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Resumo

À medida que o custo das plataformas robóticas mais simples cai, cresce o interesse em

soluções que explorem a cooperação entre múltiplos robôs móveis. As técnicas cooperativas

apresentam um sem-fim de vantagens sobre as suas equivalentes individuais no que toca à

solução de problemas facilmente divisíveis.

A Localização e Mapeamento Simultâneos (do Inglês SLAM - Simultaneous Localization

and Mapping) é um dos problemas mais estudados na Robótica recente, e trata do problema

de, sem conhecimento a priori de um dado ambiente, dotar uma plataforma robótica móvel

da capacidade de construir uma representação desse ambiente e de, simultaneamente, se

localizar nela.

A exploração de ambientes desconhecidos apresenta-se-nos como um problema particu-

larmente e intuitivamente divisível, pelo menos no domínio humano: resume-se a seccionar a

equipa em grupos menores, até individuais, que exploram zonas distintas do ambiente, sendo

que mais tarde se reúnem para elaborar uma visão conjunta do espaço.

No entanto, no domínio robótico, esta abordagem apresenta uma série de novos desafios,

como a comunicação, o sincronismo da informação contida em cada máquina distinta e a

fusão da informação recolhida pelos vários membros da equipa.

Este trabalho foca-se na solução destes novos problemas, conhecidos no seu conjunto

como SLAM Multi-Robô. Para tal, foi construída uma solução de software que procura

dotar qualquer sistema capaz de correr uma solução SLAM da capacidade de comunicar

eficientemente com os seus vizinhos e de construir uma representação global do ambiente

com base na sua própria informação e na informação recebida dos seus vizinhos.

A solução foi validada através de testes com dados reais, tanto offline como online, ou

seja, tanto com dados previamente gravados como com informação recolhida no momento,

e mostrou um desempenho adequado, tanto em termos de escalabilidade como de eficiência

na comunicação.

Keywords: SLAM, SLAM Multi-Robô, ROS, MANET, Comunicação Eficiente
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Abstract

As the cost of simple robotic platforms plummets, interest in solutions that explore the

cooperation between robotic agents grows. Cooperative techniques enjoy a multitude of ad-

vantages over their individual counterparts, namely concerning the solution of easily divisible

problems.

Simultaneous Localization and Mapping (SLAM) is one of the most researched topics in

Robotics. It deals with the problem of endowing a mobile robotic platform with the ability

to, with no a priori knowledge of the environment, build a representation of its surroundings

and, simultaneously, localize itself in it.

The exploration of unknown environments seems to be a particularly and intuitively

divisible problem, at least at a human level: we simply divide the team into smaller groups,

or even into individuals, which explore different areas in the environment. After exploring,

the team reassembles and builds a joint representation of the region. However, this approach

gives rise to a new set of problems, such as communication, synchronization and information

fusion.

This work focuses in the solution of these problems, known collectively as Multi-Robot

SLAM. We propose a novel software solution that seeks to provide any system capable of

performing single robot SLAM with the ability to efficiently communicate with its teammates

and to build a global representation of the environment based on the information it exchanges

with its peers.

This solution was validated through experiments conducted over real-world data, both

on- and off-line, i.e., both using prerecorded and data gathered during the experiment. It

has shown acceptable performance, both in scalability and communication efficiency.

Keywords: SLAM, Multi-Robot SLAM, ROS, MANET, Efficient Communica-

tion
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“According to quantum physics, no matter how much information we

obtain or how powerful our computing abilities, the outcomes of physical

processes cannot be predicted with certainty because they are not

determined with certainty. Instead, given the initial state of a system,

nature determines its future state through a process that is

fundamentally uncertain."
— Stephen Hawking, The Grand Design
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1 Introduction

Humanity has always felt a need to learn and record the geometry and features of the world

around it, either by engraving crude maps into rocks, by crafting elaborate and exquisitely

detailed representations of the known world on canvas, or, more recently, by using satellite

imagery and computer graphics to create extremely accurate interactive representations of

our planet. This behavior follows from our tendency to explore, to be curious about our

surroundings, and also from our desire to know where we are, and how the various parts of

the world we sense interlock with each other. Maps allow us to have a global view of our

environment, to navigate within it; to take advantage of the fact that someone, or something,

else has already explored and mapped our surroundings.

Mapping can be a dangerous task. It may require the mapper to spend long periods

of time in hazardous conditions, e.g. underwater, exposed to extreme temperatures, radi-

ation or other deadly environments. It may even be impossible for a human to enter an

enclosed space that needs mapping. Furthermore, while our eyes excel at detecting potential

predators and nutrition, we cannot extract precise measurements solely from our visual ob-

servations of a location, which makes us generally less than useful at creating accurate maps

of geometrically complex locations. Robots, on the other hand, can be made to resist some

of the harshest conditions known to man, can be extremely precise in their measurements,

can be made to be very small and, in dangerous situations, are less valuable than a human

life; robots are expendable and replaceable, whereas humans are most certainly not.

Thus, robots appear to be a perfect choice for mapmakers. In fact, the robotic mapping

problem has been an active field of research for the last few decades, and several appropriate

approaches exist already. When mapping indoor locations, in the absence of global references

such as GPS (Global Positioning System), the mapping robot has no way of knowing where

it is when it starts recording data. This fact constitutes a chicken-and-egg problem: we need

a map to locate ourselves, and we need to locate ourselves in order to be able to create a

map. These operations must be performed simultaneously. The problem of simultaneously
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creating a map from range sensor measurements and locating a robot in that same map is

usually known as SLAM, Simultaneous Localization And Mapping.

Solving this problem for the 2D case, using a simple robot with odometric and range

scanning capabilities, may seem straightforward: we could theoretically determine the po-

sition of the robot using the odometry and locate the confines of the environment using

the range scans, thus gathering sufficient data to create an accurate representation of the

environment. However, realistically, all measurements are significantly affected by noise,

and while this simple solution may at first seem viable, its implementation would lead to

misaligned data due to cumulative errors and, subsequently, erroneous maps. Noise must

be taken into account when we try to solve this problem, which leads to multiple complex

solutions.

In the presence of a large, intricate environment, such as an abandoned factory, a cave,

or a jungle, humans tend to break up into small groups to try and maximize the gain of

new information per unit of time on the structure and accessibility of this new environ-

ment. Various groups can later meet, or rendezvous, communicate to each other what they

have learned from their experience and, together, create an approximate representation of

the location. This behavior is extremely beneficial to the group, and is an efficient way of

gathering information, as opposed to having a single person exploring, or the entire group

together. We can easily imagine, then, that a team of robots would have tremendous advan-

tages over a single robot at mapping certain locations, particularly vast ones. In fact, this

is also an open field of research, and this problem is usually known as Multi-Robot SLAM.

As with SLAM, this is a deeper challenge than meets the eye. For example, unlike single

robot SLAM, Multi-Robot SLAM requires that the robots be able to communicate amongst

themselves, so that they can coordinate their exploratory efforts. To achieve this goal, we

will be using the robots as nodes of a Mobile Ad-Hoc, infrastructure-less network (MANET).

While exchanging information, efficiency is the key to scalability. When only two humans

trade impressions on the layout of an area, they can be as expressive as they like. However,

if a third one is added, they must coordinate better so that each has the opportunity to talk.

As the group grows, a new protocol for the exchange of information must be developed,

perhaps even involving a new way to encode the information that needs to be exchanged.

Similarly, in order to build a scalable multi-robot system, the agents need to be able to

communicate in an efficient way, so that the addition of new members to the team does not

cause failures in the network connecting them, i.e. that no information is lost or corrupted

in transit. We have also tackled this issue in this work, and propose a solution to the issue
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of efficient communication in robotic teams in Chapter 3.

The main goal of this work is to develop, test and refine a new Multi-Robot SLAM

technique tailored to the needs of the CHOPIN (Cooperation between Human and rObotic

teams in catastroPhic INcidents) Project [32], in which the author was integrated.

1.1 Our Challenge

Given our knowledge of previous work in SLAM and Multi-Robot SLAM, our prime objective

is to develop a Multi-Robot SLAM approach in the context of the CHOPIN project .

Our approach should be distributed, i.e. must not depend on a centralized processing

unit. In this sense, we will make use of preexisting software tools to enable independent

robots to communicate through a wireless network.

Our technique must also be robust to failures in communication, i.e. the mission should

not be compromised by the corruption or loss of a message.

Our approach should be scalable, in the sense that adding robots to the mission should

not compromise their performance, within the limits of reason. This should be achieved

both by making robots communicate as efficiently as possible, and by carefully planning the

execution of our software.

Finally, our approach should be SLAM-technique-agnostic, i.e. able to work regardless

of the SLAM technique employed.

1.2 Document Overview

This Dissertation is organized as follows: we start by taking a short journey into the world of

SLAM, in Chapter 2; in Chapter 3, we discuss the issue of efficient communication in multi-

robot missions, and propose an adequate solution; in Chapter 4 we present and describe

the complete system we have developed for performing Multi-Robot SLAM, which we then

validate experimentally in Chapter 5; finally, in Chapter 6 we reflect upon the advantages

and handicaps of our system, as well as on the completion of our objectives and on possible

future work.
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2 A Foray Into SLAM and Multi-Robot

Systems

2.1 SLAM

2.1.1 What is SLAM?

SLAM stands for Simultaneous Localization and Mapping. Essentially, this means that a

robot performing SLAM is tasked with both creating a map of the environment and localizing

itself in it.

In its simplest form, performing SLAM consists of having a system composed of a mobile

robotic platform and a processing unit (which may or may not be embedded in the robot

itself) exploring a given region and, employing one of several available algorithms, using the

data it gathers to estimate the path it takes while exploring and building a representation

of that same region: a map.

A map is a representation of the robot’s surroundings, and obtaining it is one of the

main goals of SLAM. Maps themselves usually fit into one of two categories: metric or

topological [38]. Metric maps offer a detailed description of the environment, based on an

absolute reference frame. Occupancy grids [10], a type of metric map, are one of the most

popular type of map. These are constituted by a matrix of values, each corresponding to a

location in space. Higher values indicate a higher probability of that space being occupied,

and, analogously, lower values represent a higher probability of the corresponding space

being empty. When represented visually, each cell’s color indicates the probability that

this cell is occupied: white cells correspond to open, traversable space; darker cells indicate

the presence of obstacles. Metric maps have the disadvantage of being space-consuming:

building a detailed map requires a high resolution grid, which implies a large number of cells

and, therefore, a large amount of memory dedicated to maintaining this map.
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(a) A metric map. (b) A topological map.

Figure 2.1: A comparison of metric and topological maps.

Topological maps represent the environment by means of a graph; they are not scale

representations of reality, but are instead a way of representing various places or landmarks

and their connectivity. In this context, a node corresponds to a specific landmark or location,

and the existence of an edge connecting two nodes indicates the possibility of navigating

between them. Fig. 2.1 illustrates the differences between metric and topological maps.

Using its sensors, which usually include range and odometric sensors, the robot gathers

data as it explores the world. Here lies the very first issue that the algorithm implemented

in the robot must deal with: all data gathered through sensors is plagued by noise and

uncertainty. This has led to a strong prevalence of probabilistic solutions to the SLAM

problem over mathematically simpler approaches [37] [11]. Odometry, in particular, produces

errors that accumulate over time, as shown in Fig. 2.2. When the robot is exploring a

previously mapped environment, these errors can be bounded by estimating the robot’s

location relative to known landmarks. With no assistance from other sensors, however,

odometric errors can grow arbitrarily large [13].

As data is received, the robot must be able to relate it to the previous data it has

been gathering, i.e., the data must be aligned. This is usually known as the correspondence

problem, and solving it is usually accomplished by means of feature matching : the robot

extracts a number of features from every scan and tries to match them with features extracted

from previous scans. This process is of the utmost importance during loop closure. Loop

closure consists of the algorithm’s ability to recognize a loop in the environment, i.e. to

recognize the fact that the robot has already visited a certain location, albeit on a different

trajectory, and to take that fact into account in its calculations. The inability to recognize

a loop in the environment may lead to an erroneous, unintelligible map.
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(a) (b)

Figure 2.2: An illustration of how important data alignment is. The map on the right was

created using raw odometry data for localization, while the one on the left was rendered

after data was aligned using sensor information and loop closure techniques.

2.1.2 Classical Solutions

Filtering Techniques

Most classical solutions to the SLAM problem are based on Bayes Filters [37] [11]. The basic

underlying principle of these solutions is the Bayes Rule:

p(x | d) = ηp(d | x)p(x). (2.1)

The first term, p(d | x), is called the generative or likelihood model: it describes the

probability of observing d given our hypothesis x. The second term, p(x), is know as prior,

and represents our willingness to admit a priori that x is indeed the correct assumption.

Lastly, η is a normalizer that ensures that p(x | d) is a valid probability distribution [37] [11].

In the context of mobile robotics, we usually deal with two types of data: sensor mea-

surements, henceforth denoted as z, and controls, which will be represented by u. Sensor

measurements are the data the robot gathers: camera images, range measurements, etc. Con-

trols are the signals transmitted to the robot’s actuators which indicate how it is supposed

to move. They represent the way the robot is intended to move, not necessarily the way it

actually moves, thus it is common to replace controls with odometric measurements which,

albeit prone to errors, are more accurate than controls at representing robotic motion [37].

The Bayes Filter is an extension to Bayes Rule to integrate temporal data, and is usually

formulated as follows:
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p(st,m | zt, ut) = ηp(zt | st,m)
∫
p(st | ut, st−1)p(st−1,m | zt−1, ut−1)dst−1, (2.2)

where st is the robot’s estimated pose at time t, and m represents the map. Also, st =

{s1, s2, s3, ...}, i.e. the superscripted symbol represents all the values of that quantity up to

time t.

To arrive at this formulation, we assume the map, and therefore the world we are map-

ping, to be static. This is an extremely useful assumption in practical terms; by rendering

the map constant, it removes the need to integrate over it [37] [11].

The Kalman Filter (KF), presented for the first time in [18], is a Bayes Filter that uses

Gaussian distributions, which can be defined by a small number of parameters to represent

the posterior p(st,m | zt, ut). In this context, maps are usually the Cartesian coordinates

of sets of features, or landmarks, whereas pose represents the robot’s position. In the 2D

case, a set of three variables are used: x and y, Cartesian coordinates in the plane the robot

explores, and θ, the heading direction. These are usually condensed into a vector x̄ = [x, y, θ].

This approach is set on some basic assumptions: each map and pose must depend linearly

on the previous map and pose. Regarding the map, this is true since we assume it to be

static. However, a given pose may not linearly depend on the previous pose, since motion

is usually governed by nonlinear trigonometric functions [37]. To solve this problem, the

nonlinear function is approximated by a truncated Taylor Series. Measured motion is also

subdivided into smaller steps, to account for nonlinearity, resulting in a better estimate of

real motion. The approach based on these modifications to the Kalman Filter is known as

the Extended Kalman Filter (EKF).

The Extended Kalman Filter, while a step forward from the standard Kalman Filter, is

still unable to deal with ambiguous features, as noted in [37]. A sparse set of distinctive

landmarks, either by sensor data or location, is required in order to achieve reliable iden-

tification, which is of extreme importance, since errors in the identification of environment

features can, and usually do, lead to a complete failure of the mapping process.

Particle Filters (PFs) are recursive Bayes Filters that estimate the posterior of poses

conditioned by gathered data representing it by a set of weighted samples, also known as

particles, instead of a function or a set of parameters [40]. Each particle contains, effectively,

a possible solution to the problem at hand, as illustrated for simple localization in Fig. 2.3.

A higher number of particles leads to a better, more accurate estimated map. However,

computational cost grows with the number of particles used, which means that a trade-off
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Figure 2.3: An illustration of how the particle distribution evolves over time when using a

robot that only measures odometry. As the odometric error compounds, uncertainty about

the robot’s position increases; however, the densest regions in each group of particles indicate

a roughly correct estimate. The solid line displays the motion of the robot, and the samples

(dots) represent the robot’s belief at different points in time.1.

between accuracy and computational cost must be found [40]. These approaches assume

that each state is dependent only on the previous state, and not on the sequence of states

that preceded it, an assumption often referred to as the Markov assumption.

