divisions_1_idx ‘ (‘id_incident ‘),

KEY ‘fk_inc_divisions_2_idx ‘ (‘id_person ‘),

CONSTRAINT ‘fk_inc_divisions_1 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘)

ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_divisions_2 ‘ FOREIGN KEY (‘id_person ‘) REFERENCES ‘tb_person ‘ (‘id ‘) ON

UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT =198 DEFAULT CHARSET=latin1

Code Excerpt C.6: inc divisions

CREATE TABLE ‘inc_div_commander ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_inc_division ‘ int (11) DEFAULT NULL ,

‘id_tb_person ‘ int (11) DEFAULT NULL ,

‘setting_time ‘ datetime DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_divisions_idx ‘ (‘id_inc_division ‘),

KEY ‘fk_tb_person_idx ‘ (‘id_tb_person ‘),

CONSTRAINT ‘fk_tb_person ‘ FOREIGN KEY (‘id_tb_person ‘) REFERENCES ‘tb_person ‘ (‘id ‘) ON

DELETE NO ACTION ON UPDATE NO ACTION ,

CONSTRAINT ‘fk_inc_divisions ‘ FOREIGN KEY (‘id_inc_division ‘) REFERENCES ‘inc_divisions ‘

(‘id ‘) ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Code Excerpt C.7: inc div commander



Appendix C. Database Analysis 118

CREATE TABLE ‘inc_cos ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_incident ‘ int (11) NOT NULL ,

‘id_person ‘ int (11) NOT NULL ,

‘rob ‘ varchar (5) DEFAULT NULL ,

‘siresp ‘ varchar (5) DEFAULT NULL ,

‘setting_time ‘ datetime NOT NULL ,

‘lat_dms ‘ varchar (45) DEFAULT NULL ,

‘lng_dms ‘ varchar (45) DEFAULT NULL ,

‘lat_wgs84 ‘ decimal (10,7) DEFAULT NULL ,

‘lng_wgs84 ‘ decimal (10,7) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_cos_1_idx ‘ (‘id_incident ‘),

KEY ‘fk_inc_cos_2_idx ‘ (‘id_person ‘),

CONSTRAINT ‘fk_inc_cos_1 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT =12 DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_cos_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_cos ‘

FOR EACH ROW

begin

SET NEW.setting_time = NOW();

end

Code Excerpt C.8: inc cos

CREATE TABLE ‘inc_cells ‘ (

‘id‘ int (11) NOT NULL ,

‘id_sgo_cells ‘ int (11) NOT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

‘setting_time ‘ datetime NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_cells_2_idx ‘ (‘id_sgo_cells ‘),

KEY ‘fk_inc_cells_3_idx ‘ (‘id_incident ‘),

CONSTRAINT ‘fk_inc_cells_1 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘inc_divisions ‘ (‘id ‘) ON DELETE

CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_cells_2 ‘ FOREIGN KEY (‘id_sgo_cells ‘) REFERENCES ‘sgo_cells ‘ (‘id ‘) ON

UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_cells_3 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_cells_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_cells ‘

FOR EACH ROW

begin

-- insert a new record in inc_divisions

-- and get the new id for inc_cells

insert into inc_divisions (id_division_type ,id_incident) VALUES (3,NEW.id_incident);

SET NEW.id = LAST_INSERT_ID ();



Appendix C. Database Analysis 119

SET NEW.setting_time = NOW();

end

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_cells_AINS ‘

AFTER INSERT ON ‘cco ‘.‘inc_cells ‘

FOR EACH ROW

begin

-- depending on the incident phase change the structure of the SGO

set @inc_phase = (select id_sgo_phase from incident where id = NEW.id_incident);

case @inc_phase

when 2 then -- define 3 sectors

insert into inc_sectors (id_sgo_sectors , id_incident) (select id, NEW.

id_incident from sgo_sectors limit 3);

insert into inc_cells_sectors (id_inc_cells , id_inc_sectors) (select NEW.id,

id from inc_sectors where id_incident = NEW.id_incident);

when 3 then -- define 6 sectors

insert into inc_sectors (id_sgo_sectors , id_incident) (select id, NEW.

id_incident from sgo_sectors WHERE id NOT IN (SELECT id_sgo_sectors FROM inc_sectors

