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Abstract

Nowadays, a collection of two or more autonomous mobile agents working together are

denoted as teams or simply societies of mobile robots. In Multi-Robot Systems (MRS)

robots are allowed to coordinate with each other in order to achieve a speci�c goal. In these

systems, robots are far less capable as an entity, but the real power lies in the cooperation of

the team. The simplicity of MRS has produced a wide set of applications such as in military

tasks , searching for survivors in disaster hit areas, parallel and simultaneous transportations

of vehicles and delivery of payloads.

The success of single-robot Simultaneous Localization and Mapping (SLAM) in the past

two decades has led to research on Multi-Robot Simultaneous Localization and Mapping

(MRSLAM). A team of robots is able to map an unknown environment faster and more

and reliably. However, MRSLAM raises several challenging problems, including map fusion,

unknown robot poses and scalability issues. Rao-Blackwellized Particle Filters (RBPFs)

have been demonstrated as an e�ective solution to the problem of single robot Simultaneous

Localization and Mapping (SLAM), and a few extensions to teams of robots exist. However,

these approaches are usually characterized by strict assumptions on both communication

bandwidth and prior knowledge on relative poses between teammates.

In this dissertation, we describe in detail a distributed MRSLAM approach using RBPF

in the case of possibly constrained communication and unknown relative initial poses using

Robot Operating System (ROS). We consider the environment as a two dimensional space

with several obstacles, which are explored by a team of cooperative mobile robots, equipped

with laser sensors. In order to e�ciently tackle the problem, the cooperation between agents

and the memory space available for observations storage must be taken into account. Exper-

imental results using a team of up to two robots in a large indoor area show the robustness

and performance of the approach.

KeyWords: Simultaneous Localization and Mapping, Multi-Robot Systems, Mobile Robotics,

ROS.
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Resumo

Hoje em dia, um conjunto de dois ou mais agentes móveis autônomos que trabalham

em cooperação são designados de equipas de robôs ou simplesmente de sociedades de robôs

móveis. Em Sistemas Multi-robô (MRS), os robôs devem coordenar uns com os outros de

modo a alcançar um objetivo especí�co. Nestes sistemas, os robôs são individualmente menos

capazes, sendo que o seu verdadeiro poder reside na cooperação em equipa. A simplicidade de

MRS gerou um potencial de aplicação em várias áreas, tais como, tarefas militares, missões

de busca e salvamento em situações de desastres naturais, transportes paralelos e simultâneos

de veículos, assim como em distribuição de cargas.

O sucesso da tarefa de Localização e Mapeamento Simultâneos (SLAM) com um único

robô nas últimas duas décadas tem levado a imensas pesquisas sobre Localização e Mapea-

mento Simultâneos com Múltiplos Robôs (MRSLAM). A equipa de robôs pode explorar

um ambiente de forma mais e�ciente e robusta. No entanto, MRSLAM levanta também

muitos problemas desa�adores, incluindo fusão de mapas, robôs com pose desconhecida e

problemas de escalabilidade. Filtro de partículas Rao-Blackwell(RBPF) têm demonstrado

ser uma solução e�caz para o problema de SLAM com um único robô existindo algumas

extensões para equipas de robôs. No entanto, estas abordagens são normalmente caracteri-

zadas por severas restrições na largura de banda de comunicação e conhecimento prévio da

pose relativa entre agentes robóticos.

Nesta dissertação, descrevemos em detalhes uma abordagem distribuída para MRSLAM

utilizando RBPF considerando situações de comunicação com largura de banda limitada e

pose inicial relativa desconhecida usando ROS. Consideramos o meio ambiente como um es-

paço bidimensional com vários obstáculos, que é explorado cooperativamente por uma equipa

de robôs móveis equipados com sensores laser. De modo a enfrentar o problema de forma

e�caz, a cooperação entre os agentes e o espaço de memória disponíveis para armazenamento

de observações devem ser levados em conta. Os resultados experimentais, utilizando uma

equipa até dois robôs num espaço vasto em ambiente indoor demonstram a robustez assim

como o desempenho da abordagem apresentada.

Palavras-Chave: SLAM Multi-robô, Sistemas Multi-robô, Robótica Móvel, ROS.
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Chapter 1

Introduction

This dissertation describes work that has been done in the context of the R & D

research project Cooperation between Human and rObotic teams in catastroPhic INci-

dents (CHOPIN)1, which is ongoing in the Mobile Robotics Laboratory (MRL) of the

Institute of Systems and Robotics (ISR) at the University of Coimbra, in Portugal.