Unlike the Kalman and Extended Kalman Filters, Particle Filters are able to deal with

non-Gaussian noise. In fact, they can take into account almost arbitrary distributions for not

only noise, but also sensor characteristics and motion dynamics, and thus seem like a good

solution to one of the main problems observed in Kalman Filters. However, Particle Filtering

tends to be more computationally demanding, although it does tend to focus resources in

relevant areas. The algorithm is also adaptable to computers with varying resources, by

controlling the number of active particles [40].

Graph-Based SLAM

Graph-Based SLAM was firstly introduced in 1997, by F. Lu and E. Milios in [24]. Unlike

filtering techniques, in which data is discarded after being processed and incorporated into

the filter’s state, Graph-Based SLAM techniques keep all gathered data, and a full notion of

uncertainty, in the form of a graph. Keeping a complete history of past poses is an important

characteristic of this technique. Past poses are used to define local frames of reference, which

means that maintaining a complete history of past poses equates to maintaining the structure
1Image created by Daniel Lu and used under the terms of the Creative Commons License. More infor-

mation, including the code used to generate the image, can be found athttps://commons.wikimedia.org/

wiki/File:Particle2dmotion.svg
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Figure 2.4: A graphical representation of the constraint network used by graph-based SLAM

techniques. Please note how links are distributed: there can be various links from each node,

and multiple links connecting any two nodes. Strong links are represented by dotted lines

while weak links are portrayed as continuous lines.

of the environment. Keeping track of local frames of reference is also an important tool when

it comes to rendering the range scans as a map.

While filtering techniques are usually additive, in the sense that they add data to the map

as the robot explores its surroundings, graph-based techniques perform a global optimization

over all poses, which means that all data must be processed at once, potentially at every

step. When this technique was first introduced, it was regarded as a purely offline technique,

i.e., the map was generated after all data was gathered, not while the robot was exploring

its environment. Growth in computation power, and techniques such as variable elimination

[39] now allow us to use this technique in real time.

This approach is known as graph-based, a name owed to how data is usually represented

in this context and to the optimization problem underlying this technique, not to be confused

with how the map is represented. As illustrated in Fig. 2.4, poses are represented by nodes

and links between poses by lines connecting these nodes, or edges. These usually form a

non-complete graph, i.e., not all nodes are directly connected to one another. There are

also commonly two types of edges: those representing strong, and those representing weak

links. Once the graph is built and constraints are derived, a graph optimization process

takes place, which finds numerical solutions to all the variables involved in the estimation

problem, namely all the poses at which the robot performed range scans, a solution also

known as a pose-graph. The poses returned by the optimization process are usually relative
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to a common reference frame, e.g. in [24], poses are determined using the first pose as global

reference.

Graph-based approaches normally assume a robot equipped with odometric sensors and

a range scanner, i.e., a robot capable of estimating its pose as it travels and able to take

scans of distances to objects around itself. Fig. 2.4 also presents an illustration of how range

scans work. Every point rendered on the image is a distance measured by the range scanner

as it sweeps the environment.

As the robot progresses, it periodically takes a scan of the environment. This scan,

usually, but not necessarily, performed by laser range scanners, provides an indication of its

distance to all the objects that surround it. Each of these scans, along with the traveled

distance the robot measured since the last scan (or the relative pose measured from the last

to the current pose), constitute a node in the network. Every node introduces a new variable,

the pose at which it was taken, and one or more constraints to be integrated into the graph:

a weak link, derived from the odometric measurements, and possibly various strong links,

which are obtained through scan matching.

Scan matching is a technique through which we can introduce new constraints into our

graph. If the robot takes scans at two nearby locations, those scans will very likely have

some overlap. Scan matching detects which scans overlap, and estimates the relation between

poses that needs to exist in order for that specific overlap between scans to exist. There

are various techniques that can be employed to perform scan matching, for example the one

described in [7]. This is a fairly well-studied problem, and usually not the focus of SLAM

implementations.

The resulting graph is, then, constituted by nodes, strong and weak links. As described

in [24], links can be perceived as springs connecting loose points in space or, in this case,

in the 2D plane. Solving this problem is the equivalent of "letting go" of the system, i.e.,

we aim to minimize the energy contained in these springs, just like a physical system would

tend to.

More recently, Graph-Based SLAM solutions began relying on graph optimization frame-

works, or graph optimizers. These frameworks can be collaboratively developed, and their

development can be completely independent of the development of the remaining of the

SLAM solution. Graph optimizers are tools that deal only with the graph optimization,

leaving the acquisition of data, scan matching, analysis of the optimized poses, map build-

ing, etc. to be dealt with by the application in which they are included. Modern Graph-Based

SLAM solutions are, then, usually divided in two different pieces of software: the Front-End,
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responsible for building the graph (including scan matching), and the Back-End, which deals

only with the optimization of the graph.

Graph Optimizers receive as input all the nodes and edges of the graph [4] [3], and

return the optimized poses as output. The optimization facilities provided by these tools

are usually accessed via an API, which, of course, varies from tool to tool. Examples of

these tools include TORO [4] [15], one of the earliest implementations of a graph optimizer;

SPA [19], an improved version of the algorithm originally proposed by Lu and Milios; and

g2o [3] [20], an open-source C++ framework for general graph optimization.

2.2 Multi-Robot SLAM

2.2.1 Multi-Robot SLAM as an Extension to SLAM

We humans understand that cooperation is a fundamental and intrinsic part of our world. We

cooperate every day with other humans in order to achieve much higher goals than we could

ever hope to achieve on our own. In fact, cooperation is so intertwined into our daily lives we

may not even notice it. Nowadays, seldom are great achievements attained by individuals:

companies use cooperating workers to gain wealth; universities use cooperating researchers to

delve deeper into the unknown mysteries of the universe; construction companies combine the

efforts of numberless individuals to rise higher and higher into the sky. Even menial tasks

like taking public transportation or carpooling can be construed as cooperation between

humans.

Multi-Robot Systems have a number of advantages over Single-Robot solutions, such

as parallelism, distribution in space and time, problem decomposition, reliability, robust-

ness and redundancy. Thus, they are greatly advantageous in the solution of monotonous,

repetitive, complex, dangerous, large-scale and dividable problems [29].

Multi-Robot SLAM is, then, a natural extension to the original SLAM problem: if we

are able to map a 2D environment using a single mobile robot, why not apply this powerful

concept and use multiple robots, so as to achieve our goal in a faster, more reliable and

robust fashion?

Despite their many advantages, the usage of multi-robot systems gives way to the rise

of multiple new problems. First and foremost, coordination is fundamental and, thus, inter-

robot communication becomes a capital factor in the team’s performance. Furthermore, in

search and rescue scenarios, the ability to communicate information to teammates is hindered
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by the non-existence of a network infrastructure. In regards to SLAM, one of the biggest

challenges is that of combining the information gathered by multiple robots.

2.2.2 Communicating data

Communication is an essential part of cooperation. In order to cooperate, humans have

to be able to communicate their intentions and relevant data, be it verbally, textually or

pictorially. Analogously, robots have a need to share information in order to perform their

cooperative tasks.

In the context of the CHOPIN project, we will be using infrastructure-less networks,

namely a subset of Ad Hoc connections called Mobile Ad Hoc Networks (MANETs). A

MANET is a self-configuring, infrastructure-less dynamic network in which nodes, that are

assumed to be mobile, also play the role of routers. MANETs offer a considerable challenge

for routing algorithms, caused by the mobility of nodes. Routing algorithms, which decide

how packets travel, i.e. which path (or route) they follow in a network in order to reach their

destination, are based on the cost of each path, much like how a robot finds the shortest

path to a given destination in a topological map. However, mobile nodes cause the links

between said nodes to dynamically change: the shortest path, network-wise, is subject to

frequent change. Still, for our purposes, MANETs are a convenient solution: they do not

rely on an infrastructure, and nodes have the possibility to move in any direction and can

be added or removed without disturbing the remaining network.

In a vast or highly occlusive environment, e.g. one with an intricate topology that

limits the robots’ wireless communication range, it is very likely that, sooner or later, our

network will no longer encompass all operating robots and that they will form various sub-

networks. In this case, it is very important that we be able to guarantee the consistency of

the information being exchanged between robots.

Keeping track of which robot has which pieces of information can be a very important

step in reducing data traffic between robots. For instance, if two robots meet a significant

time after deployment, transferring the entire data they have gathered so far would probably

cause a considerable delay before they could resume their tasks. However, if the robots can

inform each other of how much data they need from each other, and if they have met a few

times before, the total amount of data they need to transfer can be dramatically reduced.

This issue is discussed in [27], where the concept of rendezvous is used. Briefly, there is a

successful rendezvous for time T if all robots have all the relevant data up to time T . This is
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an important concept, not only in cooperative robotic mapping, but in multi-robot systems

in general.

2.2.3 Information Fusion

Information fusing is one of the greatest challenges related to Multi-Robot SLAM. After a

successful exchange of data, robots need to combine their local information with the received

one into a single, consistent representation of the environment. There are various solutions

to this problem, and we shall review and discuss a few of them.

Map fusion, i.e. stitching together the various contributions into a combined representa-

tion, can take place on one of two levels, either by merging data such as poses, landmarks,

graphs, etc ([1], [23], [12]), or by merging the rendered occupancy grids themselves [6].

In [1], map fusion is assisted by what is called rendezvous measurements. While exploring,

robots often pass by each other, going in the same or different directions. When this occurs,

it is possible to measure the relative pose between them using robot-to-robot methods, such

as the visual detection system described in [41], in which virtual landmarks mounted on

the robots are detected by cameras also mounted on the robots. These measurements are

then used to estimate a transform, called the base node, defined by b = [x, y, φ]T , which

contains the rotation and translation needed to transform one robot’s local coordinates into

the other’s. Once the base node is determined, merging local maps is a trivial matter of

matching features present in both maps and building the combined map. This method suffers

from the need of precision measurements of relative poses, which is not always possible,

making this technique unfit for our particular case.

The method introduced in [23] approaches the problem in a different manner: robots carry

a camera, which creates a stream of images as the robot explores. From these images, features

can be extracted such that each location on the map can be identified in an unambiguous

way. Thus, each time a robot needs to merge two maps, it can search for locations that exist

in both maps, and thus extract translational information that relates them. This technique,

however, requires that model images exist previously, taken in ideal conditions, which will

be used by robots in location matching.

Fox et al. proposed, in [12], a complete method for Graph-Based SLAM with multiple

robots, extending the classical Graph-Based SLAM paradigm. This approach merges maps

on the graph-level, i.e., maps are merged by combining the graph representations created

by various robots, through relative pose measurement and colocation (a location visited by
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(a) (b) (c)

Figure 2.5: An illustration of the technique used in [12]. (a) and (b) are representations of the

local maps created by two robots, in which the blue nodes represent locations matched be-

tween maps. These matches are introduced into the pose graph as new constraints, allowing

the data to be fused and re-optimized, resulting in a globally consistent map (c).

multiple robots, a region in space common to various graphs), as illustrated in Fig. 2.5. As

robots explore the environment, Graph-Based SLAM dictates that constraints be created

between each pose at which a range scan is taken. Classically, these constraints are derived

from odometric measurements, scan matching and loop closure. The authors introduce a

new type of constraint, which is derived by matching poses between various local maps. It is

also important to note that, unlike the classical graph-based approach, this technique uses

a local representation for pose relations. This way, pose relations are independent of the

world coordinate system and, thus, invariant with rigid transformations (such as rotation

and translation).

Once colocation has been defined, i.e. once we have found, on the graph, a location that

both robots have visited, their graphs can be joined at that point. Then, a zippering process

takes place, in which scans from different robots are matched in order to find additional

constraints. This technique, in its proposed form, does not linearize the constraints, which

makes it impossible to solve the optimization problem through classical methods. However,

the authors propose alternative methods which, given a "close enough" estimate, can re-

portedly solve relatively large problems in under a second. This technique is able to achieve

remarkable precision, even surpassing manual methods of measurement in this field.

Lastly, in [6], an image-based method is proposed as the solution to the map alignment

and merging problem. This approach operates on occupancy grids, commonly produced by
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SLAM implementations.

Given two equivalent but misaligned occupancy grids, the matter of visually aligning

them is trivial: we simply try a few rotations, and see which one matches both maps so that

they appear to be a single map. Analogously, merging two different grids which have some

degree of juxtaposition, i.e. have one or a few common locations, also seems simple: we

identify these common locations and superpose them.

It is, then, relatively easy to align two occupancy grids: we simply have to rotate and

superpose them until we can find common locations that match or, in other words, we find

agreement between the grids. Computationally, all we have to do is attempt every possible

combination or rotation and translation and, given some common areas, we can guarantee

that we will find a combination of rotation and translation that correctly merges both maps.

However, trying every single one of these possibilities would take a brutal amount of time

and would be a prohibitively long process. Thus, we need a faster and more elegant way of

addressing this issue.

The Hough Transform is an established method for detecting lines and other parametric-

natured forms, such as circles or ellipses. The algorithm detailed in [6] uses the Hough

Spectrum, as described in [7] for use in scan matching, to conduct its spectra-based deter-

mination of rotations.

The output of this method is a set of candidate transformations. Since multiple solutions

are to be expected, we need a way of differentiating them; we need a metric that sets them

apart and gives us an idea of which better fits the available data. Thus, the authors define

an acceptance index, ω:

ω(M1,M2) = agr(M1,M2)
agr(M1,M2)+dis(M1,M2)

,

where M1 and M2 are maps, M1 being the original map, and M2 being the second map,

rotated and translated so that it, supposedly, fits the first map. agr is defined as the

agreement between the maps, i.e., the number of cells of M1 and M2 that are both free or

both occupied. Analogously, dis is defined as the disagreement between the maps, which is

the number of cells such that in a map one is occupied and free in the other, and vice-versa.

Thus, given the maps we wish to merge, and applying a candidate transformation to the

second, this metric allows us to distinguish between the results without having to visually

inspect every candidate map. Fig. 2.6 briefly illustrates this approach.
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(a) (b) (c)

Figure 2.6: An example of the results given by the approach described in [6]. (a) and (b) are

individual maps, with a visible region in common; (c) is the final, fused map. Image taken

from [6].

2.2.4 Previous Work on Multi-Robot SLAM

In [16], one of the first attempts at a Multi-Robot SLAM system is described. This technique

is a generalization of the Rao-Blackwellized Particle Filter (RBPF) technique to the Multi-

Robot SLAM problem. Although not clearly stated, this approach assumes that only one

instance of the filter is running at any given time, and that data from all robots is processed

in a centralized fashion.

Initially, it is assumed that initial poses are known, either by deploying all robots from

the same place or by externally monitoring the mapping process. The algorithm is, then,

generalized for the case where initial poses are unknown.

This algorithm does not explicitly use a map alignment/merging technique, rather merg-

ing data at the landmark and pose level. This merging is executed when robots "bump

into" each other, i.e. when they find each other and measure their relative pose. This issue

is discussed in [41], where the mutual detection and relative pose estimation problems are

further explored.

The authors of [5] describe an interesting technique, also based on Rao-Blackwellized

Particle Filters, which assumes each robot as an isolated entity, i.e. unlike in [16], robots

take the steps of performing SLAM in an isolated manner, and occasionally and discretely

exchange and merge information.

As before, merging occurs at the data level (as opposed to merging rendered maps),

and relative poses are found using pan-tilt cameras. When two robots rendezvous, they

exchange all data, transform it according to the measured relative pose, and integrate it into
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Fig. 3: Illustration of our Multi-Robot SLAM algorithm in a two
robots scenario. RobotA is depicted in red and RobotB in blue.
Triangles represent the nodes of the graph.a) Each robot runs a
graph-based SLAM algorithm and constructs its own map. When
they are within a communication range, they share their current
local maps;b) A localizesB and determines a set of candidate
edges connecting the two maps;c) A informs toB which of its
nodes it has matched;d) B computes condensed measurements that
connect the nodes in its own map that appear in the edges found
by A; d) A includes these edges in its own graph.