WHERE id_incident = NEW.id_incident) LIMIT 6);

insert into inc_cells_sectors (id_inc_cells , id_inc_sectors) (select NEW.id,

id from inc_sectors WHERE id NOT IN (SELECT id_inc_sectors FROM inc_cells_sectors WHERE

id_inc_cells = NEW.id));

end case;

end

Code Excerpt C.9: inc cells

CREATE TABLE ‘inc_cells_sectors ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_inc_cells ‘ int (11) NOT NULL ,

‘id_inc_sectors ‘ int (11) NOT NULL ,

‘setting_time ‘ datetime NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_cells_sectors_1_idx ‘ (‘id_inc_cells ‘),

KEY ‘fk_inc_cells_sectors_2_idx ‘ (‘id_inc_sectors ‘),

CONSTRAINT ‘fk_inc_cells_sectors_1 ‘ FOREIGN KEY (‘id_inc_cells ‘) REFERENCES ‘inc_cells ‘ (‘

id ‘) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_cells_sectors_2 ‘ FOREIGN KEY (‘id_inc_sectors ‘) REFERENCES ‘inc_sectors

‘ (‘id ‘) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT =22 DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘ inc_cells_sectors_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_cells_sectors ‘

FOR EACH ROW

begin

SET NEW.setting_time = NOW();

end

Code Excerpt C.10: inc cells sectors

CREATE TABLE ‘inc_assistants ‘ (



Appendix C. Database Analysis 120

‘id‘ int (11) NOT NULL ,

‘id_sgo_assistants ‘ int (11) NOT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

‘setting_time ‘ datetime DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_assistants_1_idx ‘ (‘id_sgo_assistants ‘),

KEY ‘fk_inc_assistants_2_idx ‘ (‘id_incident ‘),

CONSTRAINT ‘fk_inc_assistants_1 ‘ FOREIGN KEY (‘id_sgo_assistants ‘) REFERENCES ‘

sgo_assistants ‘ (‘id ‘) ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_assistants_2 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘)

ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_assistants_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_assistants ‘

FOR EACH ROW

begin

insert into inc_divisions (id_division_type ,id_incident) VALUES (5,NEW.id_incident);

SET NEW.id = LAST_INSERT_ID ();

SET NEW.setting_time = NOW();

end

Code Excerpt C.11: inc assistants

CREATE TABLE ‘inc_zcr ‘ (

‘id‘ int (11) NOT NULL ,

‘id_inc_cells ‘ int (11) NOT NULL ,

‘inc_zcr_num ‘ int (11) NOT NULL DEFAULT ’1’,

‘setting_time ‘ datetime NOT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_zcr_2_idx ‘ (‘id_inc_cells ‘),

KEY ‘fk_inc_zcr_3_idx ‘ (‘inc_zcr_num ‘),

KEY ‘fk_inc_zcr_4_idx ‘ (‘id_incident ‘),

CONSTRAINT ‘fk_inc_zcr_1 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘inc_divisions ‘ (‘id ‘) ON DELETE

CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_zcr_2 ‘ FOREIGN KEY (‘id_inc_cells ‘) REFERENCES ‘inc_cells ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_zcr_3 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_zcr_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_zcr ‘

FOR EACH ROW

begin

insert into inc_divisions (id_division_type ,id_incident) VALUES (4,NEW.id_incident);

SET NEW.id = LAST_INSERT_ID ();

SET NEW.setting_time = NOW();

end



Appendix C. Database Analysis 121

$$

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_zcr_AINS ‘

AFTER INSERT ON ‘cco ‘.‘inc_zcr ‘

FOR EACH ROW

begin

-- insert ZCR areas according to phase

SET @inc_phase = (SELECT id_sgo_phase FROM incident WHERE id = NEW.id_incident);

IF @inc_phase =3 THEN

insert into inc_zcr_areas (id_inc_zcr ,id_sgo_zcr) SELECT NEW.id, id FROM

sgo_zcr WHERE id <3 OR id >6;

END IF;

IF @inc_phase =4 THEN

insert into inc_zcr_areas (id_inc_zcr ,id_sgo_zcr) SELECT NEW.id, id FROM

sgo_zcr;

END IF;

end

Code Excerpt C.12: inc zcr

CREATE TABLE ‘sgo_zcr ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Code Excerpt C.13: sgo zcr

CREATE TABLE ‘inc_zcr_areas ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_inc_zcr ‘ int (11) NOT NULL ,

‘id_sgo_zcr ‘ int (11) NOT NULL ,

‘setting_time ‘ datetime NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_zcr_areas_1_idx ‘ (‘id_sgo_zcr ‘),