Nowadays, there has been an increase in the need to respond e�ectively to catastrophic

and unexpected incidents, including natural and civil disasters, industrial accidents and

terrorism acts and crime. The CHOPIN project aims at studying the cooperation between

human teams and robotic teams, including collaborative context awareness and e�cient

information sharing and the project exploits the human-robot symbiosis in the development

of human rescuers' support systems for small-scale Search and Rescue (SaR) missions in

urban catastrophic incidents as shown in Figure 1.1. To that end, cooperative robots can be

very useful on assisting humans in many distributed activities, especially hazardous scenarios,

by extending human perception and actuation with the capabilities they possess [Couceiro

et al., 2013].

Figure 1.1: Currently, mobile robots are increasingly seen as a real asset to situations of
natural disasters and accidents.

The main goal of this master degree project is to implement a distributed SLAM algo-

1Project's page: http://chopin.isr.uc.pt

http://chopin.isr.uc.pt
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rithm for cooperative teams of robots [Howard, 2006] in order to share e�ciently information

within a robotic system comprised of several mobile robots, towards the stimulation of a co-

operative behavior of the multi-robot system. For this purpose, Pioneer 3-DX, equipped

with Hokuyo-URG-04lx-UG01 lasers were used.

This chapter starts by relating the research reported in this dissertation with the context

of mobile robotics and, more speci�cally, in the context of robotic systems comprised of

more than one robot, i.e., Multi-Robot Systems (MRS). There were four main work phases.

In the beginning, mobile robotic theory such as SLAM techniques and its relationship to

SLAM strategies for multi-agents systems was studied in detail. The second phase consisted

of the conception of the distinct modules necessary for a MRSLAM approach. Afterwards,

the new MRSLAM strategy was developed, re�ned and tested to validate the results through

simulation and also real world experiment.

In this chapter, an overview of the document is given and the context of the research is

speci�ed as well as outlines for the usage of multi-agent systems.

1.1 Context and Motivation

It has been veri�ed in the past that multiple robots can cooperate to perform complex

tasks that would otherwise be impossible for one powerful robot to accomplish [Rocha,

2006]. The fundamental idea behind multi-agent robotics suggests dispatching the problem

into smaller sub-problems for each individual robot, and allowing them to interact with each

other to �nd solutions for these problems. Simple robots can be built and made to cooperate

within a team to achieve complex behaviors. It has been observed that MRS may be very

cost e�ective when compared to building a single expensive robot with all incorporated

capabilities.

For a robot to navigate within its environment, map building is a crucial task that has to

be done. Concurrently building up the map of the environment and using the map to obtain

the estimation of the localization of the robot is a fundamental problem in mobile robotics.

This problem is usually called Simultaneous Localization and Mapping (SLAM) and it deals

with estimating the position of the robot with respect to the map, while building it using

the sensory input and the estimated robot's pose. The maturity of SLAM techniques with a

single robot has been acknowledged recently. However, the extension of such techniques to

multiple robots, in order to perform cooperative SLAM tasks in unknown and/or dynamic

environments is still a great challenge.

The problem is usually denoted as Multi-Robot Simultaneous Localization and Mapping

(MRSLAM). In MRS the accuracy by which robots can model their environment has a

deep impact on individual and team performance. A team of robots is expected to build

a consistent representation of the environment in a much quicker way than a single robot.

Even though MRS have the ability to improve e�ciency, precision and robustness in such

missions, there are several sources of complexity in MRSLAM, which requires additional
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e�ort, for example, to estimate the positions of di�erent robots and to merge partial maps

of each agent, which is something not necessary in the single robot case. In MRSLAM, the

dynamics and unpredictability of the environment as well as noisy sensor readings must be

addressed. In addition, as opposed to single robot SLAM, new challenges and di�culties are

involved, such as: coordination of robots, integration of information collected by di�erent

robots into a consistent map and dealing with limited communication. The problem has

been recently studied, as shown in chapter 2.