– the listEB
A of candidate edges between the map of

A and the map ofB that have been found byA.
– the list ofEA

B edges received fromB, that connect
the map ofA and the map ofB and that have been
found byB.

– the condensed graphGB
A sent byB.

RobotA updates the local maps of each other robotMB

and the list of edgesEA
B whenever a new message is received.

Each time the single-robot SLAM algorithm running onA
adds a new node to the graph, the estimate of the lastN

nodes and the last laser scan are sent to allow the other
robots to construct the local map ofA. Subsequently,A runs
a map-alignment algorithm between its local map and each
MB , and updates the list of candidate edges by using the
procedure described in the next section.

Finally, by knowingEA
B RobotA computes which nodes

of its own map are relevant for RobotB, and sends the
corresponding condensed measurements. In computing the
condensed measurements RobotA considers only the portion
of the graph acquired with its own sensors, thus avoiding
multiple integration of information.

C. Robust Map Alignment

In this section, we describe our approach to robustly align
two local mapsMA andMB onto each other. A local map
consists of a portion of the graph. We recall that each node
consists of a robot pose and a laser scan acquired at that
pose. Figure 4 illustrates the problem.

Our goal is to find a set of edges between the nodes of
the two local maps such that they are maximally consistent,

(a) Local mapMA. (b) Local mapMB .

(c) Alignment of the two local maps.

Fig. 4: Example of map alignment between two local maps after
finding a set of edges jointly consistent.

given the scans. To this end we match each scansBi of
MB with each scansAj of MA, by using a correlative scan
matcher. Note that each matching can result in zero or more
solutions. Each of these solutions is then converted in an
edge betweensBi andsAj , and added to a pool of candidate
edges.

Given this pool of edges, we run a RANSAC based
procedure to determine which of them are inliers. The idea
is the following: to determine a translation between the two
local maps it is sufficient to translate them so that one
candidate edgeei is satisfied (its error is0). Applying this
translation affects the error of all other candidate edges,and
their error will be small if they are consistent withei, while it
will be large otherwise. Based on these errors we determine
inliers and the outliers and we decide whether to accept a
match or not. Figure 5 illustrates the procedure.

The bottleneck of this schema is the scan matching routine,
since the RANSAC requires typically very few iterations to
provide a consistent solution. Accordingly, we need to limit
the number of times we perform scan-matching. By consi-
dering that the local maps can be assumed to be consistent,
and that one of the two local maps is acquired incrementally
one scan at a time, we can implement the above procedure
in an efficient way. Each time we receive a new scansBi , we
match it against the local map constructed by the union of
all sAj . The scan matcher results in a set of transformations
betweensBi and the mapMA. These transformations are
converted in edges betweensBi and the closest node inMA,
after applying the transformation. The resulting edges are
inserted in a pool. The RANSAC validation is done at every
step, and the candidate edges that are marked as outliers for
a certain number of times are removed from the pool.

V. EXPERIMENTS

The multi-robot SLAM approach proposed in this pa-
per has been validated through simulations and real world
experiments. Our system is implemented in C++ as a ROS
package, and the simulations have been conducted with the
Stage simulator.

Figure 2.7: A visual explanation of the technique presented in [22]. Robots begin by trading

poses and range scans (a). The first robot then determines which of the poses the first robot

has provided are relevant to its mapping effort (b). This list is sent to the second robot (c)

which replies with the relevant section from its graph (d). The first robot then integrates

that section in its own graph (e).2

their respective filters.

In [22], the authors present an interesting approach to Multi-Robot Graph-Based SLAM.

This technique is based on condensed graphs and on a novel efficient communication model.

The authors assume that no communication infrastructure is present, i.e., all communication

is conducted peer to peer, robot to robot.

Local maps are transmitted under the form of a single range scan, the latest acquired,

and a set of up-to-date, adjusted poses. Robots perform this operation at each step, i.e.

at every new node. The transmission of up-to-date poses at each step enables each robot

to provide its peers with the best estimate it can generate of its past poses. Additionally,

by transmitting all range scans, one at a time, the authors ensure that all communicating

robots have knowledge of each other’s local maps, and that communication is as reliable as

possible, since it is assumed that the probability of a message being successfully delivered

decreases with its size. This assumption is not directly supported by evidence in [22], but

is quite simple to support: long messages have to be segmented into smaller ones, known as
2Image taken from [22] with the author’s permission.
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packets. Since all packets have a non-zero probability of being lost, and since the loss of a

single packet implies the failure of the transmission of the whole message, it is easy to see

that the probability of a message being successfully delivered decreases with message size.

Map fusion is based on keeping, on each robot, a list of candidate edges between the

robot’s graph and each teammate’s graph. These edges are found by employing a correlative

scan matching technique, which consists of matching scans originating from different robots,

in a way similar to the process mentioned in [12] and in Fig. 2.5. Each of these new edges

suggest a transformation between graphs. A RANSAC (RANdom SAmple Consensus) tech-

nique is used to determine a consensus among these transformations. The edges that are

considered inliers by the RANSAC method are then communicated to the robot with which

the map is currently being aligned, which then replies with a series of nodes, a condensed

graph containing only the nodes affected by these edges. These new nodes are, then, added

to the first robot’s graph, resulting in a higher consistency of the map in the overlapping

area and in the knowledge of relative poses in that area, which allows for the merging of the

two maps.

In [26], a preliminary Multi-Robot SLAM approach is proposed in the context of the

CHOPIN project [32]. This approach uses GMapping [14], an RBPF approach, as its core

SLAM algorithm. Essentially, this technique consists of having multiple robots running

GMapping and communicating over a MANET. Periodically, if certain conditions are met,

pairs of robots exchange their local maps under the form of occupancy grids. Then, these are

aligned by means of image registration, via the preexisting mapstitch ROS package, which

was slightly adapted to serve the author’s needs, namely by employing the SURF (Speeded

Up Robust Features) class available on the OpenCV toolkit.

While being a preliminary, relatively simplistic approach, this implementation has shown

that Multi-Robot SLAM using MANETs, and in a completely distributed fashion, is indeed

possible, an important result for our work. However, this approach does not take efficient

communication into account, which is counterproductive in the context of the CHOPIN

project: we are interested in making all communication efforts as efficient as possible, to

account for the possibility of unreliable communication.

Lastly, this implementation did not show satisfactory performance in real-world tests: the

map alignment and merging technique used did not provide results at par with other current

image-based techniques, such as [6], as shown in Fig. 2.8. While noise is to be expected, the

merged maps show considerable misalignment due to limitations in the alignment method

used.
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(a)Partialmapbuiltbyrobot_0.(b)Partialmapbuiltbyrobot_1.

(c)Globalmapbuiltbymergingthepartialmaps
fromeachrobot.

Figure4.4:Simulationresultswithtworobotsonstage.

Figure4.5:Testarena#2usedinStagesimulationswiththreerobotsattheirstartingpoint.

experiment.Therobotssendtheirpartialmapstoeachotherevery30seconds,mergingthe

mapsintoaglobalmapandpublishingittoanadequateinternaltopic.Figures4.6a,4.6b

and4.6crepresenteachrobot'spartialmapbeforemapexchange.Whenrobot_0exchanges

(a) Simulation Results.

44

(a) Partial map built by robot_0. (b) Partial map built by robot_1.

(c) Global map built by merging the partial maps
from each robot.

Figure 4.11: Real world test results with a team of two robots.

Apart from these issues a�ecting the robot's perception of the environment, experimental

set-up complexity and problems also increase due to external factors: network interruptions;

limited autonomy of the batteries supporting the logical unit controlling the robot and the

robot itself; the task of teleoperating multiple robots simultaneously without extra human

assistance; and other logistic related issues. These factors have decisively limited the real-

ization of multiple experiments, preventing a more in depth and extended statistical result

analysis, such as measuring the error on pose for mutual detection.

Some experiments have been successfully performed without any relevant technical issues,

critically jeopardizing data acquisition. An example of those experiments follows. The robots

are again teeoperated using the wii remote, and share information every 30 seconds, when

link quality conditions are met, time at which merging occurs so to generate the global map.

In this case, locally built, partial maps are represented by accurate data, as illustrated in

Figures 4.12a and 4.12b. This local reconstruction accuracy propagates to the global map

in Figure 4.12c, which has the same resolution as before, where height/width also have the

same number of cells. Comparing results from Figures 4.11 and 4.12, allow concluding that,

once real experiment complexity, hardware problems and issues like loop closure are dealt

with, the proposed methods can present highly accurate maps and be e�ectively applied

(b) Real-World Results.

Figure 2.8: An illustration of the results given by the map alignment/merging process used

in [26]. Images taken from [26].

2.3 ROS: Robot Operating System

2.3.1 What is ROS?

Outside the realm of theoretical speculation and analysis, techniques must exist as compilable

code so that they can be experimentally validated. In order for an approach to be effortlessly

and effectively testable by the robotics community, a common software framework must be

established, with the goal of reducing to a minimum the time it takes to prepare a solution to

be tested. ROS, standing for Robot Operating System [30], achieves just that. It is a software

framework that aims to ease the development of modular code targeting robots, and a very

widespread tool in the field of robotics. This is the software framework used in the context

of the CHOPIN project, and is consequently the one we will use in our implementation.

As described in [30], ROS establishes a communication layer running on top of an ordinary

host operating system, which allows for the exchange of messages between multiple ROS

nodes. ROS nodes are programs which use the facilities provided by ROS to communicate

and perform their tasks. ROS nodes operate independently and concurrently, and need not

even be running on the same computer.

Communication is achieved through two main mechanisms: topics and services, which

both carry messages. Topics are a means of asynchronous communication: a node publishes

messages in a topic, to which other nodes may or may not have subscribed. Once a node

publishes a message on a topic, all nodes that have subscribed to that topic receive that

message. Services, on the other hand, provide synchronous communication between two

nodes, and require that both a request and a response message be transmitted between the
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communicating nodes in order to be successful.

ROS nodes can be implementations of all kinds of functions: data management, database

access, mathematical functions, or anything else that can be implemented in any of the

languages supported by ROS. Hardware drivers are a prime example of just how powerful

ROS’s modularity is: for a given robot, it is possible to develop ROS nodes which subscribe to

a set of standard topics to receive commands, and that implement the low-level code needed

to relay those commands to the robot. Thus, it is possible to directly use code developed for

other robots to, for example, implement a given exploration algorithm on our robot. ROS

allows us to abstract away the hardware intricacies of many robots and to develop as if we

were writing code that targeted a standardized robot. ROS promotes code reutilization and

has almost become a de facto standard in Robotics.

2.3.2 ROS Packages

ROS software is distributed in packages, which generally contain code, messages types and

other support files. Once obtained, usually via a repository, these are compiled using ROS’s

CMAKE toolchain, producing executable code. We can find several ROS packages that

implement SLAM algorithms, and we shall look through some examples in this section.

SLAM packages in ROS usually deal with two kinds of data: range scans and odometry.

In other words, the ROS node in charge of the mapping process subscribes to topics which are

published by the node(s) in charge of relaying information from the robot’s sensors. Given

this data, the SLAM node then creates a map, usually in occupancy grid form, and publishes

it into a dedicated topic, thus transmitting it to any subscribing nodes. The SLAM node is

also responsible for determining the robot’s position in the map it created, thus constituting

a solution to the complete SLAM problem.

ROS Packages for Performing SLAM

Examples of ROS packages dedicated to SLAM algorithms include slam_gmapping, slam_karto

and hector_slam.

GMapping3 is one of the most well-established SLAM algorithms available in ROS, and is

described in [14]. GMapping implements a Rao-Blackwellized Particle Filter SLAM approach

using an adaptive resampling technique [35]. This way, it is able to achieve acceptable

results with a surprisingly low number of particles (about 30), which translates into low
3GMapping can be found on the ROS wiki at http://wiki.ros.org/gmapping.
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computational requirements.

On the other hand, slam_karto4 is a ROS package implementing SLAM using SRI In-

ternational’s KARTO package. This approach achieves results on par with GMapping [35].

However, unlike GMapping, this technique is graph-based, and relies on an approach similar

to SPA to optimize its graph.

Finally, hector_slam5 is a SLAM solution with an interesting characteristic: it does

not rely on, or even require, odometric measurements in order to operate, which makes it

capable of being used in mobile robots without odometric capabilities, such as quadcopters,

ground platforms operating in uneven terrain, etc. Instead, Hector relies heavily on having a

modern LIDAR (LIght Detection And Ranging, a device that functions similarly to RADAR

but using LASER) scanner with a high scan rate, ideally 40Hz or higher.

2.3.3 Multimaster Communication

The roscore6, a collection of nodes and programs that are pre-requisites to any ROS-based

system, including the ROS Master, is a critical part of the ROS framework, and is responsible

of handling the communication between nodes. Each ROS system uses a single roscore

to overview all operation, and it is of the utmost importance that no node ever lose the

ability to communicate with it. Multi-Robot systems in ROS are usually comprised of a

central machine running the roscore, and multiple slave machines installed on each robot,

each running the necessary nodes for the operation of their robot. ROS namespaces are

instrumental in achieving this. Namespaces allow us to nest all the nodes and topics we

need for a single robot under a common name, e.g. robot_1, and then replicate this system,

as is, under different prefixes. It is as if each robot were a folder, and all we needed to do

in order to add a new robot for our team were to copy all the necessary files to that new

folder; in fact, we do not even have to copy anything, ROS handles that for us, too.

However, one of the premises of the CHOPIN project is that communication is not

completely reliable. As such, we need a system in which robots are able to cooperate but

also capable of working alone if communication becomes impossible. We need, then, multiple

ROS systems, one for each robot, each with its own roscore, in order to have a scalable, fault-

tolerant system.

Communication between multiple roscores is not supported by ROS out-of-the-box: ROS
4slam_karto can be found on the ROS wiki at http://wiki.ros.org/slam_karto
5hector_slam can be found on the ROS wiki at http://wiki.ros.org/hector_slam
6More information on the roscore can be found at http://wiki.ros.org/roscore
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systems always assume the existence of a single core that manages all communication between

nodes. There is, however, interest in multi-core (also known as multimaster) systems7.

In the context of the CHOPIN project, a workaround based on the wifi_comm8 is cur-

rently being used [26]. This package is used to propagate messages between various inde-

pendent ROS systems, by mirroring a topic on a remote machine: any messages published

to that topic on the sending robot will be broadcast, under the same topic, on the receiving

robot(s). This allows for the exchange of arbitrary data between different ROS networks

and, thus, the implementation of Multi-Robot SLAM systems in conditions in which com-

munication is not reliable: by isolating a ROS system in each robot, lack of communication

with the rest of the network does not implicate a lack of communication with the roscore.

The wifi_comm package can be used with a multiplicity of routing algorithms. By

default, it uses the Optimized Link State Routing (OLSR) protocol [36]. In the context of

the CHOPIN project, a custom routing algorithm was designed, known as CHOPIN Routing

Algorithm, or simply CHOPIN [28]. The wifi_comm package has been successfully tested

using this routing algorithm [28].

2.4 Summary

In this chapter, we have taken an overview of the bases upon which the upcoming work is

set.

We have briefly described the theoretical foundations of SLAM, as well as taken a look

at various classical approaches. We have also discussed several important issues inexistent in

Single-Robot SLAM, such as communication difficulties, Mutual Detection and Map Align-

ment and Merging. We have also discussed a few recent practical implementations of the

Multi-Robot SLAM paradigm, including a preliminary technique already developed in the

context of the CHOPIN project.

Finally, we have briefly discussed the inner workings of the ROS platform, as well as some

of the SLAM techniques already created for it. The next chapter will discuss the issue of

Efficient Multi-Robot Communication, and the usage of compression as a possible solution.

7As seen in http://wiki.ros.org/sig/Multimaster.
8The wifi_comm package can be found at http://wiki.ros.org/wifi_comm.
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3 Efficient Communication in Multi-Robot

Systems

3.1 The Need for Efficient Communication

Cooperation among mobile robots almost always involves the use of a wireless network.