KEY ‘fk_inc_zcr_areas_2_idx ‘ (‘id_inc_zcr ‘),

CONSTRAINT ‘fk_inc_zcr_areas_1 ‘ FOREIGN KEY (‘id_sgo_zcr ‘) REFERENCES ‘sgo_zcr ‘ (‘id ‘) ON

UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_zcr_areas_2 ‘ FOREIGN KEY (‘id_inc_zcr ‘) REFERENCES ‘inc_zcr ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_zcr_areas_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_zcr_areas ‘

FOR EACH ROW

begin

SET NEW.setting_time = NOW();

end

Code Excerpt C.14: inc zcr areas



Appendix C. Database Analysis 122

C.2.3 Incident occurrences cluster

CREATE TABLE ‘inc_damages ‘ (

‘id‘ int (11) NOT NULL ,

‘design ‘ varchar (45) DEFAULT NULL ,

‘affected_structure ‘ varchar (45) DEFAULT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

‘id_inc_resources ‘ int (11) NOT NULL ,

‘comm_time ‘ datetime NOT NULL ,

‘observ ‘ text ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘inc_damage_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘inc_damages ‘

FOR EACH ROW

begin

insert into inc_occurrence (‘setting_time ‘,‘id_type_occurrence ‘,‘id_inc_division ‘)

VALUES (NOW() ,5, NEW.id_inc_resources);

set NEW.id = LAST_INSERT_ID ();

end

Code Excerpt C.15: inc damages

CREATE TABLE ‘tb_victim_type ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘type ‘ varchar (60) NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =3 DEFAULT CHARSET=latin1 COMMENT= ’Victim type’

Code Excerpt C.16: tb victim type

CREATE TABLE ‘tb_victim_state ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (45) NOT NULL DEFAULT ’NULL’,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =4 DEFAULT CHARSET=latin1 COMMENT= ’Victim state’

Code Excerpt C.17: tb victim state

CREATE TABLE ‘tb_victim_situation ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (45) NOT NULL DEFAULT ’NULL’,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =5 DEFAULT CHARSET=latin1 COMMENT= ’Victim situation ’

Code Excerpt C.18: tb victim situation

CREATE TABLE ‘tb_victim_condition ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (45) NOT NULL DEFAULT ’NULL’,

PRIMARY KEY (‘id ‘)



Appendix C. Database Analysis 123

) ENGINE=InnoDB AUTO_INCREMENT =5 DEFAULT CHARSET=latin1 COMMENT= ’Victim condition ’

Code Excerpt C.19: tb victim condition

CREATE TABLE ‘tb_nationalities ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) DEFAULT NULL ,

‘abrev ‘ varchar (10) DEFAULT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =3 DEFAULT CHARSET=latin1

Code Excerpt C.20: tb nationalities

CREATE TABLE ‘tb_fire_class ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) DEFAULT NULL ,

‘info ‘ text ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =5 DEFAULT CHARSET=latin1

Code Excerpt C.21: tb fire class

CREATE TABLE ‘tb_fire_status ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (45) DEFAULT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =5 DEFAULT CHARSET=latin1

Code Excerpt C.22: tb fire status

C.2.4 Incident resources cluster

CREATE TABLE ‘inc_resources ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘mob_time ‘ datetime NOT NULL ,

‘arriv_time ‘ datetime DEFAULT NULL ,

‘demob_time ‘ datetime DEFAULT NULL ,

‘first_responder ‘ tinyint (1) NOT NULL DEFAULT ’0’,

‘id_type_resource ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Code Excerpt C.23: inc resources

CREATE TABLE ‘inc_teams ‘ (

‘id‘ int (11) NOT NULL ,

‘num_team ‘ int (11) NOT NULL DEFAULT ’1’,

‘setting_time ‘ datetime NOT NULL ,

‘id_incident ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_teams_3_idx ‘ (‘id_incident ‘),

CONSTRAINT ‘fk_inc_teams_3 ‘ FOREIGN KEY (‘id_incident ‘) REFERENCES ‘incident ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1



Appendix C. Database Analysis 124

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘ inc_teams_before_insert ‘

BEFORE INSERT ON ‘cco ‘.‘inc_teams ‘

FOR EACH ROW

begin

insert into inc_divisions (id_division_type ,id_incident) VALUES (1,NEW.id_incident);