1.2 Multi-Robot Systems

There are several advantages of using MRS in exploration tasks as well as in other appli-

cations. In some cases, due to the need of combining multiple tasks and the dynamics of the

environment it is only viable to achieve the mission with a multiple distributed autonomous

robotic system. A fully-equipped autonomous mobile robot with sensors of di�erent types

may adequately ful�ll the assignment, but it may also prove to be costly and have diminutive

fault tolerance. MRS are characterized by distributed control, autonomy, greater fault toler-

ance, and communication. For example, without the help from other robots, a single robot

may be vulnerable to an hostile environment or enemies, such as in some military actions or

exploring an unstable building. In several other applications, an agent may get assistance

from other nearby agents during emergencies, such as failures or malfunctions [Portugal,

2009].

Multi-Robot Systems bene�t from having many robots in many places and carrying out

diverse tasks at the same time, i.e. space distribution. When the problem denotes more

complexity, sometimes it is useful to divide it in simpler subtasks and assign them to dif-

ferent robots of the team. The decomposition of complex problems linked with e�ective

cooperation is a major advantage of these systems. This feature can be used, for example, in

exploration of unknown environments. To increase reliability and robustness, in comparison

to a single autonomous mobile robot incorporated with all kind of sensors and abilities, a

team of multiple robots may be heterogeneous by having spread resources. For that reason,

each unit becomes simpler and, as a consequence, its cost may be reduced. Furthermore,

these systems enable redundancy and graceful degradation, remaining functional if some of

the agents fail. Another main motivation for adopting robots is the possibility of reducing

the risk to human operators in the face of dangerous exploration missions. MRS can ease

arduous, tiring and time-consuming tasks like surveillance, infrastructure security or mon-

itoring. In addition, one or more robots could replace humans in dangerous situations like

SaR operations, which require strong e�ort by rescuers in a very dangerous scenario that

poses many threats to human rescue teams. Replacing people with autonomous robots in

these environments provides inestimable bene�ts [Couceiro et al., 2013]. Also, as reported

before, these systems may o�er the possibility to relieve and/or assist human beings from

monotonous or repetitive tasks enabling them to be occupied in nobler tasks.
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1.3 The approach followed in this dissertation

In this work, distributed coordination between agents is assumed, where independent

agents divide the task of building a global map, providing higher tolerance to error and

failures, robustness, �exibility and scalability. This kind of coordination promotes task

parallelism, which contributes to larger success warranties. Centralized coordination archi-

tectures may lead to an expensive solution in terms of time and resources due to the large

communication �ow between local agents and the central agent. Highly complex tasks may

become impractical due to the size of the search space and may require continuous centralized

information about the robots' positioning.

E�ective coordination can be achieved by guiding the robots into di�erent, non-overlapping

areas of the environment. However, this is only possible if the robots know their relative

locations and share a common map or frame of reference. The MRSLAM algorithm's output

is the iterative construction of a map of the environment through data obtained by range

sensors. In this dissertation, we focus on metric maps represented by 2D occupancy grids.

In order to obtain the global map, a consistent model of the environment with data collected

from di�erent robots must be built through map aligning and merging techniques. If the

locations of the robots are known, map merging is a rather straightforward extension of sin-

gle robot mapping. However, if the robots do not know their relative locations, it becomes

much more di�cult, since it is not clear how and where the robots' partial maps should be

aligned. This dissertation is inspired by some aspects of the work present by [Howard, 2006].

Robots in the team may have to share large amounts of data, depending on the dimensions

of the environment. Despite its suitability in scenarios where a network infrastructure is

present, the strategy proposed in this work aims to also o�er a solution for Mobile Ad Hoc

Networks (MANETs). MANETs are wireless communication networks that do not rely on

�xed, pre-installed communication devices like base stations or prede�ned communication

infra-structures. It consists of mobile nodes which are characterized by their decentralized

organization and may use multi-hop communication to deliver messages to distant peers.

Therefore, MANETs are suitable for applications with MRS, such as Urban Search and

Rescue (USAR) scenarios, in the aftermath of natural or man-made disasters [Couceiro et al.,

2013] where a network infra-structure does not exist. Figure 1.2 illustrates how the work in

this dissertation �ts in the CHOPIN project. In the �gure we can see several distributed

teams of robots exploring di�erent areas, communicating with each other and reporting back

all the information collected to the command center who is only responsible for monitoring

the mission's progress.

1.4 Outline of the dissertation

The dissertation is organized in �ve chapters, each referring to distinct phases of the work.