Commonly, this network is taken for granted and little care is taken in minimizing the

amount of data that flows through it, namely to assist the robot’s navigation through the

environment.

However, in harsher scenarios, such as search and rescue operations considered in the

scope of the CHOPIN project, constrained connectivity can become an issue, and caution

must be taken to avoid overloading the network. Additionally, in real-world applications,

the navigational effort can be but a small part of the tasks that must be dealt with by a

complete robotic system [32]. Therefore, it should operate as efficiently as possible. An

efficient model of communication is also a key element of a scalable implementation: as

the number of robots sharing the network increases, the amount of data that needs to be

communicated does as well. Thus, greater care in preparing data for transmission is needed,

so as to avoid burdening the network by transmitting redundant or unnecessary data.

Efficient inter-robot communication is not an area devoid of research. Other works,

such as [2], [22] and [8], have worked on a solution for this issue by creating new models

of communication for robotic teams, i.e. by developing new ways of representing the data

needed to accomplish the mission. Other research efforts focused on developing information

utility metrics, e.g. by using information theory [31], which the robot can use to avoid

transmitting information with a utility measure below a certain threshold. We could find

none, however, that applied compression to further increase their optimization gains. These

techniques, while successful in their intended purpose, rely on modifications to the inner

workings of their respective approaches. In our case, we intend to create a generalized
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optimization solution, i.e. that does not depend on modifications to the intricacies of the

underlying techniques.

General-purpose data compression techniques, on the other hand, are able to deal with

any kind of data, with varying success. Compression methods are widely used in the trans-

mission and storage of bulky data, such as large numbers of small files, logs, sound and video,

even being used by default in specific file systems, and their main objective is to represent

data in as few bytes as possible, regardless of its contents. At first sight, these offer us

the solution to our problem: a way of achieving efficient communication without having to

rework the SLAM technique’s basic functionality, so that we can build our approach to be

as general as possible.

3.2 Is Data Compression a Suitable Solution?

To ascertain the suitability of data compression as a solution to the problem of optimizing

multi-robot communication, we must first explore how these techniques work.

Data compression is a process through which we aim to represent a given piece of digital

data using fewer bytes than the original data. This process can be viewed as a way of trading

excess CPU time for reduced transmission and storage requirements. Compression methods

are divided into two main groups: lossless methods, which make it possible to reconstruct

the original data without error; and lossy methods, which make use of the way humans

perceive signals to discard irrelevant data. [34]

Lossy compression algorithms are commonly used in the compression of signals intended

for human perception, such as image and sound. For example, given that the human hearing’s

capability ranges from about 20Hz to about 20kHz, sound compression techniques can remove

any signal components outside that frequency range. Although the compressed data should

be significantly smaller than the original, humans hearing sound reconstructed from lossy

compressed data should experience much the same. The original signal, however, cannot be

recovered.

Lossless compression, on the other hand, compresses data in a way that it is later fully

recoverable. It is important that the algorithms we are employing be fully lossless, i.e.

that the compressed data can be used to reconstruct the original data. For example, lossy

image-based compression techniques, such as JPEG, could be used to reduce the size of an

occupancy grid, processing it as an image. However, compression artifacts and other inaccu-

racies could lead to an erroneous representation of the environment, either by distorting its

24



Input 
Buffer

Output 
Buffer

Sliding Window

Figure 3.1: LZ77 operates by running a sliding window over the data. When a sequence

in the input data is matched to data that is still inside the window, it is replaced with

an offset-length pair that points to the previous instance of that data. In this figure, the

dark blue segments were matched, and the second one is replaced with the orange, smaller

segment, that points to the first copy of the matched segment.

features or by hindering other aspects of the multi-robot mapping effort, such as occupancy

grid image-based alignment and merging [6].

In 1977 [42] and 1978 [43], Abraham Lempel and Jacob Ziv developed two closely related

algorithms which were to become the basis for most of the lossless, general-purpose com-

pression algorithms currently in use. LZ77 and LZ78, as their works were to become known,

are methods of dictionary-based lossless compression. Summarily, the LZ77 and LZ78 al-

gorithms keep a dictionary of byte chains encountered throughout the uncompressed data,

and replace repetitions of those chains with links to entries in the dictionary, thus reducing

the size of the data. The operation of these algorithms is illustrated in Figs. 3.1 and 3.2.

As we have seen in Chapter 2, occupancy grids are metric representations of the envi-

ronment. In their simplest form, they are composed of only three values, one for occupied

cells, one for free cells and a third for cells which state is unknown. Thus, they are repetitive

by nature [38]. In larger environments, or at greater resolutions, this translates into the

existence of large matrices filled with only three different values, often containing very long

chains of repeated cells. These chains can potentially make the occupancy grids very com-

pressible: an entire chain can be replaced by a much smaller offset-length pair that references

an entry in the compression dictionary. Thus, compression seems a likely adequate solution

to this problem.
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Figure 3.2: LZ78 operates by building an explicit dictionary. As the input data is consumed,

the algorithm attempts to match each input sequence with an existing sequence in the

dictionary. If the matching operation fails, the new data is added to the dictionary. This

illustration shows the case where a match is found. In that case, the dark blue segments are

matched to an entry in the dictionary, and replaced in the output buffer with the orange,

shorter segment that points to the correct entry in the dictionary.

The usage of compression techniques, however, creates a new problem: since there are

several techniques in existence, which one is the most suitable as a solution to our spe-

cific problem? To answer this question, we have developed a new compression technique

benchmarking utility, which is presented in the next section.

3.3 Selection of a Data Compression Technique

3.3.1 Lossless Compression Algorithms

We have restricted our choice of algorithms to those based on Lempel and Ziv’s work, for

their focus on reducing redundancy by exploiting repetition and for their lossless nature.

LZ77 and LZ78 inspired multiple general-purpose lossless compression algorithms, widely

used today as Free and Open Source Software (FOSS) implementations. We have collected

the ones that we believe are the most suitable as solutions to our problem, given their

availability, use and features. We will summarily discuss them next.

DEFLATE1, presented in [9], is the algorithm behind many widely used compressed file
1zlib is available at http://www.zlib.net/
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formats such as zip and gzip, compressed image formats such as PNG, and lossless compres-

sion libraries such as zlib, which will be the implementation through which DEFLATE will

be tested. This algorithm combines the LZ77 algorithm with Huffman Coding [17]. The

data is first compressed using LZ77, and later encoded into a Huffman tree. Being widely

used, this technique was one of the very first to be considered as a possible solution to this

problem.

LZMA2, which stands for Lempel-Ziv-Markov Chain Algorithm, is used by the open-

source compression tool 7-zip. To test this algorithm, we have used the reference implemen-

tation distributed as the LZMA SDK. No extensive specification for this compressed format

seems to exist, other than its reference implementation.

LZ43 is an LZ77-based algorithm focused on compression and decompression speed. It

has been integrated into the Linux kernel and is used on the BSD-licensed implementation

of ZFS [33], OpenZFS, as well as other projects.

QuickLZ4 is claimed to be “the world’s fastest compression library”. However, the bench-

mark results provided by its authors do not compare this technique to either LZ4 or LZMA,

warranting it a place in our comparison.

Finally, Snappy5, created by Google, is a lightweight compression library that aims at

maximizing compression and decompression speed. As such, and unlike other techniques, it

does not employ an entropy encoder like the Huffman Coding technique used in DEFLATE.

There are several examples of compression benchmarking tools6. However, we found

none that focus on the algorithms’ ability to optimize inter-robot communication, namely

the compression of occupancy grids. Their main focus is on comparing the techniques’ per-

formance on the compression and decompression of standard datasets, such as long sections

of text, random numbers, etc. The need to test these techniques in the compression of spe-

cific, Robotics-related datasets, as well as the need to do so in a methodical, unbiased way,

compelled us to create our own benchmarking solution.
2The LZMA SDK used is available at http://www.7-zip.org/sdk.html
3LZ4 is available at http://code.google.com/p/lz4/
4QuickLZ is freely available for non-commercial purposes at http://quicklz.com/
5Snappy is available at https://code.google.com/p/snappy/.
6Such as Squeeze Chart (http://www.squeezechart.com/) and Compression Ratings (http://

compressionratings.com/).
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3.3.2 Benchmarking Methodology

Compression benchmarking tools usually focus on either looking for the fastest technique,

or for the one that achieves the highest compression ratio, as defined by:

R =
LU

LC

, (3.1)

where R is the compression ratio, LU is the length of the uncompressed data, and LC is the

length of the compressed data.

When choosing among a collection of compression techniques, compression ratio is a

metric of capital importance, since the better the ratio, the less information the robots

have to send and receive to complete their goal. However, the techniques’ compression

and decompression speeds are also important; an extremely slow, frequent compression may

jeopardize mission-critical computations. Thus, we cannot simply find the technique that

maximizes one of these measures; there is a need to define a new, more suitable performance

metric, in order to find an acceptable trade-off.

Therefore, we define:

E =
R

Tc + Td
, (3.2)

in which E is the technique’s temporal efficiency. It is determined by dividing the com-

pression ratio achieved by the technique, R, by the total time needed to compress and

decompress the data, Tc and Td, respectively. The purpose of this quantity is to provide

an indication of how efficiently the technique at hand uses its computational time. The

algorithm that achieves the highest temporal efficiency, while at the same time achieving

acceptable compression ratio, is a strong candidate for integration in work that requires an

efficient communication solution, provided that its absolute compression ratio is acceptable.

In order to test these techniques, a benchmarking tool7 was developed. Given a number

of compression techniques, the tool executes them over occupancy grids generated by SLAM

algorithms, outputting all the necessary data to a file. This tool allows us to both apply

the techniques to the very specific type of data we wish to compress, as well afollowings

test them all in the same controlled environment. It was designed to be simple and easily

extensible. As such, the addition of a new technique to the benchmark should be trivial for

any programmer with basic experience.
7The tool is publicly available under the BSD license at https://github.com/gondsm/mrgs_

compression_benchmark.
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(a) Intel’s Research Lab, measuring 753,078

bytes uncompressed.

(b) ACES Building, measuring 1,280,342

bytes uncompressed.

(c) MIT CSAIL Building, measuring

1,929,232 bytes uncompressed.

(d) MIT Killian Court, measuring 9,732,154

bytes (low resolution rendering) and

49,561,658 bytes (high resolution rendering)

uncompressed.

following

Figure 3.3: A rendering of each dataset used in our experiments. These were obtained by

performing SLAM over logged sensor data.

In order to test the effectiveness of compression algorithms in treating typical occupancy

grids, and given the intention of studying, at least to some degree, how each algorithm

behaves depending on the dataset’s size, five grids of different environments were chosen:

Intel’s Research Lab in Seattle; the ACES building, in Austin; MIT’s CSAIL building and,

finally, MIT’s Killian Court, rendered in two different resolutions, so that differing sizes

were obtained. The datasets are illustrated in Fig. 3.3. The occupancy grids we present

were obtained from raw sensor logs using the GMapping8 [14] SLAM algorithm, running on

the ROS [30] framework. The logs themselves have been collected using real hardware by

teams working at the aforementioned environments, and are typically used for benchmarking
8A description of the version of GMapping can be found at http://wiki.ros.org/slam_gmapping.
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SLAM techniques [21], being publicly available.9

To account for the randomness in program execution and interprocess interference inher-

ent to modern computer operating systems, each algorithm was run over the data 100 times,

so that we could extract statistically relevant results that were as isolated as possible from

momentary phenomena, such as a processor usage peak, but that reflected the performance

we could expect to obtain in real-world usage. Results include the average and standard

deviation of the compression and decompression times for each technique and dataset, as

well as the compression ratio achieved for each case. These results can be seen in Figs. 3.4

and 3.5, or textually in Table 3.1. Each technique was tested using their default, slowest and

fastest modes, except for QuickLZ and Snappy, which only provide one mode of operation,

and LZ4, which only provides a fast (default) and a slow, high compression mode.

All tests were run on an Intel Core i7 M620 CPU, with 8 GB of RAM, under Ubuntu

Linux 12.04.

3.3.3 Results and Discussion

Fig. 3.4 and Table 3.1 illustrate the obtained results. In Fig. 3.4a, we show the general trend

in temporal efficiency for each technique as the size of the map grows. The general tendency

is for efficiency to decrease as the data increases in size. However, in Fig. 3.4b, we can

observe that the compression ratio achieved tends to grow with data size. This effect can be

attributed to the fact that, as the map grows, there are longer sequences of repetitive data,

such as large open or unknown areas. It can also be explained, to a much smaller degree, by

the fact that every compression technique adds control information to the compressed data,

and that the size of this control data tends to be less significant as the uncompressed data

grows. These figures lack error bars or other uncertainty representations due to the small

dispersion of results, illustrated in Table 3.1 by the small values of standard deviation.

As expected, slower techniques generally achieve higher compression ratios. However, our

results show that some techniques are indeed superior to others, in both temporal efficiency

and compression ratio. LZ4 has shown both a higher temporal efficiency and compression

ratio than that of QuickLZ and Snappy, making it a clearly superior technique, in this

case. However, LZ4 HC, LZ4’s slower mode of operation, is an inferior technique, both in

temporal efficiency and ratio, when compared to LZMA and DEFLATE in the compression
9The raw log data used to create these maps is available at http://kaspar.informatik.uni-freiburg.

de/~slamEvaluation/datasets.php.
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Figure 3.4: A graphical illustration of each technique’s performance on all datasets. Each of

the dotted lines connect data points for the same technique, so that trends become evident.

Note the logarithmic scale in some of the axes.
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Figure 3.5: A graphical illustration of each technique’s performance on smaller datasets.
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Table 3.1: Results obtained by processing the smallest, intermediate and largest datasets

100 times with each technique. E stands for Temporal Efficiency, as defined in Sec. 3.3.2. σc

and σd correspond to the standard deviation of the compression and decompression times,

respectively. T̄c and T̄d correspond to the average compression and decompression times,

respectively.

(a) Raw results obtained for the Intel Research Lab dataset.

Ratio E T̄c (ms) σc T̄d (ms) σd
DEFLATE (zlib) 27.727 1.675 15.130 1.179 1.423 0.140
DEFLATE (zlib) Fast 18.474 3.136 4.503 0.736 1.388 0.241
DEFLATE (zlib) Slow 31.633 0.293 106.519 4.167 1.306 0.195
LZ4 11.741 13.616 0.452 0.064 0.410 0.064
LZ4 HC 22.850 0.255 89.312 3.721 0.241 0.028
LZMA 31.920 0.248 126.282 7.315 2.364 0.287
LZMA Fast 29.825 1.524 17.080 1.156 2.487 0.181
LZMA Slow 34.029 0.147 229.789 13.086 2.290 0.242
QuickLZ 10.519 5.355 1.222 0.153 0.742 0.069
Snappy 10.807 8.427 0.753 0.128 0.529 0.100

(b) Raw results obtained for the MIT CSAIL Building dataset.

Ratio E T̄c (ms) σc T̄d (ms) σd
DEFLATE (zlib) 43.274 1.383 27.927 1.203 3.370 0.172
DEFLATE (zlib) Fast 26.818 2.269 9.100 0.382 2.717 0.178
DEFLATE (zlib) Slow 49.205 0.330 146.207 1.760 3.027 0.069
LZ4 18.236 12.129 0.779 0.052 0.725 0.090
LZ4 HC 35.953 0.200 179.027 2.698 0.432 0.087
LZMA 48.763 0.239 200.306 11.911 4.142 0.302
LZMA Fast 45.522 1.211 33.280 0.448 4.304 0.105
LZMA Slow 53.088 0.153 342.213 8.815 4.019 0.261
QuickLZ 15.359 3.898 2.533 0.117 1.407 0.088
Snappy 13.387 5.930 1.250 0.059 1.008 0.048

(c) Raw results obtained for the largest MIT Killian Court dataset.