SET NEW.id = LAST_INSERT_ID ();

SET NEW.setting_time = NOW();

end

Code Excerpt C.24: inc teams

CREATE TABLE ‘inc_vehicles ‘ (

‘id‘ int (11) NOT NULL ,

‘id_corporation ‘ int (11) NOT NULL ,

‘weight ‘ decimal (10,2) DEFAULT NULL ,

‘autonomy ‘ decimal (10,2) DEFAULT NULL ,

‘id_tb_vehicle_type ‘ int (11) NOT NULL ,

‘capacity ‘ decimal (10,2) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_vehicles_1_idx ‘ (‘id_tb_vehicle_type ‘),

KEY ‘fk_inc_vehicles_2_idx ‘ (‘id_corporation ‘),

CONSTRAINT ‘fk_inc_vehicles_1 ‘ FOREIGN KEY (‘id_tb_vehicle_type ‘) REFERENCES ‘

tb_vehicle_type ‘ (‘id ‘) ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_vehicles_2 ‘ FOREIGN KEY (‘id_corporation ‘) REFERENCES ‘tb_corporation ‘

(‘id ‘) ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_vehicles_3 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘inc_resources ‘ (‘id ‘) ON

DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘ inc_vehicles_before_insert ‘

BEFORE INSERT ON ‘cco ‘.‘inc_vehicles ‘

FOR EACH ROW

begin

insert into inc_resources (‘mob_time ‘) VALUES (NOW());

set NEW.id = LAST_INSERT_ID ();

end

Code Excerpt C.25: inc vehicles

CREATE TABLE ‘inc_robots ‘ (

‘id‘ int (11) NOT NULL ,

‘id_corporation ‘ int (11) NOT NULL ,

‘id_tb_robot_class ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_robots_2_idx ‘ (‘id_tb_robot_class ‘),

KEY ‘fk_inc_robots_3_idx ‘ (‘id_corporation ‘),

CONSTRAINT ‘fk_inc_robots_1 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘inc_resources ‘ (‘id ‘) ON

UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_robots_2 ‘ FOREIGN KEY (‘id_tb_robot_class ‘) REFERENCES ‘tb_robot_class ‘

(‘id ‘) ON UPDATE CASCADE ,



Appendix C. Database Analysis 125

CONSTRAINT ‘fk_inc_robots_3 ‘ FOREIGN KEY (‘id_corporation ‘) REFERENCES ‘tb_corporation ‘ (‘

id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘ inc_robots_before_insert ‘

BEFORE INSERT ON ‘cco ‘.‘inc_robots ‘

FOR EACH ROW

begin

insert into inc_resources (‘mobtime ‘) VALUES (NOW());

set NEW.id = LAST_INSERT_ID ();

end

Code Excerpt C.26: inc robots

CREATE TABLE ‘inc_vehicle_team ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘id_inc_vehicle ‘ int (11) NOT NULL ,

‘id_inc_teams ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_inc_vehicle_team_1_idx ‘ (‘id_inc_teams ‘),

KEY ‘fk_inc_vehicle_team_2_idx ‘ (‘id_inc_vehicle ‘),

CONSTRAINT ‘fk_inc_vehicle_team_1 ‘ FOREIGN KEY (‘id_inc_teams ‘) REFERENCES ‘inc_teams ‘ (‘

id ‘) ON UPDATE CASCADE ,

CONSTRAINT ‘fk_inc_vehicle_team_2 ‘ FOREIGN KEY (‘id_inc_vehicle ‘) REFERENCES ‘inc_vehicles

‘ (‘id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Code Excerpt C.27: inc vehicle team

CREATE TABLE ‘tb_vehicle_type ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) NOT NULL ,

‘nick ‘ varchar (10) NOT NULL ,

‘info ‘ text NOT NULL ,

‘id_vehicle_group ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_tb_vehicle_type_1_idx ‘ (‘id_vehicle_group ‘),

CONSTRAINT ‘fk_tb_vehicle_type_1 ‘ FOREIGN KEY (‘id_vehicle_group ‘) REFERENCES ‘

tb_vehicle_group ‘ (‘id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT =52 DEFAULT CHARSET=latin1

Code Excerpt C.28: tb vehicle type

CREATE TABLE ‘tb_vehicle_group ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) NOT NULL ,

‘info ‘ text NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =12 DEFAULT CHARSET=latin1