After this introductory chapter, which has introduced the context and motivation, important
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Figure 1.2: Illustration of an example of a task with multiple distributed robots, similar to
the CHOPIN's project architecture.

advantages of multi-robot systems and important aspects related to the work in this project,

chapter 2 reviews thoroughly the most relevant state of the art related with cooperative

multi-robot systems, robotic mapping and associated problems. The key objective of this

study is to point out advantages and disadvantages of existing MRSLAM approaches to be

able to assist the choice of an approach for the developed algorithm.

Chapter 3 addresses the implemented MRSLAM System and several important steps

that were necessary for this system to become robot-independent, distributed, functional

and more importantly, the �rst MRSLAM solution out-of-the-box for ROS. In this chapter,

we discuss with more details the basic modules of the MRSLAM System presented.

In chapter 4, the results from simulation and real experiment are revealed. We also discuss

the advantages and the disadvantages of the MRSLAM approach and potential applications.

To �nish, the �nal chapter sums up the work, provides �nal conclusions and prospects

interesting future directions for this research. The bibliography is presented in a separate

references section.
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Chapter 2

Multi-Robot SLAM Overview

In this chapter, a study of important introductory issues related with MRSLAM is pre-

sented. Some preliminary concepts are established to set up the framework to the problems

being discussed at a later stage. The problem de�nition and related work on SLAM and

MRSLAM is herein addressed. In [Martins, 2013] a more extended state of the art is pre-

sented. This report is available on the project's CD release.

2.1 Classical SLAM approaches

Navigation is one of the most demanding and important skills for a mobile robot. The

navigation's success depends on the results of four stages: perception, localization, cognition

and motion control as stated in Figure 2.1. Moreover, these four stages consist on processing

useful information from sensors, determine its position on the environment, deciding how

to act to achieve its results and managing the actuator's outputs in order to achieve the

intended trajectory.

Figure 2.1: Representation of navigation process of a mobile robot.

During motion, the robot estimates its position based on the sensor's measurements,

which have noise, and on movement models that may have simpli�cations, e.g., not modeling

the non-linear phenomenon referring to wheels sliding. The ability and way of interacting

with the world depends on its perception. Sensors provide the robot with the ability to sense

the world, therefore their use is very import when designing an autonomous system. Sensors

used in Mobile Robotics can be divided in exteroceptive and proprioceptive sensors. Each

kind of sensors will be described in detail next.

Exteroceptive sensors are those which acquire information through energy from the en-

vironment. Two distinct types of energy are used: electromagnetic and acoustic. The
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exteroceptive sensors are grouped as active or passive, depending if they do or do not emit

energy on the environment where its sensing is applied. The active sensors emit energy on

the environment obtaining distance and relative speed measurements from the reaction to

the energy. The most advanced techniques on distance measurement are based on �ight

time, phase di�erence, frequency modulation or triangulation. In relative speed measure-

ments the Doppler e�ect is used. The main energy sensors used in Mobile Robotics are the

Light Detection And Rangings (LIDARs), sonar, radars and the Global Navigation Satellite

Systems (GNSSs).

The Proprioceptive sensors are sensors which measure the system's internal parameters.

This kind of sensors have the advantage of not depending on the environment to make its

measurements, which often makes them robust. Typical sensors of this kind used in Mobile

Robotics are odometers and inertial sensors.

SLAM is de�ned as the problem of building a model leading to a new map, or repetitively

improving an existing map, while at the same time localizing the robot within that map.

There are various techniques to compensate for errors, such as feature recognition, data

association or loop closure detection. Filtering is a very used method in engineering and

embedded systems. A good �ltering algorithm can reduce the noise from signals while

retaining the useful information. Some of the statistical techniques used in SLAM include

Kalman �lters, particle �lters and scan matching of range data.

The Kalman Filter (KF) is a recursive linear estimator which computes a minimal vari-

ance estimate for a state that evolves through time based on observations linearly related

to that state. It obtains satisfactory results assuming certain linear assumptions regarding

to the process noise and observations noise. The KF has many applications in aerospace

navigation problems, control and general Robotics. It is acknowledged as one of the best

estimators for linear systems with Gaussian noise. For non-linear systems the Kalman �lter

is not rigorously applicable, as the existence of linearity is important to set the Kalman

�lter as an optimal �lter. The Extended Kalman Filter (EKF) is intended to overcome that

di�culty using a linearization on the state estimate. The EKF is used to estimate the robot

position through data from odometry and the observation of spacial references. This �lter

is normally described based on determining the robot's position by itself, which assumes

the existence of the map a priori. When the map does not exist, as it happens in a SLAM

situation, the EKF matrixes are changed and a new solution comes with the EKF-SLAM

[Durrant-Whyte and Bailey, 2006].