Ratio E T̄c (ms) σc T̄d (ms) σd
DEFLATE (zlib) 94.044 0.721 111.906 1.738 18.610 0.492
DEFLATE (zlib) Fast 52.831 1.000 41.207 3.083 11.647 0.846
DEFLATE (zlib) Slow 103.676 0.310 316.500 5.208 17.499 0.717
LZ4 40.553 7.093 2.920 0.198 2.797 0.406
LZ4 HC 72.116 0.101 710.753 32.165 1.992 0.147
LZMA 110.622 0.163 663.896 15.645 13.595 0.527
LZMA Fast 102.493 0.657 141.536 1.216 14.580 0.316
LZMA Slow 121.472 0.095 1269.680 158.155 14.937 1.938
QuickLZ 29.856 1.508 14.027 2.274 5.774 0.612
Snappy 16.951 1.647 5.192 0.751 5.101 0.492
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of larger datasets. Its temporal performance diminishes significantly with the growth in map

dimensions, with an insufficient increase in compression ratio.

In applications where compression ratio is secondary relatively to speed, LZ4 is a strong

candidate, and clearly the best among the techniques that were tested. It strongly leans

towards speed and away from compression ratio, but offers acceptable ratios (around 15 for

smaller maps, reaching 50 in larger ones) given its extremely fast operation. In other words,

for applications which rely on transmitting occupancy grids, a very significant reduction of

data flow can be achieved by employing this relatively low-footprint technique, which makes

it suitable for use in real-time missions. As Fig. 3.4(a) shows, this technique is, by far, the

most efficient at utilizing resources, achieving the best results in terms of temporal efficiency

among the techniques that we have tested.

If further reduction in bandwidth is required, other techniques offer better compression

ratios, at the expense of computational time. LZMA’s fast mode offers one of the best

ratios that we have observed, while still being acceptably fast. For the smallest dataset,

this technique took, on average, about 15ms for compression, and achieved a ratio of 29.8.

Depending on the application, 15ms of processor time per compression may be acceptable,

given that this technique achieves a ratio that is almost three times as large as LZ4’s, which

achieved a ratio of 11.7 in 0.45ms, as visible on Table 3.1a.

In Fig. 3.5, we explore the case of the exchange of smaller maps, by averaging the temporal

efficiency and ratio for each technique when operating over the smaller datasets. Smaller

maps are commonly transmitted between robots at the beginning of the mission, when there

is still little information about the environment. In these conditions, we note, as mentioned

before, a generalized decrease in total compression ratio, and a narrowing of the gap between

slow and fast techniques in terms of compression ratio: all techniques produce results within

the same order of magnitude. However, the relationships between approaches in terms of

temporal efficiency remain much the same. Thus, for smaller data, faster techniques appear

to be a better option, since they achieve results that are comparable to those of their slower

counterparts, at a much smaller cost in computational resources.

Larger maps, such as our largest examples, are very uncommonly transmitted during

multi-robot missions, and hence unworthy of a closer analysis. Additionally, for these larger

datasets, the multi-robot SLAM technique employed may make use of delta encoding tech-

niques for transmission, transmitting only, for example, the updated sections of the map.

In this case, we expect that the compression techniques applied to the map sections have

the same performance as those applied to the smaller datasets in this test, since they will
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effectively be compressing smaller maps.

It is important to note that even the worse-performing techniques have achieved signif-

icant compression ratios, with a minimum ratio of about 10. Consequently, by using data

compression, we can reduce the total data communicated between robots during a mapping

mission by at least a factor of 10, which shows the viability of compression as a solution for

the problem of exchanging occupancy grids in a multi-robot system.

In our particular case, we want to use the technique that best utilizes our resources,

as long as it demonstrates an acceptable compression ratio. By far, the best technique

in terms of temporal efficiency is LZ4. Additionally, the compression ratio it achieves for

smaller datasets is acceptable for our purposes; it still means a 10x reduction in necessary

bandwidth.

3.4 Summary

In this chapter, we have explored the issue of efficiently communicating data through a

multi-robot network.

We have summarily described the inner workings of dictionary-based compression algo-

rithms, thus presenting them as a possible solution for our problem. We have then presented

and discussed the results obtained during experiments in which these techniques were used

in the compression of simple occupancy grid maps, with favorable results, concluding by

selecting LZ4 as the most suitable technique for use in our Multi-Robot SLAM approach.

It is important to note that a paper resulted from this work [25], which was accepted

for presentation at the ICINCO 2014 conference, and is available in this dissertation as

Appendix A.

In the next chapter, we will present and describe a novel software solution for the Multi-

Robot SLAM problem, which makes use of the results obtained in this chapter.
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4 Proposed System

4.1 Overview

Throughout this chapter, we will describe the solution1 for Multi-Robot SLAM that we have

implemented, which is summarized in Fig. 4.1. The system is completely modular, and its

main functionality is divided into five modules. These modules are distributed into four ROS

packages, forming a distributable ROS stack, called mrgs, which is the main contribution of

our work, and was its main focus.

The system can be run on top of any other ROS system that performs SLAM, as long as

it conforms to ROS’s standards, as illustrated in Fig. 4.2. In other words, this system can

quickly enable any system running SLAM to run Multi-Robot SLAM.

Local occupancy grids generated by the SLAM technique in use enter the system one by

one via the Map Dam node. This node crops out any excess empty space, attaches to the

maps the local robot’s local pose within the map, generated by the SLAM technique, under

the form of a transformation between reference frames, and sends the newly-received map

to the Data Interface node. These are then prepared to be sent to the team members, first

by being compressed and then by attaching to them the local robot’s MAC address. Finally,

they are sent into the network.

As maps are being sent, the Data Interface node is also receiving grids sent from other

robots, which are running the same process. These are all, both the local and the foreign

grids, packed into a vector and sent to the Complete-Map Generation node. They are

then iteratively fused into a single representation of the environment at the Complete-Map

Generation node, which stores the fused occupancy grids into a tree-like data structure.

The fusion itself takes place at the Map Fusion node, which provides a service for fusing

occupancy grids in pairs.

The system does not impose a limit to the team size, nor does it depend on a pri-
1The implemented code can be freely accessed at https://http://git.isr.uc.pt/mrl/mrgs.
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 Responsible for fusing 
two Occupancy Grids 
together;

 Uses Carpin’s technique.

 Statekeeping;
 Generates a new map 

using all available 
information.

 Fused Occupancy Grid
+

Transformation Information

 Two Occupancy Grids

 Provides complete 
abstraction from the 
network;

 Uses the wifi_comm 
package for 
multimaster 
communication.

 Entry point for 
Occupancy Grids;

 Crops the grids to the 
correct size;

 Controls the insertion 
of maps into the 
remaining system;

 Appends the correct 
transformation to the 
local map.

Occupancy Grids
+

Transformation
Information  Abstracts away the 

tf package;
 Inserts data into tf 

correctly and in a 
timely fashion.

Transformation Information 
from Other Robots

Occupancy Grids

Transformations Between 
Foreign and Fused Maps

Compressed Occupancy Grids
+

Transformation Information

Other Robots

Figure 4.1: An overview of our system’s design and data flow. This system is replicated in

each of the team members.

ori knowledge of the team’s composition. Both the Data Interface and the Complete-Map

Generation nodes are able to deal with any number of teammates and maps, respectively.

This ROS stack also includes a fifth, support package, whose purpose is to hold various

scripts and configuration files that, while an important part of the system in the practical

sense, are not vital to its operation, and are not the result of a significant research effort;

they are solutions for minor problems related to the solution’s implementation.

From Section 4.2 onwards, we will present the various components of the system, divided

by how they were segmented into ROS packages, in no particular order.

4.1.1 Modes of Operation

While the system’s requirements only state that it should be able to operate in a distributed

fashion, this implementation supports a total of three modes of operation by dividing the

team members into three different classes : distributed robots, central robots and mapping

robots. All classes are able to collaborate with one another, which makes this approach

extremely flexible.
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 Out of this work’s scope. We either use teleoperation or 
exploration techniques existing in the CHOPIN project.

 Already implemented in the CHOPIN project;
 These allow communication between overlying software and 

the mobile robotic platform’s sensors and actuators.

Commands

Range Scans + Odometry

Occupancy Grids + Transformation
Information

Compressed Occupancy Grids
+

Transformation Information

Other Robots

Exploration 
Algorithm

Device Drivers

SLAM  Given the system’s flexibility, this approach can be any, as 
long as it is integrated into ROS’s standards.

mrgs
 The main focus of our work. Provides a communication layer 

and information fusion facilities to support a cooperative 
mapping mission.

Figure 4.2: A general overview of the complete system that runs on each robot. The focus

of our work is on the mrgs block, a ROS stack containing our framework for Multi-Robot

SLAM. This stack enables any robot running Single-Robot system to communicate with its

peers and to build a global representation of the environment.

The distributed mode of operation initially required is achieved by populating the team

solely with robots running in the corresponding mode. These execute the full ROS stack:

they gather, propagate and fuse data. This is the most common use case: we use a homoge-

neous team of robots to explore an unknown environment.

Mapping robots are the simplest of the three, they simply run a SLAM technique and

use the Map Dam and Data Interface nodes to propagate the maps they have build. Central

nodes, on the other hand, are assumed to be computationally powerful; they run the full

stack, except for the Map Dam node, do not produce their own maps, and are solely tasked

with building a global map based on information gathered by the mapping robots. Combining

these two classes of robots produces the centralized mode of operation, which can be useful

if the network we are using is reliable, fast and widespread. In this case, the central node

may even run on a base station, i.e. in a powerful desktop computer.

Finally, a third mode of operation can be achieved by combining the use of robots run-
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(a) Fully distributed mode, in

which every robot gathers and

fuses data.
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(b) Centralized mode, where

mapping robots gather data

and central robots fuse it.

D

M

M

M

C

(c) Mixed mode, which can

employ up to three classes of

robots.

Figure 4.3: An illustration of the three modes of operation supported by the technique. In

this figure, “D” nodes are distributed nodes, “C” nodes are central nodes and “M” nodes are

mapper nodes. The blue arrows represent the flow of local maps.

ning in distributed mode with robots running in mapping mode. This mode combines the

simplicity of the mapping robots with the versatility of the distributed ones, so that all

robots in the field produce their own local map. Optionally, this mode of operation can

employ central nodes, for added redundancy in the data fusion process. All three modes of

operation are illustrated in Fig. 4.3.

4.1.2 Design and Implementation Principles

This stack was designed and built with efficiency, scalability and maintainability in mind. As

such, all software strictly follows ROS’s C++ guidelines2, as well as Software Engineering-

related good practices. The system was purposefully segmented into concurrently-executing

modules so as to explore the flexibility of multi-core systems, as well as, for example, guaran-

teeing that the robot remains able to communicate during the map fusion process. Addition-

ally, having a well-segmented system, i.e. not divided into too little or too many modules,

maximizes the utility of the code by making it reusable.

Aside from inter-robot communication, all inter-module communication relies as much

as possible solely on standard ROS data structures, in order to maximize compatibility with

other systems and code reusability. Even custom communication structures, such as the

messages exchanged between the Data Interface and the Complete-Map Generation nodes,
2The guidelines are available at http://wiki.ros.org/CppStyleGuide
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have their roots in ROS’s standard data types, ensuring that reusing specific nodes from

this system within other ROS systems is a fairly straightforward process. All ROS topics

used solely by our system are packed into their own namespace, to enable the user to quickly

identify which topics belong to our system, as well as minimize possible interference with

other systems running on the machine.

As a preliminary approach, the technique presented in [26] was a good candidate for code

reuse. However, an analysis of the already existing code revealed that, in its current state,

it would not be useful given the philosophy of the new approach that was designed. As

such, it was decided that this new implementation would be built from the ground up. In

our implementation, code reuse is restricted to the usage of the reference implementation of

Stefano Carpin’s mapmerge [6], all other code is completely original.

4.2 The Data Interface Node

This ROS node, existing in its own package, is responsible for dealing with one of the biggest

challenges we have proposed to tackle: it is responsible for communicating all the relevant

data between robots, and for doing so in an efficient manner. This node’s operation is

summarized in Fig. 4.4.

In the proposed approach, we have decided not to rely on explicit rendezvous events, since

actively seeking a rendezvous with another robot is a complex and costly operation [27].

Instead, data is published into the shared topic, and received by all robots within range.

This approach greatly simplifies the transmission of information: robots do not need to

trade control messages, instead relying on the capabilities of the wifi_comm package to

deliver all data.

One of our goals related to communication was that it be relatively robust to network

failure. To partially solve this issue, this node uses MAC addresses to identify particular

robots. MAC addresses are a better identification key than IP address, since they are

not repeatable, not only in the same network but across all networks of physical devices;

MAC addresses are tied to the hardware itself and are not subject to change during the

network device’s lifespan. This way, we guarantee that a robot is always able to clearly and

indubitably identify the sender of a given message, regardless of the possible changes the

sender’s IP may suffer due to network failures. Additionally, ROS’s transport layer protocol,

TCPROS, makes use of TCP in the transmission of messages. Thus, we expect that messages

are either delivered correctly or completely lost, since TCP applies error-checking measures
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(local maps)

+
Local Transformations

Occupancy Grid Vector
+

Local Transformations
Data Interface Node

Remaining Local System

Shared ROS Topic

Figure 4.4: An illustration of the functionality of the Data Interface node. This node

publishes into and subscribes to a topic that is shared among all robots. All information

published into this topic is broadcast to all known robots in range in order to propagate the

latest local map and transformation information.

that should prevent any messages from getting corrupted. Furthermore, a lost message does

not compromise the mission; the system does not depend on a reliable connectivity with its

peers, instead processing data as it arrives. If the connection to one of the peers is lost, the

latest information it sent is used in the map fusion process.

Furthermore, this node is able to deal with a team of unknown size. Thanks to the

combination of OLSR, wifi_comm and the usage of MAC addresses as identifiers, we are

able to dynamically create a list of teammates that is able to grow as long as robots are

added to the team.

The usage of OLSR [36] further strengthens our solution’s robustness to network failure.

Being a mesh networking routing algorithm, it is designed to recover from failures in links

between nodes, and also to be able to establish new links between nodes as needed.

It is also required that communication be as efficient as possible. That goal is achieved

by employing the LZ4 compression algorithm to all occupancy grids meant to travel through

the network, following the results presented in Chapter 3.

The insertion of a new local map into the network is triggered by the insertion of a new

map into the system, which means that all new local maps that pass through the Map Dam

node are sent into the network. This methodology is meant to facilitate the generation of

an interpretable map as soon as possible, by quickly relaying new information to all robotic

agents. Furthermore, maps are transmitted regardless of any measured link quality; we

believe the usage of the LZ4 data compression technique makes the maps small enough to

go through low-quality links.
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Received Maps

Figure 4.5: A pictorial description of the tree-like structure for storing and updating maps.

At a given instant t, the system receives a vector of maps, and iteratively merges them

until it obtains a single representation. When a new map is received (green), only the maps

that depend on it must be re-merged (orange). Each pair of arrows represents a merging

operation.

4.3 The Map Fusion Node

This ROS node, also inhabiting its own package, is responsible for fusing (i.e. aligning

and merging) a pair of maps and for calculating the geometric transformations between the

original occupancy grids’ reference frames and the fused reference frame.

This module features the reference implementation of the alignment algorithm presented

in [6] (and in Sec. 2.2.3) at its core. The aforementioned implementation is only capable of

dealing with its own data representations, and only able to determine transformations and

transform the maps, not to actually merge them. This node extends that implementation

to be able to perform the remaining operations needed, while simultaneously wrapping it in

ROS’s standards, i.e. embedding it into a ROS node. This node also features a self-tuning

ability, i.e. it gauges the computer’s performance on startup, and adjust the amount of CPU

dedicated to the alignment effort accordingly.

Since there is always the possibility of building a better, more robust algorithm for map

fusion, special care has been taken to ensure that this node is as decoupled from the rest

of the system as possible, so as to ensure that it can be easily swapped for another that

communicates in the same way, much like one swaps a worn part of a car for a new one.
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Received Maps

Figure 4.6: When a new robot joins the mission, the tree-like structure is grown sideways to

accommodate the new data. Iterative merging then proceeds as usual, regardless of whether

the current number of maps is even or odd.