Code Excerpt C.29: tb vehicle group



Appendix C. Database Analysis 126

CREATE TABLE ‘tb_robot_class ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) NOT NULL ,

‘photo ‘ blob ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Code Excerpt C.30: tb robot class

C.2.5 Incident personnel cluster

CREATE TABLE ‘tb_person ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘surname ‘ varchar (45) NOT NULL ,

‘name ‘ varchar (45) NOT NULL ,

‘id_entity ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_tb_person_1_idx ‘ (‘id_entity ‘),

CONSTRAINT ‘fk_tb_person_1 ‘ FOREIGN KEY (‘id_entity ‘) REFERENCES ‘tb_entities ‘ (‘id ‘) ON

DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT =42 DEFAULT CHARSET=latin1

Code Excerpt C.31: tb person

CREATE TABLE ‘tb_entities ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘name ‘ varchar (60) DEFAULT NULL ,

‘abrev ‘ varchar (10) NOT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =19 DEFAULT CHARSET=latin1

Code Excerpt C.32: tb entities

CREATE TABLE ‘tb_corporation ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘name ‘ varchar (60) DEFAULT NULL ,

‘id_tb_conc ‘ int (11) DEFAULT NULL ,

‘id_tb_dist ‘ int (11) DEFAULT NULL ,

‘numero ‘ varchar (4) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘id_tb_conc ‘ (‘id_tb_conc ‘),

KEY ‘id_tb_dist ‘ (‘id_tb_dist ‘),

CONSTRAINT ‘tb_corporation_ibfk_2 ‘ FOREIGN KEY (‘id_tb_conc ‘) REFERENCES ‘tb_conc ‘ (‘id ‘),

CONSTRAINT ‘tb_corporation_ibfk_3 ‘ FOREIGN KEY (‘id_tb_dist ‘) REFERENCES ‘tb_dist ‘ (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =450 DEFAULT CHARSET=latin1

Code Excerpt C.33: tb corporation

CREATE TABLE ‘tb_firefighter ‘ (

‘id‘ int (11) NOT NULL ,

‘id_corporation ‘ int (11) NOT NULL ,

‘id_rank ‘ int (11) NOT NULL ,

‘num_mec ‘ int (11) NOT NULL ,

‘name ‘ varchar (45) NOT NULL ,



Appendix C. Database Analysis 127

‘surname ‘ varchar (45) NOT NULL ,

‘age ‘ int (11) NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘fk_tb_firefighter_2_idx ‘ (‘id_rank ‘),

KEY ‘fk_tb_firefighter_3_idx ‘ (‘id_corporation ‘),

CONSTRAINT ‘fk_tb_firefighter_1 ‘ FOREIGN KEY (‘id ‘) REFERENCES ‘tb_person ‘ (‘id ‘) ON

DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT ‘fk_tb_firefighter_2 ‘ FOREIGN KEY (‘id_rank ‘) REFERENCES ‘tb_firefighter_rank ‘

(‘id ‘) ON UPDATE CASCADE ,

CONSTRAINT ‘fk_tb_firefighter_3 ‘ FOREIGN KEY (‘id_corporation ‘) REFERENCES ‘tb_corporation

‘ (‘id ‘) ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE

DEFINER=‘root ‘@‘localhost ‘

TRIGGER ‘cco ‘.‘tb_firefighter_BINS ‘

BEFORE INSERT ON ‘cco ‘.‘tb_firefighter ‘

FOR EACH ROW

begin

insert into tb_person (‘surname ‘,‘name ‘,‘id_entity ‘) values (NEW.‘surname ‘,NEW.‘name

‘,1);

SET NEW.id = LAST_INSERT_ID ();

end

Code Excerpt C.34: tb firefighter

CREATE TABLE ‘tb_firefighter_rank ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘rank ‘ varchar (60) NOT NULL ,

‘rank_image ‘ varchar (45) DEFAULT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =16 DEFAULT CHARSET=latin1

Code Excerpt C.35: tb firefighter rank

C.2.6 Incident location cluster

CREATE TABLE ‘tb_dist ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) DEFAULT NULL ,

PRIMARY KEY (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =23 DEFAULT CHARSET=latin1

Code Excerpt C.36: tb dist

CREATE TABLE ‘tb_conc ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) DEFAULT NULL ,

‘id_tb_dist ‘ int (11) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘id_tb_dist ‘ (‘id_tb_dist ‘),