The EKF-SLAM solution brings several bene�ts for the localization and navigation prob-

lem but it also has its limitations, such as computational complexity, data association and

non-linearities. Under ideal EKF-SLAM conditions, the robot's location estimative covari-

ance and the landmarks individual positions would converge to zero. However, the correction

stage computational complexity grows quadratically with the number of landmarks, which

is usually a problem in practical applications. Furthermore, the EKF-SLAM solution is

extremely sensitive to the incorrect references and observations association. Besides, the
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data association problem is very di�cult when references are re-observed by very distinct

observation points. Finally, the linearization of the non-linear model's movement and/or

the models observation can get results with inconsistent solutions. In [Smith et al., 1990]

the EKF is presented as a solution for SLAM situations, becoming over the years a classic

approach to solve that problem. Many projects were developed based on this approach, like

[Guivant and Nebot, 2001] and [Dissanayake et al., 2001].

Due to the EKF limitations on quadratic complexity and the sensitivity to data asso-

ciation �aws, the FastSLAM algorithm appeared as an alternative. This algorithm was

presented in [Montemerlo and Thrun, 2003] and [Montemerlo et al., 2003] being the �rst to

consider non-linear models and multi-modal distributions to solve SLAM situations, with

the advantage of having better robustness in data association.

The FastSLAM algorithm is based on a very important SLAM problem characteristic,

which is the conditional independence that exists between two di�erent landmark sets on

the map, given the robot's pose. In other words, if the robot's real trajectory is known, the

estimative of all the landmarks positions in the map can be done independently between each

other. This allows the implementation of a particle �lter version in the SLAM situation, the

Rao-Blackwellized Particle Filter (RBPF). RBPFs have been introduced as e�ective means

to solve the SLAM's problem [León et al., 2008], [Howard, 2006], [Carlone et al., 2010],

[Fenwick et al., 2002], [Zhang et al., 2009], where each particle carries an individual map of

the environment. The main problem of Rao-Blackwellized approaches is their computational

complexity, measured in terms of the number of particles required to build an accurate map.

Table 2.1 states the advantages and disadvantages of the presented �lters.

Table 2.1: Advantages and Disadvantages of the EKF-SLAM and RBPF-SLAM.

Filter
Advantages Disadvantages

Type

EKF�SLAM
• Linear update of the observations
using fractioned updates;

• It assumes a Gaussian error which
does not exist always;

• Through sub mapping it is possible
to obtain a solution in constant time;

• The non-linear models linearization
can cause divergences;

RBPF�SLAM

• Simultaneously keeps several hy-
potheses;

• The number of particles exponen-
tially increases with the state's size;

• With a large number of samples it
can e�ciently represent non-linear or
non-Gaussian models;
• It allows data association in paral-
lel;
• It estimates the robot's entire tra-
jectory online;
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2.2 Extending SLAM for multi-robot teams

Both the EKF and the RBPF were pro�led for MRSLAM situations. However, other

algorithms are also used in the literature. The number of projects which explore the coor-

dination in a team of robots to complete this kind of tasks has been growing at a fast rate.

This is explained by the following reasons [Rocha, 2006]:

• The total cost of a team of simple robots may be smaller than a single more complex

robot;

• The ability to trade information between robots allows a decrease of uncertainty during

the estimation process;

• Time distribution - several robots can do tasks, di�erent or not, at the same time;

• Space distribution - several robots can be in di�erent places at the same time;

• Problem decomposition - literal use of the expression "Divide and Conquer". Certain

problems are easily solved if divided into smaller problems and sorted between several

robots;

• Reliability and robustness towards �aws;

Consequently, in order to generalize SLAM for multiple cooperative robots, it is necessary

to answer the following set of questions:

• How many maps are used in the process?

• What is the SLAM algorithm used as the base for multi-robot generaliza-

tion?

• Is it assumed that the robots know their initial positions?

• Which methodology is used to align the maps?

Space and time distribution contribute to smaller sub-tasks and mission completion time

while using several robots. Those distributions are related to operations occurring simulta-

neously in space and time respectively. These can be requested by a task such as exploring

a vast area or detecting mobile targets, improving the performance on tasks intrinsically

distributed such as clearing a certain area or on large scale missions in the least possible

time. Although some tasks do not require a multi-robot solution, implementing a single

simultaneously complex and robust robot is not advised due to the relationship between

performance and reliability, as shown in Figure 2.2.