4.4 The Complete-Map Generation Node

This node is responsible for building a representation of the environment using all the avail-

able information. It does so by controlling the Map Fusion node, which only fuses grids two

at a time. This node receives a vector of occupancy grids and iteratively builds a tree-like

data structure for storing occupancy grids, as represented in Fig. 4.5.

When a new occupancy grid is received, be it from the local or from a remote robot, this

node starts building a new representation of the environment, incorporating into it the new

information. Doing this in an incremental way, i.e. by trying to integrate the new map in

the previously merged one, could lead to disastrous results: once a merging step fails, which

is likely at the beginning of the mission due to the fact that little information is available,

all future complete maps will include that error.

The tree-like representation of map storage allows us to reuse this information when new

maps are received. When a new occupancy grid is received, we only re-merge the intermediate

grids that depend on the newly-received grid, thus avoiding costly operation of completely

rebuilding the final occupancy grid. This behavior is illustrated in Fig. 4.5. This method

allows us to recover from an erroneous merge in a natural way: when new information is

received, all grids that depend on it are rebuilt, thus giving the algorithm the opportunity

to correct its previous error.

This structure is initialized with the first two maps received from different sources, i.e. the

iterative map fusion process only starts when there are at least two different maps available.

The structure then grows laterally as new teammates join the mission (or as their maps are
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received for the first time) to accommodate more information, as illustrated in Fig. 4.6.

This node also keeps a similar structure for calculating the transformations between

the various occupancy grids, so that the relative poses between robots can be determined.

These are also updated as needed when new information arrives, and are fed into the Remote

Navigation node every time a new Complete-Map is computed.

4.5 Auxiliary Nodes

A fourth package which contains two additional ROS nodes is included. While not difficult

to implement or intricate in their operation, they are vitally important for the performance

of the system.

The Map Dam node, as the name implies, intends to add control and intelligence to

the way occupancy grids flow through our system, as well as further decouple our system’s

functionality from the behavior of the SLAM approach. This node receives intercepts all

the occupancy grids output by the SLAM technique, and introduces them into our system.

Before the introduction into the system, the grids are trimmed, i.e. any excess free space is

removed from the grid.

The Remote Navigation node was designed to cope with the requirements of the tf ROS

package. tf is responsible for managing the geometrical transformations between the various

frames that compose the robot, and is an extremely useful and widespread tool. However, it

requires that the information it receives be very carefully formatted and timed. It was also

designed to work within a single robot, which creates a need to re-tag and re-format much

of the information that is passed to it.

This last node receives transformation information from the Complete-Map Generation

node and from the Data Interface node, and periodically propagates it into the tf topic,

correctly tagged and formatted.

4.6 Summary

In this chapter, we have presented a novel solution for the Multi-Robot SLAM problem.

We have described its structure, its behavior and the rationale behind most of the design

decisions.

In the following chapter, we will validate the technique experimentally, testing both its

general performance and its efficiency in communicating data.
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5 Experimental Validation

5.1 Experimental Method

In order to evaluate and validate the performance of our system, experimental tests were

performed, both in simulated and real-world environments. Since this is a Multi-Robot

SLAM solution, the most appropriate way of validating its performance is using several

robots in an appropriate environment.

A test comprising multiple robots must be a well-orchestrated and executed operation.

Many real-world issues must be taken into account: batteries must be charged, wireless

networks must be configured, several computers must be prepared, support personnel and

hardware must be obtained, etc.

In order to test our system, we have segmented the experimental process into two steps:

the data-gathering step, and the processing step. The data-gathering step consisted of

collecting several runs of data from a single location, emulating an exploration performed

by a team. We took advantage of ROS’s facilities for data recording1, ensuring that this

data would later be played back as if it had just been acquired. This has enabled us to test

the system with real-world data from the very beginning, by substituting the first blocks

illustrated in Fig. 4.2 with a single ROS node tasked with playing back the recorded data.

The processing step took place in a controlled environment. Unit tests were performed

on modules as they were constructed, and system tests were then run using a mixture of

Virtualbox2 virtual machines and real, physical computers, as illustrated in Fig. 5.1, each

acting as a robot. This has allowed us to, while using real-world data, repeatedly test our

system as it was improved.

This approach had the very significant advantage of providing a lifelike environment for

testing the solution, down to the transmission of data through a network interface, that was
1Namely the rosbag tool, described at http://wiki.ros.org/rosbag.
2Virtualbox is available at http://www.virtualbox.org.
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Virtual Machine Virtual Machine Virtual Machine

Network

Physical Computer Physical Computer

Figure 5.1: An illustration of the setup used to process data. Virtual machines and real

computers can be used as equals, in any combination, in a network routed by OLSR.

not only repeatable but also moderately easy to set up, thanks to the ability of cloning and

creating snapshots of virtual machines. The only significant drawback of this approach is

the large amount of resources needed for running these virtual machines on a single host

computer. However, this testing solution is lean enough be run using three simultaneous

machines on a consumer-grade laptop with only 8GiB of RAM and a dual-core Intel i7-620M

processor. Without the use of virtual machines, at least three computers would be needed for

each test, which would have to be correctly configured and simultaneously operated, severely

harming the repeatability of the experiment.

With the purpose of illustrating the system’s performance, two main offline tests took

place: one in the MRL Arena, illustrated in Figs. 5.2; and on ISR’s corridors, which are illus-

trated on Fig. 5.3. For these experiments, two sets of data were gathered at the MRL Arena,

and three were gathered at the corridors of the Institute, simulating a mission composed of

two and three robots, respectively.

Tests with actual multiple robots also took place, in a setup similar to Fig. 5.2. These

online tests were used to determine if the results we were obtaining in the test setup were

correct, and to demonstrate the system’s ability to operate in real-time. These tests also

took place mainly in the MRL arena and the corridors of the Institute.

5.1.1 Hardware

Real-world data was gathered using one or several Pioneer 3-DX mobile platforms, shown

in Fig. 5.4, running the software stack described in figure 4.2. These are equipped with
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Figure 5.2: A small experiment taking place in the MRL Arena. In this experiment, a

Traxbot and a Stingbot platforms were used. In this experiment, the centralized mode was

used, to cope with the low processing power of the smaller laptops.

Figure 5.3: An illustration of the Institute’s arrow-straight corridors, where experiments

took place. In this instance, the distributed mode can be used, since the Pioneer 3-DX is

able to carry larger laptops that are able to run the full system.
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Figure 5.4: The Pioneer 3-DX platform used for data gathering. We can see, mounted on

the small white platform at the front, the main sensor used in our experiments: the Hokuyo

URG-04LX-UG01 laser range finder. Also visible are the Asus Eee laptop used for controlling

the platform and recording data, as well as the Wiimote used for teleoperation.

a Hokuyo URG-04LX-UG01 Laser Range Finder, and the Pioneer’s build-in encoders were

used for odometry. The platforms were teleoperated using a Wiimote or a remote machine.

For teleoperation and recording purposes, the platforms each had an Asus laptop mounted

on it. The simulation and virtual machine-related operations were performed on a more

powerful, if slightly dated, Toshiba Qosmio F60 laptop.

5.2 Results and Discussion

5.2.1 System Performance and Immunity to SLAM Technique Vari-

ation

In order to test the system’s immunity to the variation of SLAM technique, i.e. its ability

to perform its functionality regardless of the SLAM technique used in the mission, data

was gathered in the MRL Arena, which was then processed using the three different SLAM

techniques we have mentioned in Chapter 2: slam_gmapping, slam_karto and hector_slam,

using their default parameters, namely regarding the rate at which they output maps, and

their size. We have configured them all to use a resolution of 5cm/cell.
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(a) (b) (c)

Figure 5.5: An example of the results obtained using GMapping. (a) and (b) are the local

maps of each of the robots, (c) is the result of the map fusion process.

(a) (b) (c)

Figure 5.6: An example of the results obtained using Karto. (a) and (b) are the local maps

of each of the robots, (c) is the result of the map fusion process.

(a) (b) (c)

Figure 5.7: An example of the results obtained using Hector. (a) and (b) are the local maps

of each of the robots, (c) is the result of the map fusion process.

48



(a) (b) (c)

Figure 5.8: An example of a failed three-way map fusion. (a) is one of the robot’s local map,

and (b) is the result of the fusion of two other local maps. We can see that, while the maps

were roughly rotated and translated correctly, there is a noticeable misalignment on one of

the maps.

These three techniques, while equivalent in their results, have different operational re-

quirements. For instance, Hector does not use odometric data. Their results are also differ-

ent, both in format and quality. GMapping tends to output maps that have significant empty

areas surrounding a region of interest, as does Hector ; Karto outputs maps that are very

closely trimmed to the region of interest. Our system was designed to deal with this issue

by cropping all the input maps to include only the region that has useful information. The

Map Fusion node then applies padding around the maps to guarantee that no information

is lost during rotation.

Figs. 5.5, 5.6 and 5.7 show the results of the MRL Arena experiment for each of the SLAM

techniques, which were run over the same recorded data. These results show our system’s

ability to handle and adapt to the SLAM technique in use, being able to successfully attain

a global representation of the environment. We can see that while every SLAM technique

builds a different slightly representation of the environment, our system is able to process

the data regardless. It is also important to note that the map fusion process fuses the

second map into the first, which is why there is a disparity in the orientation of the final

representations.

The experiment that took place in the corridors involved a team of three robots. In this

scenario, the Map Fusion node was expected to be able to deal with maps it had already

fused before, as described and illustrated in Chapter 4. However, its performance revealed

room for improvement, as illustrated in Fig. 5.8.

As illustrated, an unsuccessful fusion step can be catastrophic to the remaining effort,
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Table 5.1: Network statistics for outgoing data obtained during in the MRL Arena and the

ISR corridors. These are respective to one of the robots in the mission; the results obtained

by its teammate are equivalent. N is the number of processed maps (output by the SLAM

technique into our system), R̄ is the average compression ratio achieved during the mission,

Lt is the total size of the maps received by our system (before compression, after cropping),

Ls is the total amount of data sent into the network by this robot and, Ds is the amount

of data we have saved, i.e. the difference between the total size of the maps and the data

actually transmitted, and, finally, Tp is the total time spent processing maps, in milliseconds.

All sizes are in bytes.

(a) Results obtained during the MRL Arena mission.

N R̄ Lt Ls Ds Tp

GMapping 21 8.78 169062 19253 149809 2.77
Karto 6 8.03 48357 6015 42342 0.82
Hector 75 8.61 606667 70472 536195 9.61

(b) Results obtained during the ISR corridors mission.

N R̄ Lt Ls Ds Tp

GMapping 21 13.92 930050 66787 863263 7.68
Karto 6 12.06 209799 17402 192397 2.64
Hector 76 12.03 3198376 265883 2932493 14.99

utterly invalidating the final result. This unsuccessful fusion can be attributed to several

factors, such as the fact that the corridors are almost featureless, which hinders the efforts

of both the SLAM technique and the map fusion process; the presence of glass panes, visible

in the lower part of the image, that interfere with the laser range finder; disparities in the

way different maps represent the same real-world area...

5.2.2 Communication Efficiency

Table 5.1 illustrates the results obtained during the MRL Arena mission. Essentially, these

show that the technique adopted to ensure efficiency in communication, compression using

the LZ4 technique, is a viable option.

As postulated in Chapter 3, using compression on occupancy grids yields important data

savings. In this case, using real occupancy grids (as opposed to the simplified ones used on

Chapter 3), we have saved at least about 7/8 of all data meant to be sent, which equates

to about 88% savings in data sent. These savings come at a very reduced cost, as is visible

on the last column of Table 5.1. At the most, we spent a total of about 15 milliseconds
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processing maps during a mission, which given that during that mission we saved 11/12, or

91.6%, on transmitted data, is a very positive result.

5.3 Summary

In this chapter, we have tested the solution presented in Chapter 4.

We have found its performance to be acceptable. The technique is able to successfully map

an environment using the information gathered by multiple robots, and does so employing

a very efficient communication method.

In the next chapter, we will reflect upon our work, analyzing these results in light of the

requirements that were defined in Section 1.1. We will also briefly explore several lines of

possible future work.
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6 Conclusion

In Section 1.1, we have defined a set of goals for this work. We shall now reflect upon them

and on our system’s performance.

First and foremost, we needed our system to be completely distributed. By designing the

Data Interface node to abstract away all the network-related details, and the Complete-Map

Generation node to be able to fuse an unknown number of maps, we were able to build a

system that, by design, does not limit the number of robots we can use; the bottleneck in

our system’s performance is the machine it is running on.

However, operating in a fully distributed way creates an overly redundant system, where

resources are wasted in calculating the same results on various machines. While desirable in

a high-risk scenario, a more modest solution was required for situations in which the risk of

losing a robot was not as high. To solve this issue, we have designed our system to support

three different modes of operation, which allow us to fully adapt to and exploit the risk-level

of the situation.

Failures in communication were also taken into account, and to deal with them we make

use of a combination of TCP with the usage of hardware-bound addresses for robot identifi-

cation, so that a failure in the network does not compromise our ability to correctly identify

the team members.

Scalability was also an important topic of this work, and was assured in a twofold way.

Firstly, by employing compression in our communication, we have been able to save approx-

imately 90% in required bandwidth, which allows us to greatly enlarge the team. Secondly,

by designing the system so as to not depend a priori on the number of robots available, i.e.

by making it able to dynamically embrace new team members, we have achieved a solution

that does not have a theoretical limitation to the team’s size.

The last requirement stated that the system be able to deal with any SLAM technique

that was integrated in ROS’s standards. To satisfy this requirement, we have designed our

system to depend on those same standards as much as possible, and to retrieve information
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in a standardized way. As shown in Chapter 5, we were successful.

6.1 Future Work

The system presented in this work constitutes a solid basis for the performance of Multi-

Robot SLAM tasks. However, mainly due to calendar-related constraints, not all the features

that were initially desired are included in the system. In this section, we will list and reflect

upon the various improvements that the authors imagined and designed, starting with the

simplest.

As of this writing, the system completely relies on ROS’s facilities to display data to the

user. As such, gauging the real-time performance of the system is limited to observing the

evolution of the complete-map and the textual output of each of the nodes. It would be very

useful to have a tool that graphically displayed the network’s status, the bandwidth used

by each connection, the current gains obtained by using compression, etc. A tool like this

would greatly simplify the control of the mission, and would make information available “at

a glance”.

The Data Interface node is already efficient enough at transmitting data for our purposes.

However, it would be interesting to explore the concept of delta encoding in an attempt to

further increase its efficiency. Delta encoding is a broad concept that essentially consists of

having a backlog of previous messages, and constructing the following message as a set of

differences from on or more of the previous. In this case, delta encoding could be applied in

one of two levels: at the map level, where each new map would be sent as a set of differences

from the last; or at the buffer level, by sending each compressed buffer as a set of differences

from the last. It would be interesting to test both hypotheses.

The Map Fusion node could also be vastly improved. As it stands, it is a mere example

of what it could have been, since it was the recipient of the least amount of attention. Being

very well decoupled from the rest of the system, it would be very interesting to see it replaced

with a more robust approach, which could dramatically increase the success of the mapping

effort itself.

The Complete-Map Generation node could also be improved to detect and deal with

failed fusion attempts, for instance by discarding the newest fusion result and keeping the

last successful one. Currently, a failed map fusion attempt has catastrophic results for the

mapping mission.

This work does not address the issue of inter-robot interference, i.e. the fact that the
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presence of a robot within another’s scanning range violates the static world assumption,

generating inconsistencies in the final map. It would be very interesting to look into the

possibility of creating a way of filtering robots out of each others’ laser scans without using

additional sensors.

The current model of distributed operation is highly redundant: every single node that

is operating has to create its own complete-map. Even though this model was a decided

upon to maximize the tolerance to failure, it can represent a large waste of computational

resources in scenarios where the network is trustworthy. An improvement over the current

system would be to create a new mode of operation, where it would capable of performing

the processing of maps in a distributed fashion, in a manner inspired by computer clusters.

Robots would have to periodically sync, and trade maps as well as control messages to

determine how the complete-map generation process would take place. Each robot would

be responsible for building a part of the map tree, effectively distributing the computational

load across the robotic network. For instance, for four robots, two of them would fuse two

pairs of maps, and then send the fused maps to another robot, who would fuse them to

create a complete-map, which would then be propagated across the network.