CONSTRAINT ‘tb_conc_ibfk_1 ‘ FOREIGN KEY (‘id_tb_dist ‘) REFERENCES ‘tb_dist ‘ (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =310 DEFAULT CHARSET=latin1

Code Excerpt C.37: tb conc



Appendix C. Database Analysis 128

CREATE TABLE ‘tb_freg ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘design ‘ varchar (60) DEFAULT NULL ,

‘id_tb_conc ‘ int (11) DEFAULT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘id_tb_conc ‘ (‘id_tb_conc ‘),

CONSTRAINT ‘tb_freg_ibfk_1 ‘ FOREIGN KEY (‘id_tb_conc ‘) REFERENCES ‘tb_conc ‘ (‘id ‘)

) ENGINE=InnoDB AUTO_INCREMENT =4281 DEFAULT CHARSET=latin1

Code Excerpt C.38: tb freg



Appendix D

ANPC forms

129



Appendix D. ANPC forms 130

D.1 CECOP forms

Figure D.1: Structural incidents command guide form.



Appendix D. ANPC forms 131

Figure D.2: Sectorization form.



Appendix D. ANPC forms 132

Figure D.3: Victims map form.



Appendix D. ANPC forms 133

Figure D.4: Graphical SITAC form.



Appendix D. ANPC forms 134

Figure D.5: Example of a graphical SITAC.



Appendix D. ANPC forms 135

Figure D.6: General framework of operations form.



Appendix D. ANPC forms 136

Figure D.7: Current situation progress report.



Appendix D. ANPC forms 137

Figure D.8: Damage form.



Appendix D. ANPC forms 138

Figure D.9: Symbology for graphical SITAC.



Appendix D. ANPC forms 139

D.2 CELOG forms

Figure D.10: Communications plan form.



Appendix D. ANPC forms 140

Figure D.11: Logistics form.



Appendix D. ANPC forms 141

Figure D.12: Resources form.



Appendix D. ANPC forms 142

Figure D.13: Logistics and resources form.



Appendix D. ANPC forms 143

Figure D.14: Reserve and concentration form.



Appendix D. ANPC forms 144

Figure D.15: Reserve area form.



Appendix D. ANPC forms 145

Figure D.16: Traffic point form.



Appendix D. ANPC forms 146

D.3 CEPLAN forms

Figure D.17: Information form.



Appendix D. ANPC forms 147

Figure D.18: Meteorologic Information form.



Bibliography

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and

Pete Steggles. Towards a better understanding of context and context-awareness.

In Proceedings of the 1st International Symposium on Handheld and Ubiquitous

Computing, HUC ’99, pages 304–307, London, UK, UK, 1999. Springer-Verlag.

[Ash07] Mark Ashdown. Asymmetric distributed collaboration in emergency response.

Technical report, Marie Curie Outgoing International Fellowship, 2007.

[Bre05] B Brehmer. The dynamic ooda loop: Amalgamating boyds ooda loop and the

cybernetic approach to command and control. In 15 th International Command

and Control Research and Technology Symposium (ICCRTS), 2005.

[Cro06] Douglas Crockford. The fat-free alternative to xml, 2006.

[CS99] MacKinley J. D. Card, S. K. and B. Shneiderman. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

[Des08] Despacho 20915/2008. Regulamento do modelo organizativo dos corpos de

bombeiros. D.R. n.o 154, Série II de 2008-08-11, Ministério da Administração

Interna, Autoridade Nacional de Protecção Civil, 2008.

[Deu96] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC

1951 (Informational), May 1996.

[DHYS04] Jill L. Drury, Dan Hestand, Holly A. Yanco, and Jean Scholtz. Design guide-

lines for improved human-robot interaction. In Elizabeth Dykstra-Erickson and

Manfred Tscheligi, editors, CHI Extended Abstracts, page 1540. ACM, 2004.

[EBJ03] M.R. Endsley, B. Bolte, and D.G. Jones. Designing for Situation Awareness: An

Approach to User-Centered Design. Taylor & Francis, 2003.

[EGJ93] R.A. Earnshaw, M.A. Gigante, and H. Jones. Virtual reality systems. Academic

Press, 1993.
148



Bibliography 149

[EGR91] C. A. Ellis, S. J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences.

In Communications of the ACM, pages 39–58, 1991.