Multi-robot solutions o�er better �exibility during complexity and risk distribution man-

agement. If there is an overlap on each robot's individual capabilities, the system will be
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Figure 2.2: Ratio between Reliability and Complexity in robotic systems [Rocha, 2006].

more robust and in the case of a �aw, it will not necessarily mean the entire system's fail-

ure [Rocha, 2006]. Multi-robot systems are, for those reasons, adequate to a vast set of

applications, such as SaR tasks and environment mapping.

The main di�culty in this challenge consists in �nding an e�cient strategy in order to

combine the information gathered by the sensors from all the robots. The Multi-Robot

Simultaneous Localization and Mapping can be implemented in two di�erent ways: consid-

ering a single centralized global map updated by every operational robot, or each robot can

build a partial map of the environment which is combined with all the team's robots partial

maps [Andersson and Nygårds, 2009] in a distributed way.

Regarding the map combination process on the second option, it can be split in two

phases:

• The �rst stage is called Alignment, on which the coordinates transformation is de-

termined in order to combine a robot's pose and its respective landmarks on another

robot's coordinates referential.

• On the second stage, the common landmarks estimations need to be integrated in order

to generate a global map. This is called the map merging stage.

The answer to each of these questions and statements allows ranking di�erent MRSLAM

approaches. In a centralized approach, robots send their partial maps continuously to a

central server, which is responsible for the alignment and merging of those maps, then

sending the result back to each robot. This requires continuous monitoring on the robot's

positions and heavy communication to/from the central server. On the other hand, robots

may exchange their local maps when they meet in the environment (rendezvous) and align

them internally, this coordination approach is called distributed or decentralized. The global

map's representation built by each robot can vary, depending on the partners which they

have met and exchanged maps. In this type of coordination, mutual detection methods

are mandatory to relate the robots positions and assist local map alignment and merging.

Properties on both of these cases in MRSLAM missions are presented next.
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Table 2.2: Advantages and disadvantages of Centralized Systems and Distributed Systems.

System
Advantages Disadvantages

Type

C
en
tr
al
iz
ed

S
y
st
em

• intrinsically coordinated; • Expensive solutions in terms of
time and resources due to the large
communication �ow between local
agents and the central agent;

• It allows satisfactory, coherent and
comprehensive solutions;

• Highly complex tasks may become
impractical due to the size of the
search's space;

• Global information may lead to op-
timal results;

• For a large number of agents it be-
comes impractical to store all the en-
vironment's information in a single
server;
• Requires information about the
robots initial positioning;
• Unreliable;

D
ec
en
tr
al
iz
ed

S
y
st
em

• Independent agents divide the task
of building a global map;

• High uncertainty degree, which
complicates obtaining a system's co-
herent global behavior;

• Higher tolerance to errors and fail-
ures;

• Ine�cient system's coordination re-
sults in complex dynamics and cre-
ates non-linear variations and chaos
situations;

• Robustness, �exibility and scalabil-
ity;

• Mutual detection problem;

• Task parallelism;
• Larger success warranties;

Centralized architectures are characterized by having a single controller which is individ-

ually responsible to make decisions. It is assumed that the main process has a global model

of the �World� which allows it to theoretically produce optimal solutions for multi-agent

problems. Two di�erent centralized systems classes can be considered: fully centralized or

partially centralized [Rocha, 2006]. A centralized system is intrinsically coordinated and

can lead to satisfactory, coherent and comprehensive solutions but it has several limitations.

Depending on team size, it is very hard or even impractical to keep a global model of the

�World� in a single agent, based on local and potentially inconsistent views between local

agents. Besides, it is usually a costly solution in terms of resources and time, which makes

use of high load and persistent communication between the local agents and the central

agent, which can create severe communication jams. It also has an architecture which can

be unreliable because all the information is placed in the central agent which is not allowed

to fail as seen in Figure 2.3a.

Decentralized approaches are made of logic and physically independent agents' network.

Each agent is capable of �thinking� about plans, choosing their own actions and perceive the
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system's dynamics through interactions with other agents. Decentralized approaches can be

classi�ed by each agent's autonomy level as being Hierarchical or Distributed [Rocha, 2006].