Finally, as a major improvement, the system could be upgraded to be able to deal with

any kind of data. At its core, this system creates a framework that enables robotic peers

to efficiently propagate their respective local representations of the environment, and to

methodically fuse them with the information received from other robots. However, as we

know, a representation of an environment is not limited to an occupancy grid, i.e. there

are several other ways of representing our surroundings. In this sense, the system would be

converted to not rely on a specific type of representation, but instead to transmit, store and

organize raw data. This process is, conceptually, much simpler than may be perceived at

first sight. In fact, the only node that explicitly relies on occupancy grids is the Map Fusion

node. If every other node were converted to deal with arbitrary data, only the Map Fusion

node would have to be deeply rebuilt in order to cope with the change. For instance, we

could perform Multi-Robot SLAM based not on occupancy grids, but on Pose Graphs, as

described in chapter 2. Given the system’s architecture, we could retain the communication’s

efficiency, as well as the map tree method of computing a global representation, simply by

replacing occupancy grids in the data structures with content-agnostic structures.
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Abstract: The efficient sharing of information is a commonly overlooked problem in methods proposed for cooperative
multi-robot tasks. However, in multi-robot scenarios, especially when the communication network’s quality of
service is less than desirable, either in bandwidth or reliability, efficient information exchange is a key aspect
for the successful deployment of coordinated robotic teams with proper exchange of information.
Compression is a popular, well-studied solution for transmitting data through constrained communications
channels, and many general-purpose solutions are available as free and open-source software (FOSS) projects.
There are various benchmarking tools capable of comparing the performance of these techniques, but none
that differentiate between them in the compression of the typical data exchanged among robots in a coopera-
tive task. Thus, choosing a compression technique to be used in this context is still a challenge.
In this paper, the issue of efficiently communicating data among robots is addressed by comparing the per-
formance of various compression techniques in a case study of multi-robot simultaneous localization and
mapping (SLAM) scenarios using occupancy grids, a cooperative task usually requiring the exchange of large
amounts of data.

1 INTRODUCTION

Cooperation among mobile robots almost always in-
volves interaction via explicit communication, usu-
ally through the use of a wireless network. Com-
monly, this network is taken for granted and little
care is taken in minimizing the amount of data that
flows through it, namely to assist the robot’s naviga-
tion though the environment.

However, in real-world applications, the naviga-
tional effort can be but a small part of the tasks
that must be dealt with by a complete robotic sys-
tem (Rocha et al., 2013). Therefore, it should oper-
ate as efficiently as possible. Additionally, in harsher
scenarios, such as search and rescue operations, con-
strained connectivity can become an issue, and cau-
tion must be taken to avoid overloading the network.
An efficient model of communication is also a key el-
ement of a scalable implementation: as the number
of robots sharing the network increases, the amount
of data that needs to be communicated does as well.
Thus, greater care in preparing data for transmission
is needed, so as to avoid burdening the network by

transmitting redundant or unnecessary data.

In this paper, we analyze the data transmitted by
a team of robots on a cooperative mission that in-
cludes mapping and navigation. With this purpose,
we use a multi-robot simultaneous localization and
mapping (SLAM) task (Lazaro et al., 2013) as a case
study of the exchange of information among robots,
though the ideas proposed herein can be generalized
to other cooperative tasks, at different abstraction lev-
els. In our case study, mobile robots are required to
communicate occupancy grids (Elfes, 1989) among
themselves, in order to obtain a global representation
of the environment based on partial maps obtained lo-
cally by individual robots.

Occupancy grids are metric representations of the
environment, being repetitive by nature (Elfes, 1989).
In their simplest form, they consist of a matrix of cells
that are commonly in one of three states: free, oc-
cupied or unknown. These can be seen as the result
of a “thresholding” operation applied to a more com-
plex occupancy grid, which is composed of cells that,
instead of one of three values, contain a probability
value or distribution (Rocha, 2006) of the occupancy



of the space they represent.
In larger environments, or at greater resolutions,

these simpler grids are composed of large matrices
filled with only three different values, often contain-
ing very long chains of repeated cells. Keeping this
data in memory in this form is a sensible approach.
The data is very easily accessible, with no computa-
tional overhead. However, transmitting it in this form
is most likely a wasteful use of bandwidth.

Compression methods are widely used in the
transmission and storage of bulky data, such as large
numbers of small files, logs, sound and video. Com-
pression is even being used by default in specific file
systems, offering a possible solution for this problem.
These exploit the data’s inherent compressibility in or-
der to represent it using fewer bits of data than origi-
nally.

In the following pages, various general-purpose,
lossless compression techniques are analyzed and
compared, in an effort to determine which, if any, is
more suitable as a solution to the large bandwidth re-
quirements of multi-robot systems. We will start by
presenting a review of previous work in efficient com-
munication between coordinated robots, followed by
a short presentation of the various techniques being
compared. We then present and discuss our results,
and summarily conclude by taking an outlook into fu-
ture work.

1.1 Related Work

Data compression is a process through which we aim
to represent a given piece of digital data using fewer
bytes than the original data, and can be seen as a
way of trading excess CPU time for reduced transmis-
sion and storage requirements. Compression methods
are divided into two main groups: lossless methods,
which make it possible to reconstruct the original data
without error; and lossy methods, which make use of
the way humans perceive signals to discard irrelevant
data.

Lossy compression algorithms are commonly
used in the compression of signals intended for hu-
man perception, such as image and sound. These
techniques usually make use of the way we perceive
signals to reduce their size (Salomon, 2007). For
example, given that the human hearing’s capability
ranges from about 20Hz to about 20kHz, sound com-
pression techniques can remove any signal compo-
nents outside that frequency range. Although the
compressed data should be significantly smaller than
the original, humans hearing sound reconstructed
from lossy compressed data should experience much
the same. However, the original signal cannot be re-

covered.
Lossless compression, on the other hand, com-

presses data in a way that it is later fully recover-
able. In 1977 (Ziv and Lempel, 1977) and 1978 (Ziv
and Lempel, 1978), Abraham Lempel and Jacob
Ziv developed two closely related algorithms which
were to become the basis for most of the lossless,
general-purpose compression algorithms currently in
use. LZ77 and LZ78, as their works were to become
known, are methods of dictionary-based lossless com-
pression. Summarily, the LZ77 and LZ78 algorithms
keep a dictionary of byte chains encountered through-
out the uncompressed data, and replace repetitions of
those chains with links to entries in the dictionary,
thus reducing the size of the data.

LZ77 compresses data by running a sliding win-
dow of a given fixed length over the input data, which
is composed of variable-length sequences of bytes.
For each input sequence, the algorithm looks for
matches between the current sequence and a previ-
ous occurrence inside the sliding window. When a
match is found, the repeated sequence is replaced by
an offset and a length, which represent location of the
previous occurrence in the sliding window, and the
length of the repetition. For example, if the string
“abc” existed twice in the window, the second occur-
rence would be replaced by an offset that pointed to
the beginning of the string, and a length of three char-
acters. This simple concept is the basis of dictionary
coding. Furthermore, LZ77 has a way of dealing with
very long repetitions, by specifying a length that is
longer than the source string. This way, when decod-
ing, the source string is copied multiple times into the
output buffer, correctly rebuilding the repetition. For
example, if the string “abc” exists somewhere in the
sliding window, and the string “abcabc” exists some-
where after it, the second string would be replaced
by an offset that pointed to the letter ’a’ in the first
string, and a length of six characters, instead of the
length of three characters one might have expected,
thus encoding the whole six-letter string into a sin-
gle offset-length pair. Once all the data is encoded,
decoding it consists of reversing the process, by re-
placing every offset-length pair in the coded data by
their corresponding byte chains.

Despite technically being a dictionary coder,
LZ77 does not explicitly build a dictionary. Instead,
it relies on offset-length pairs to elliminate repetition.
LZ78, on the other hand, does create an explicit dic-
tionary. The algorithm attempts to find a match in the
dictionary for every sequence that is taken from the
input buffer. If a match is not found, it is added to
the dictionary. Every match that is found is replaced
with a structure analogous to the offset-length pair de-
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(a) LZ77 operates by running a sliding window over the data. When a sequence in the input data is matched to data that is
still inside the window, it is replaced with an offset-length pair that points to the previous instance of that data. In this figure,
the dark blue segments were matched, and the second one is replaced with the orange, smaller segment, that points to the first
copy of the matched segment.
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(b) LZ78 operates by building an explicit dictionary. As the input data is consumed, the algorithm attempts to match each
input sequence with an existing sequence in the dictionary. If the matching operation fails, the new data is added to the
dictionary. This illustration shows the case where a match is found. In that case, the dark blue segments are matched to an
entry in the dictionary, and replaced in the output buffer with the orange, shorter segment that points to the correct entry in
the dictionary.

Figure 1: A simplified pictorial explanation of LZ77 and LZ78’s operation.



scribed above, differing in the fact that now the offset
represents an entry in the dictionary. The LZ78 dic-
tionary is allowed to grow up to a given size, after
which no additional entries are added, and input data
that cannot be matched with any dictionary entries
is output unmodified. Decoding LZ78-encoded data
also consists of simply reversing the process, substi-
tuting each offset-length pair with the appropriate en-
try from the dictionary. The operation of these algo-
rithms is illustrated in Fig. 1.

We have restricted our choice of algorithms to
those based on Lempel and Ziv’s work, for their fo-
cus on reducing redundancy by exploiting repetition,
and for their lossless nature. It is important that the al-
gorithms we are employing be fully lossless, i.e. that
the compressed data can be used to reconstruct the
original data, since we intend to generalize this tech-
nique to other types of data which may not tolerate
any errors. For example, lossy image-based compres-
sion techniques, such as JPEG, could be used to re-
duce the size of an occupancy grid, processing it as
an image. However, compression artifacts and other
inaccuracies could lead to an erroneous representation
of the environment, either by distorting its features or
by hindering other aspects of the multi-robot mapping
effort, such as occupancy grid image-based alignment
and merging (Carpin, 2008).

Efficient inter-robot communication is not an area
devoid of research. Other works, such as (Bermond
et al., 1996), (Lazaro et al., 2013) and (Cunningham
et al., 2010), have worked on a solution for this is-
sue by creating new models of communication for
robotic teams, i.e. by developing new ways of rep-
resenting the data needed to accomplish the mission.
Other research efforts focused on developing infor-
mation utility metrics, e.g. by using information the-
ory (Rocha, 2006), which the robot can use to avoid
transmitting information with a utility measure below
a certain threshold. We could find none, however,
that applied compression to further increase their op-
timization gains. These techniques, while successful
in their intended purpose, rely on modifications to the
inner workings of their respective approaches. In our
case, we intend to create an optimization solution that
is more general, and that does not depend on modifi-
cations to the intricacies of the underlying techniques.

Finally, there are several examples1 of compres-
sion benchmarks. However, we found none that fo-
cus on the algorithms’ ability to optimize inter-robot
communication. Their main focus is on comparing
the techniques’ performance on the compression and

1Such as Squeeze Chart (http://www.
squeezechart.com/) and Compression Ratings
(http://compressionratings.com/).

decompression of standard datasets, such as long sec-
tions of text, random numbers, etc. The need to
test these techniques in the compression of specific,
Robotics-related datasets, as well as the need to do so
in a methodical, unbiased way, compelled us to create
our own solution.

1.2 Contributions

In this paper, we present a novel compression bench-
marking tool and metric, as well as results and dis-
cussion of a series of experiments on the compres-
sion and decompression of occupancy grids, as a case
study for the application of compression techniques
in multi-robot coordinated tasks.

2 FOSS DATA COMPRESSION
ALGORITHMS

As stated previously, occupancy grids, while a practi-
cal way of keeping an environment’s representation in
memory, are cumbersome as transmission objects. At
the typical size of 1 byte per cell, an 800-by-800 cell
grid (e.g. a representation of a somewhat small 8-by-
8 meter environment at 100 cells per meter) occupies
640 kilobytes of memory. Depending on how fast an
updated representation is generated, and how many
robots take part in the mapping effort, this can lead
to the transmission of prohibitively large amounts of
data. If we update that same grid once every three
seconds on each robot, each robot will generate an av-
erage of about 213KB/s. For a relatively small team
of three robots, that equates to generating 640KB per
second of data that needs to be transmitted. This sim-
ple calculation does not take into account the possi-
bility of one of the robots exploring the environment
further away from the others, causing the grids to
expand, which would further enlarge the amount of
repetitive data generated.

If we assume that each robot has to transmit its
map to each of the team members, in a client-server
networking model, each map update carries a band-
width cost of C = S× (n− 1), where C is the total
cost, in bytes, S is the size of the map, in bytes, and
n is the number of robots in the team. We can easily
determine then that a regular 802.11g access point,
operating at the typical average throughput of 22Mb
(or 2.75MB) per second could support a team of 14
robots.

Given the redundancy that is naturally occurring
in the data, there is great potential for optimization in
the team’s usage of bandwidth. Since data compres-
sion methods aim to remove redundancy from data,



and can be applied to any type of data, they seem ad-
equate candidates for network optimization.

LZ77 and LZ78 inspired multiple general-purpose
lossless compression algorithms, widely used today
as Free and Open Source Software (FOSS) implemen-
tations. We have collected the ones that we believe are
the most suitable as solutions to our problem, given
their availability, use and features. We will summar-
ily discuss them next.

DEFLATE2, presented in (Deutsch, 1996), is the
algorithm behind many widely used compressed file
formats such as zip and gzip, compressed image
formats such as PNG, and lossless compression li-
braries such as zlib, which will be the implementa-
tion through which DEFLATE will be tested. This al-
gorithm combines the LZ77 algorithm with Huffman
Coding (Huffman et al., 1952). The data is first com-
pressed using LZ77, and later encoded into a Huffman
tree. Being widely used, this technique was one of the
very first to be considered as a possible solution to this
problem.

LZMA3, which stands for Lempel-Ziv-Markov
Chain Algorithm, is used by the open-source com-
pression tool 7-zip. To test this algorithm, we have
used the reference implementation distributed as the
LZMA SDK. No extensive specification for this com-
pressed format seems to exist, other than its reference
implementation. LZMA combines the sliding dictio-
nary approach of LZ77 with range encoding.

LZ44 is an LZ77-based algorithm focused on
compression and decompression speed. It has been
integrated into the Linux kernel and is used on the
BSD-licensed implementation of ZFS (Rodeh and Te-
perman, 2003), OpenZFS, as well as other projects.

QuickLZ5 is claimed to be “the world’s fastest
compression library”. However, the benchmark re-
sults provided by its authors do not compare this tech-
nique to either LZ4 or LZMA, warranting it a place in
our comparison.

Finally, Snappy6, created by Google, is a
lightweight compression library that aims at maxi-
mizing compression and decompression speed. As
such, and unlike other techniques, it does not employ
an entropy encoder like the Huffman Coding tech-
nique used in DEFLATE.

2zlib is available at http://www.zlib.net/
3The LZMA SDK used is available at http://www.

7-zip.org/sdk.html
4LZ4 is available at http://code.google.com/p/

lz4/
5QuickLZ is freely available for non-commercial pur-

poses at http://quicklz.com/
6Snappy is available at https://code.google.com/

p/snappy/.

3 BENCHMARKING
METHODOLOGY

Part of the motivation behind this work consists of
the fact that compression benchmarking tools usually
focus on either looking for the fastest technique, or for
the one that achieves the highest compression ratio, as
defined by:

R =
LU

LC
, (1)

where R is the compression ratio, LU is the size of
the uncompressed data, and LC is the size of the com-
pressed data, both usually measured in bytes.

When choosing among a collection of compres-
sion techniques, compression ratio is a metric of cap-
ital importance, since the better the ratio, the less in-
formation the robots have to send and receive to com-
plete their goal. However, the techniques’ compres-
sion and decompression speeds are also important; an
extremely slow, frequent compression may jeopardize
mission-critical computations. Thus, we cannot sim-
ply find the technique that maximizes one of these
measures; there is a need to define a new, more suit-
able performance metric, in order to find an accept-
able trade-off.