[Fer13] Nuno Ferreira. Mrsensing - environmental monitoring and context recognition

with cooperative mobile robots in catastrophic incidents. Master’s thesis, Faculty

of Sciences and Technology of University of Coimbra, Portugal, September 2013.

[Fit54] Paul M. Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. Journal of Experimental Psychology, 47(6):381–391,

1954.

[GHC09] Patrick Grommes, Rob Hutton, and Nick Colford. Comprehensive model of first

responder operations & concept of operations. Technical report, COPE, 2009.

[Gue05] António Matos Guerra. Segurança e protecção individual. Escola Nacional de

Bombeiros, Sintra, 2. edição, revista e actualizada edition, 2005. Volume VIII.

[Hic52] W. E. Hick. On the rate of gain of information. Quarterly Journal of Experimental

Psychology, 4(1):11–26, March 1952.

[Huf52] David Huffman. A method for the construction of Minimum-Redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, September 1952.

[Hym53] Ray Hyman. Stimulus information as a determinant of reaction time. Journal of

Experimental Psychology, 45:188–196, 1953.

[Lee13] David A. Lee. Fat markup: Trimming the myth one calorie at a time. In In

Proceedings of Balisage: The Markup Conference 2013, 2013.

[LW09] Michael Lewis and Huadong Wang. Using humans as sensors in robotic search,

2009.

[Mac92] I. Scott MacKenzie. Fitts’ law as a research and design tool in human-computer

interaction. Hum.-Comput. Interact., 7(1):91–139, March 1992.

[Mar13] Joao Martins. MRSLAM - Multi-Robot Simultaneous Localization and Mapping.

Master’s thesis, Faculty of Sciences and Technology of University of Coimbra,

Portugal, September 2013.

[Mil56] G. A. Miller. The magical number seven, plus or minus two: Some limits on our

capacity for processing information. 62:81–97+, 1956.



Bibliography 150

[MP07] Christopher A. Miller and Raja Parasuraman. Designing for flexible interaction

between humans and automation: Delegation interfaces for supervisory control.

Human Factors, 49:57–75, 2007.

[MWH04] Bruce A. Maxwell, Nicolas Ward, and Frederick Heckel. Game-based design of

human-robot interfaces for urban search and rescue. In In Computer-Human

Interface Fringe, 2004.

[NOP09a] Norma Operacional Permanente. Classificação de Ocorrências. NOP 3101/09,

Ministério da Administração Interna, Comando Nacional de Operações de So-

corro, 2009.

[NOP09b] Norma Operacional Permanente. Sistema de Gestão de Operações - Simbolo-

gia. NOP 1402/09, Ministério da Administração Interna, Comando Nacional de

Operações de Socorro, 2009.

[NOP12] Norma Operacional Permanente. Sistema de Gestão de Operações - SGO. NOP

1401/12, Ministério da Administração Interna, Comando Nacional de Operações

de Socorro, 2012.

[Oli12] Vinicius Oliveira. Tufao. https://github.com/vinipsmaker/tufao, 2012.

[Pas98] Mr. Jason Pascoe. Adding generic contextual capabilities to wearable computers.

In Proceedings of the 2Nd IEEE International Symposium on Wearable Comput-

ers, ISWC ’98, pages 92–, Washington, DC, USA, 1998. IEEE Computer Society.

[Pin13] Andrea T. Pinto. iBombeiro. Master’s thesis, Faculty of Sciences and Technology

of University of Coimbra, Portugal, September 2013.

[Ras93] J. Rasmussen. Deciding and doing: Decision making in natural contexts. In

G.A. Klein, J. Orasanu, and R. Calderwood, editors, Decision Making in Action:

Models and Methods, pages 158–171. Ablex Publishing Corporation, 1993.

[RSP11] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human - Com-

puter Interaction. Interaction Design: Beyond Human-computer Interaction. Wi-

ley, 2011.

[Saf07] D. Saffer. Designing for Interaction: Creating Smart Applications And Clever

Devices. Voices that matter. New Riders Publishing, 2007.

[SAW94] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing ap-

plications. In Proceedings of the Workshop on Mobile Computing Systems and

Applications, pages 85–90. IEEE Computer Society, 1994.



Bibliography 151

[Sha48] Claude Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 27:379–423, July, October 1948.

[Sin84] R. W. Sinnott. Virtues of the Haversine. , 68:158, December 1984.

[SOG06] Standard Operating Guideline. Extreme fire behavior. SOG 242/2006/10,

Fire2000, 3D Firefighting, 2006.