The decentralized architectures possess several advantages when compared to centralized

architectures, such as failure tolerance, reliability warranty, robustness, parallelism and task

decomposition, �exibility and scalability. Distributed control based systems and distributed

data have superior performances in terms of resources, communication and robustness when

compared to centralized systems since there is no central controller. These can be very

�exible since the role of each agent can change based on the context, as seen in Figure 2.3b.

Table 2.2 presents the advantages and disadvantages of both architectures.

(a) Centralized system. (b) Decentralized system.

Figure 2.3: Di�erent types of architectures for Multi-Robot Systems.

2.3 Related Work on MRSLAM

In [Thrun and Liu, 2003], the MRSLAM situation is solved using Sparse Extended Infor-

mation Filter (SEIF) on which the maps and robots' poses are represented using Gaussian

Markov Random Fields. This decentralized approach focuses on updating a subgroup of all

the landmarks in order to gain computing e�ciency. SEIF creates sub-maps dynamically, for

this reason, the results produced are fairly precise. The algorithm avoids frequent problems

in sub-maps border areas where the estimation can become unstable. The algorithm was

successfully tested with eight robots using data collected in Victoria Park, Sydney.

According to [Burgard et al., 2005], target points are chosen for each robot in order

to explore di�erent areas of the map at the same time. In this centralized approach the

reach cost and usefulness of target point is computed. Robots' limited communication is

considered and an e�cient coordination technique is described. A signi�cant reduction on

task execution time was revealed, when compared to other exploring approaches that do not

explicitly coordinate the robots. Experimental tests show that the algorithm's performance

is scalable with limited communication. An interesting discussion of the challenges involved

in the works is conducted, by considering a situation where the robots initial position is

unknown.
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Another important work in this area is [Howard, 2006], in which the particle �lter pre-

sented by [Hähnel et al., 2003] is pro�led for MRSLAM. This work follows a new direction

on particle based methods, assuming that the robots initial positions are unknown. In this

decentralized approach, each robot's previously stored observation sequences are combined in

a single environment map when rendezvous occurs. Finally, a method is presented with the

purpose of integrating in the map, data recovered by the robots before the �rst encounter.

During the exploring and mapping task execution, it is assumed that robots exchange data

through a trusted wireless connection and are capable of detecting teammates based on in-

dividual particularities that allow the distinction between an object and a moving robot.

This algorithm was tested in a closed environment using four homogeneous robots. It is

important to emphasize that the work described above shares similarities with the work in

this dissertation.

[Carlone et al., 2010] produced a new decentralized method, based on RBPF (FastSLAM),

similar to [Howard, 2006]. It considers limited communication taking into account the dis-

tance between robots and the original positions of the robots are unknown. The method uses

cameras for robots' mutual detection and it only allows the partial maps alignment when

rendezvous happens. The presented solution showed e�ciency and robustness, successfully

building a map of a real world environment.

According to [Andersson and Nygårds, 2009], the problem of aligning and combining maps

created by several robots using observations made between them is addressed. The solution

uses Colaborative Smoothing and Mapping (C-SAM) to combine maps created by di�erent

robots in a distributed way. The main contribution of this work is the algorithm used to

solve the data association problem and eliminate fake observations when the map alignment

is made during rendezvous. This work shares similarities with [Zhou and Roumeliotis, 2006],

however the EKF is used to solve the localization problem.

In [Leung et al., 2012], a cooperative decentralized SLAM system is examined, on which

robots need to estimate the maps and the states of all the other robots assuming that the

communication between them is limited and the connection is dynamic. It is mathematically

proven that an estimation equivalent to a centralized system can be obtained by all robots

in the network in a decentralized way. Besides, the robot only needs to consider its own

information from the topological network in order to detect when the equivalent centralized

system is obtained. This works presents more than 250 minutes of experimental tasks using

a team of real robots. The estimations are compared with their real position for all the

robots poses and landmarks. Finally, the communication restriction e�ects on the algorithm's

performance are examined and it is showed that the memory used is limited due to the use of

Markov model's properties. The results also showed that the estimated centralized equivalent

system can always be recovered after a period of low connectivity on the network. In terms

of precision, the general results show that the pose and landmarks estimation are similar to

an estimated centralized system even with a small full connectivity time percentage.

The work by [Fox et al., 2006] present a distributed MRS for exploration and mapping
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Table 2.3: Features of each presented algorithm.