Therefore, we define:

E =
R

Tc +Td
, (2)

in which E is the technique’s temporal efficiency.
It is determined by dividing the compression ratio
achieved by the technique, R, by the total time needed
to compress and decompress the data, Tc and Td , re-
spectively. The purpose of this quantity is to pro-
vide an indication of how efficiently the technique at
hand uses its computational time. The algorithm that
achieves the highest temporal efficiency, while at the
same time achieving acceptable compression ratio, is
a strong candidate for integration in work that requires
an efficient communication solution, provided that its
absolute compression ratio is acceptable.

In order to test these techniques, the authors de-
veloped a benchmarking tool7 that, given a number of
compression techniques, runs them over occupancy
grids generated by SLAM algorithms, outputting all
the necessary data to a file. This tool allows us to
both apply the techniques to the very specific type of
data we wish to compress, as well as test them all in
the same controlled environment. It was designed to
be simple and easily extensible. As such, the addition

7The tool is publicly available under the BSD license
at https://github.com/gondsm/mrgs_compression_
benchmark.



of a new technique to the benchmark should be trivial
for any programmer with basic experience.

To account for the randomness in program execu-
tion and interprocess interference inherent to modern
computer operating systems, each algorithm was run
over the data 100 times, so that we could extract re-
sults that were as isolated as possible from momen-
tary phenomena, such as a processor usage peak, but
that reflected the performance we could expect to ob-
tain in real-world usage. Interprocess interference
could have been eliminated by running test process
in the highest priority. However, that does not con-
stitute a real-world use case, and that methodology
would provide results that could not be expected to
occur during normal usage of the techniques. Re-
sults include the average and standard deviation of the
compression and decompression times for each tech-
nique and dataset, as well as the compression ratio
achieved for each case. These results can be seen tex-
tually in Table 1, or graphically in Figs. 3 and 4. Each
technique was tested using their default, slowest and
fastest modes, except for QuickLZ and Snappy, which
only provide one mode of operation, and LZ4, which
only provides a fast (default) and a slow, high com-
pression mode.

All tests were run on an Intel Core i7 M620 CPU,
with 8 GB of RAM, under Ubuntu Linux 12.04.

3.1 Datasets

In order to test the effectiveness of compression algo-
rithms in treating typical occupancy grids, and given
the intention of studying, at least to some degree, how
each algorithm behaves depending on the dataset’s
size, five grids of different environments were chosen:
Intel’s Research Lab in Seattle; the ACES building,
in Austin; MIT’s CSAIL building and, finally, MIT’s
Killian Court, rendered in two different resolutions,
so that differing sizes were obtained. The datasets
are illustrated in Fig. 2. The occupancy grids we
present were obtained from raw sensor logs using the
GMapping8 (Grisetti et al., 2007) SLAM algorithm,
running on the ROS (Quigley et al., 2009) frame-
work. The logs themselves have been collected us-
ing real hardware by teams working at the aforemen-
tioned environments, used for benchmarking SLAM
techniques (Kümmerle et al., 2009), and later made
publicly available.9

8A description of the version of GMapping can be found
at http://wiki.ros.org/slam_gmapping.

9The raw log data used to create these maps is available
at http://kaspar.informatik.uni-freiburg.de/
˜slamEvaluation/datasets.php.

4 RESULTS AND DISCUSSION

Fig. 3 and Table 1 illustrate the obtained results. In
Fig. 3(a), we show the general trend in temporal ef-
ficiency for each technique as the size of the map
grows. The general tendency is for efficiency to de-
crease as the data increases in size. However, in
Fig. 3(b), we can observe that the compression ra-
tio achieved tends to grow with the data’s size. This
effect can be attributed to the fact that, as the map
grows, there are longer sequences of repetitive data,
such as large open or unknown areas. It can also be
explained, to a much smaller degree, by the fact that
every compression technique adds control informa-
tion to the compressed data, and that the size of this
control data tends to be less significant as the uncom-
pressed data grows. These figures lack error bars or
other uncertainty representations due to the small dis-
persion of results, illustrated in Table 1 by the small
values of standard deviation.

As expected, slower techniques generally achieve
higher compression ratios. However, our results show
that some techniques are indeed superior to others, in
both temporal efficiency and compression ratio. LZ4
has shown both a higher temporal efficiency and com-
pression ratio than that of QuickLZ and Snappy, mak-
ing it a clearly superior technique, in this case. How-
ever, LZ4 HC, LZ4’s slower mode of operation, is
an inferior technique, both in temporal efficiency and
ratio, when compared to LZMA and DEFLATE in
the compression of larger datasets. Its temporal per-
formance diminishes significantly with the growth in
map dimensions, with an insufficient increase in com-
pression ratio.

In applications where compression ratio is sec-
ondary relatively to speed, LZ4 is a strong candi-
date, and clearly the best among the techniques that
were tested. It strongly leans towards speed and away
from compression ratio, but offers acceptable ratios
(around 15 for smaller maps, reaching 50 in larger
ones) given its extremely fast operation. In other
words, for applications which rely on transmitting oc-
cupancy grids, a very significant reduction of data
flow can be achieved by employing this relatively
low-footprint technique, which makes it suitable for
use in real-time missions. As Fig. 3(a) shows, this
technique is, by far, the most efficient at utilizing re-
sources, achieving the best results in terms of tem-
poral efficiency among the techniques that we have
tested.

If further reduction in bandwidth is required, other
techniques offer better ratios, at the expense of com-
putational time. LZMA’s fast mode offers one of the
best ratios that we have observed, while still being ac-



(a) Intel’s Research Lab, measuring 753,078 bytes uncom-
pressed.

(b) ACES Building, measuring 1,280,342 bytes uncom-
pressed.

(c) MIT CSAIL Building, measuring 1,929,232 bytes uncom-
pressed.

(d) MIT Killian Court, measuring 9,732,154 bytes
(low resolution rendering) and 49,561,658 bytes
(high resolution rendering) uncompressed.

Figure 2: A rendering of each dataset used in our experiments. These were obtained by performing SLAM over logged sensor
data.
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Figure 3: A graphical illustration of each technique’s performance on all datasets. Each of the dotted lines connects data
points for the same technique, so that trends become evident. Note the logarithmic scale.

DEFLATE (zli
b)

DEFLATE (zli
b) Fast

DEFLATE (zli
b) Slow LZ4

LZ4 HC
LZMA

LZMA Fast

LZMA Slow
QuickLZ

Snappy
0

2

4

6

8

10

12

M
ea

n 
Te

m
po

ra
l E

ffi
ci

en
cy

(a) Mean temporal efficiency achieved by each technique
for the three smaller datasets.

DEFLATE (zli
b)

DEFLATE (zli
b) Fast

DEFLATE (zli
b) Slow LZ4

LZ4 HC
LZMA

LZMA Fast

LZMA Slow
QuickLZ

Snappy
0

5

10

15

20

25

30

35

40

45

M
ea

n 
Co

m
pr

es
si

on
 R

at
io

(b) Mean compression ratio achieved by each technique for
the three smaller datasets.

Figure 4: A graphical illustration of each technique’s performance on smaller datasets.



Table 1: Results obtained by processing the three smallest datasets 100 times with each technique. σc and σd correspond
to the standard deviations of the compression and decompression times, respectively. T̄c and T̄d correspond to the average
compression and decompression times, respectively.

(a) Raw results obtained for the Intel Research Lab dataset.

Ratio T̄c (ms) σc T̄d (ms) σd

DEFLATE (zlib) 27.727 15.130 1.179 1.423 0.140
DEFLATE (zlib) Fast 18.474 4.503 0.736 1.388 0.241
DEFLATE (zlib) Slow 31.633 106.519 4.167 1.306 0.195
LZ4 11.741 0.452 0.064 0.410 0.064
LZ4 HC 22.850 89.312 3.721 0.241 0.028
LZMA 31.920 126.282 7.315 2.364 0.287
LZMA Fast 29.825 17.080 1.156 2.487 0.181
LZMA Slow 34.029 229.789 13.086 2.290 0.242
QuickLZ 10.519 1.222 0.153 0.742 0.069
Snappy 10.807 0.753 0.128 0.529 0.100

(b) Raw results obtained for the ACES Building dataset.

Ratio T̄c (ms) σc T̄d (ms) σd

LZ4 12.5734 0.737898 0.118167 0.656754 0.0954742
LZ4 HC 25.8623 129.498 9.9717 0.381131 0.0711197
DEFLATE (zlib) 30.4135 24.7584 1.49278 2.27353 0.329637
DEFLATE (zlib) Fast 19.573 8.26037 1.6616 2.41425 0.444267
DEFLATE (zlib) Slow 35.4023 165.532 5.24992 1.91064 0.341901
LZMA 34.815 187.78 10.3723 3.60015 0.352538
LZMA Fast 32.8633 27.4526 1.42182 4.04572 0.499422
LZMA Slow 37.7465 327.663 11.5554 3.62876 0.431443
QuickLZ 10.9759 2.11142 0.243054 1.29769 0.127622
Snappy 11.3352 1.20599 0.12735 0.841902 0.108266

(c) Raw results obtained for the MIT CSAIL Building dataset.

Ratio T̄c (ms) σc T̄d (ms) σd

DEFLATE (zlib) 43.274 27.927 1.203 3.370 0.172
DEFLATE (zlib) Fast 26.818 9.100 0.382 2.717 0.178
DEFLATE (zlib) Slow 49.205 146.207 1.760 3.027 0.069
LZ4 18.236 0.779 0.052 0.725 0.090
LZ4 HC 35.953 179.027 2.698 0.432 0.087
LZMA 48.763 200.306 11.911 4.142 0.302
LZMA Fast 45.522 33.280 0.448 4.304 0.105
LZMA Slow 53.088 342.213 8.815 4.019 0.261
QuickLZ 15.359 2.533 0.117 1.407 0.088
Snappy 13.387 1.250 0.059 1.008 0.048



Table 2: Results obtained by processing the two largest datasets 100 times with each technique. σc and σd correspond
to the standard deviations of the compression and decompression times, respectively. T̄c and T̄d correspond to the average
compression and decompression times, respectively.

(a) Raw results obtained for the smallest MIT Killian Court dataset.

Ratio T̄c (ms) σc T̄d (ms) σd

LZ4 61.8855 15.0167 2.04569 15.9073 2.94617
LZ4 HC 102.05 3928.3 86.8325 12.4447 1.46376
DEFLATE (zlib) 149.383 614.592 24.0875 110.101 4.45021
DEFLATE (zlib) Fast 77.6953 242.236 21.732 65.1652 7.47955
DEFLATE (zlib) Slow 156.064 1375.26 50.3694 109.791 5.90444
LZMA 183.704 3685.39 150.48 75.4362 6.84588
LZMA Fast 165.082 776.456 20.6407 83.2567 6.06081
LZMA Slow 193.595 4995.91 386.814 63.4425 5.07394
QuickLZ 40.063 53.632 2.382 21.701 1.365
Snappy 18.400 17.986 0.799 23.335 1.080

(b) Raw results obtained for the largest MIT Killian Court dataset.

Ratio T̄c (ms) σc T̄d (ms) σd

DEFLATE (zlib) 94.044 111.906 1.738 18.610 0.492
DEFLATE (zlib) Fast 52.831 41.207 3.083 11.647 0.846
DEFLATE (zlib) Slow 103.676 316.500 5.208 17.499 0.717
LZ4 40.553 2.920 0.198 2.797 0.406
LZ4 HC 72.116 710.753 32.165 1.992 0.147
LZMA 110.622 663.896 15.645 13.595 0.527
LZMA Fast 102.493 141.536 1.216 14.580 0.316
LZMA Slow 121.472 1269.680 158.155 14.937 1.938
QuickLZ 29.856 14.027 2.274 5.774 0.612
Snappy 16.951 5.192 0.751 5.101 0.492



ceptably fast. For the smallest dataset, this technique
took, on average, about 15ms for compression, and
achieved a ratio of 29.8. Depending on the applica-
tion, 15ms of processor time per compression may be
acceptable, given that this technique achieves a ratio
that is almost three times as large as LZ4’s, which
achieved a ratio of 11.7, as is visible on Table 1(a).

In Fig. 4, we explore the case of the exchange of
smaller maps, by averaging the temporal efficiency
and ratio for each technique when operating over the
smaller datasets. Smaller maps are commonly trans-
mitted between robots at the beginning of the mis-
sion, when there is still little information about the
environment. In these conditions, we note, as men-
tioned before, a generalized decrease in total com-
pression ratio, and a narrowing of the gap between
slow and fast techniques in terms of compression ra-
tio: all techniques produce results within the same
order of magnitude. However, the relationships be-
tween approaches in terms of temporal efficiency re-
main much the same. Thus, for smaller data, faster
techniques appear to be a better option, since they
achieve results that are comparable to those of their
slower counterparts, at a much smaller cost in com-
putational resources.

Larger maps, such as our largest examples, are
very uncommonly transmitted during multi-robot
missions, and hence unworthy of a closer analysis.
Additionally, for these larger datasets, the multi-robot
SLAM technique employed may make use of delta
encoding techniques for transmission, transmitting
only, for example, the updated sections of the map.
In this case, we expect that the compression tech-
niques applied to the map sections have the same per-
formance as those applied to the smaller datasets in
this test, since they will effectively be compressing
smaller maps.

It is important to note that even the worse-
performing techniques have achieved significant com-
pression ratios, with a minimum ratio of about 10.
Consequently, by using compression, we can reduce
the total data communicated between robots during
a mapping mission by at least a factor of 10, which
shows the viability of compression as a solution for
the problem of exchanging occupancy grids in a
multi-robot system. In the context of the example we
presented at the beginning of section 2, this equates
to cutting our bandwidth requirements from 213KB/s
per robot, to a much more affordable 21.3KB/s per
robot, boosting our access point’s theoretical capacity
from 14 to 140 robots.

5 CONCLUSION

In this paper, we have explored the issue of com-
munication optimization in the context of coopera-
tive robotics, specifically the application of general-
purpose lossless compression techniques to reduce
the volume of data transmitted in cooperative robotic
mapping missions. We have shown that compression
is a viable option for the reduction of required net-
work bandwidth in these scenarios, by defining and
employing a new metric for the comparison of com-
pression techniques, as well as the implementation of
a new benchmarking tool. Moreover, important re-
sults about the performance of different lossless com-
pression techniques in the context of multi-robot tasks
were obtained, which can support an informed deci-
sion on which technique should be used in this con-
text.

In the future, we plan to include and test one or
various of these techniques in a real-world SLAM ex-
periment, in order to gauge the impact of its use in the
bandwidth needed to complete the mission. It would
also be of interest to rerun these tests using datasets
closer in size, so that we can more closely predict how
the techniques’ performance evolve with the size of
the dataset. This may be a greater challenge than it
appears since datasets differ in more ways than their
size. A plausible way of working around this prob-
lem would be to expand the datasets using image pro-
cessing techniques, such as nearest-neighbor interpo-
lation, to isolate the dataset’s size as the only variable
characteristic between datasets.

It would also be interesting to investigate the influ-
ence of the application these techniques in the opera-
tion of Ad-Hoc networks, such as MANETs (Mobile
Ad Hoc Networks), since they can be used in Search
and Rescue operations (Rocha et al., 2013), a type
of operation that requires great communication effi-
ciency.

Additionally, the occupancy grids tested in this
work, as stated before, correspond to the simplest
form of occupancy grid: a simple matrix composed
of only three different values. Given this, it would be
very interesting to repeat these tests using the more
complex form of the occupancy grids, as it would give
us better insight into what we can expect from the ap-
plication of these techniques in real-world scenarios.

Finally, given that occupancy grids are not, by any
means, the only form of data exchanged during coop-
erative robotic missions, it would be interesting to ex-
plore the application of compression to other types of
bandwidth-heavy data that robots need to exchange,
such as the more complex occupancy grids described
in (Ferreira et al., 2012), possibly culminating in the



creation of a compression technique mainly intended
for the optimization of robotic communication.
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