[SOP09] Standard Operating Procedure. Tactical deployment into fire involved structures.

SOP 1/V2/09, Paul Grimwood, Firetactics.com, 2009.

[SR96] Mike Scaife and Yvonne Rogers. External cognition: How do graphical represen-

tations work? Int. J. Hum.-Comput. Stud., 45(2):185–213, August 1996.

[SSB04] E. Salas, K. C. Stagl, and C. S. Burke. 25 years of team effectiveness in organi-

zations: research themes and emerging needs. International Review of Industrial

and Organizational Psychology, John Wiley & Sons, Chichester, 19, 2004.

[YD04] Holly A. Yanco and Jill L. Drury. Classifying human-robot interaction: an up-

dated taxonomy. In SMC (3), pages 2841–2846. IEEE, 2004.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-

pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.


	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Code Excerpts
	Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Approach followed in this dissertation
	1.4 Outline of the dissertation

	2 Requirements Analysis
	2.1 Application Context
	2.1.1 Operation Mode of Portuguese Firefighters
	2.1.2 Decision making
	2.1.3 Risk Assessment
	2.1.4 Situation Awareness

	2.2 User Scenarios
	2.3 User Classes
	2.4 Operating Environment
	2.5 Summary

	3 Interfaces Requirements
	3.1 Hardware Interfaces
	3.2 Software Interfaces
	3.3 Interaction design requirements
	3.4 Context-awareness requirements
	3.5 Human-Robot Interaction requirements
	3.6 Human-Machine Interface requirements
	3.6.1 Functional Requirements
	3.6.2 Non functional requirements

	3.7 Summary

	4 Designed Solution
	4.1 Taxonomy of information flows
	4.2 Design of the CC human-machine interface
	4.3 Interface with human and robotics first responders
	4.4 Graphical SITAC
	4.5 Communication within ROS
	4.6 Map transmission
	4.7 Robots features
	4.8 Firefighters features
	4.9 Environmental variables
	4.10 Gesture recognition
	4.11 Summary

	5 Database Analysis
	5.1 Conceptual cluster models
	5.1.1 Incident cluster
	5.1.2 Incident divisions cluster
	5.1.3 Incident occurrences cluster
	5.1.4 Incident resources cluster
	5.1.5 Incident personnel cluster
	5.1.6 Incident location cluster

	5.2 Data modeling
	5.3 Summary

	6 Results
	6.1 Incident simulation and CCO operation
	6.2 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Use Cases and System Models
	A.1 Use-case diagrams
	A.2 Class diagrams

	B Messages Definition
	B.1 Command and Control Messages
	B.1.1 start2Scan()
	B.1.2 area2Scan()
	B.1.3 task2Perform()
	B.1.4 tacticalMode()
	B.1.5 searchCompleted()

	B.2 Location messages
	B.2.1 robotPose()
	B.2.2 firefighterPose()

	B.3 Status messages
	B.3.1 batteryStatus()
	B.3.2 scbaStatus()
	B.3.3 teamComp()
	B.3.4 sharedLevel()
	B.3.5 netStats()
	B.3.6 envStatus()
	B.3.7 fireStatus()
	B.3.8 fireStage()
	B.3.9 fireBehaviour()

	B.4 Conditions messages
	B.4.1 securityCondition()
	B.4.2 altExit()
	B.4.3 siteView()

	B.5 Mapping messages
	B.5.1 compressedMap()
	B.5.2 tempMap()
	B.5.3 gasMap()
	B.5.4 victimFound()
	B.5.5 smokeMap()
	B.5.6 hazardMat()
	B.5.7 fireOutbreak()

	B.6 Messages and HRI taxonomy

	C Entity-Relationship Diagram
	C.1 Conceptual models
	C.1.1 Incident cluster
	C.1.2 Incident divisions cluster
	C.1.3 Incident occurrences cluster
	C.1.4 Incident resources cluster
	C.1.5 Incident personnel cluster
	C.1.6 Incident locations cluster

	C.2 Data models
	C.2.1 Incident cluster
	C.2.2 Incident divisions cluster
	C.2.3 Incident occurrences cluster
	C.2.4 Incident resources cluster
	C.2.5 Incident personnel cluster
	C.2.6 Incident location cluster


	D ANPC forms
	D.1 CECOP forms
	D.2 CELOG forms
	D.3 CEPLAN forms

	Bibliography