Algorithm Features

Bayesian approach
[Thrun and Liu, 2003]

• Uses a SEIF �lter, where the agents' maps and poses are represented
through Gaussian Markov random �elds;
• It allows an increase in computational e�ciency;
• The creation of dynamic sub-maps contributes to more precise results;
• It prevents sub-maps border areas estimation problems;
• Tested with success in a real environment using 8 robots;

Coordination with
communication
restrictions

[Burgard et al., 2005]

• Uses target points to explore di�erent areas in order to maximize
resources and task execution time;
• It considers the range cost associated to each target point as well as its
utility to the task conclusion;
• Limited communication between agents;
• The coordination technique revealed a signi�cant decrease in task
execution time;
• Scalable considering the limited communication;

RBPF approach
[Howard, 2006] and
[Carlone et al., 2010]

• Uses a generalized particle �lter for MRSLAM;
• Solution for known and unknown initial positions situations;
• Merge of robot' observations in a single map when rendezvous happens;
• Communication via Wireless network;
• Mutual detection capable robots;
• Representation of the environment using occupation grids;
• Tested with success in real environments using 4 homogeneous robots;
• Latency during the information switch between agents, however the �nal
results show e�ciency and robustness;

Markov model �lter
approach

[Leung et al., 2012]

• Uses a �lter with an incorporated Markov model;
• Robots with unknown initial position;
• Creation of shared map after robots rendezvous;
• Approach with better results regarding maps fusion;
• Communication via Wireless network;

C-SAM approach
[Andersson and Nygårds,

2009]

• C-SAM algorithm;
• Eliminates fake observations and solves data association problem during
the maps alignment;
• Solves known and unknown initial position situations;
• Smooth approach for fusion of maps created by di�erent robots;

Distributed approach
with shared maps
[Fox et al., 2006]

• Distributed approach;
• Solves known and unknown initial position situations;
• Environment representation using shared metric maps;
• Uses an exploration strategy in order to maximize exploration e�ciency;
• E�cient and robust system;
• Algorithm tested in Saphira simulation environment using three robots;

Topological maps
approach

[Chang et al., 2007]

• Environment representation using topological maps;
• Project tested in simulation and real environment using three Pioneer
3-DX robots;
• Main limitation is the need to optimize the topological maps information
o�ine;

missions. The system allows teams of robots to e�ciently explore the environment starting

from di�erent and unknown positions. In order to assure consistency when the data merge

process for the shared maps occurs, the robots actively check their relative positions. Using

shared maps, the robots coordinate their exploration strategy in order to maximize the
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e�ciency of the operation. The system was tested in the Saphira1 simulator, a robot control

system for application programmers, being quite e�cient and robust.

In [Chang et al., 2007], a decentralized MRSLAM algorithm which uses topological maps

is presented. Vertices contain local metric information and edges describe the relative posi-

tion of the adjacent local maps. In this work, the maps are naturally merged between robots

through the inclusion of an edge which establishes a connection between topological maps,

and the estimative of the relative poses from the robots is done by the optimization of that

edge. The authors show that by this process it is possible to unbind the SLAM situation

in shorter mapping and localization problem. The experimental tests were performed with

Pioneer 3-DX robots which validated the algorithm's performance. The main limitation was

the need to optimize the information from the topological maps o�ine, being that a critical

point in large environments. Table 2.3 states the main features of each presented algorithm.

2.4 Map Representation

Building cooperatively maps of unknown environments is one of the application �elds

of multi-robot systems. In this context, it is indeed very important for autonomous mobile

robots to learn and maintain models of the environment. The main problem inherent to

the map's representation model is to deal with the high dimensionality of the entities being

mapped [Thrun, 2002]. While for example, a very detailed 2D geometric map may require

a huge amount of memory, a description based on topological entities, such as corridors,

intersections, rooms and doors, may not require much more memory to model the same

environment, but obviously leads to a map with less detail. According to [Thrun, 1997],

the two major distinct paradigms produced for mapping indoor environments are grid-based

maps and topological maps.

Grid-based methods produce accurate metric maps, they are based in detailed represen-

tations, similarly to a blueprint of the environment. These maps require a precise location

for the robot which due to the lack of e�ciency on odometric systems makes it a complex

task. They are easy to build but may be hard to maintain, depending on the resolution and

dimension of the environment. Additionally, the size of the environment, the cells con�g-

uration and the memory capability makes the trajectory planning on these kinds of maps

a complex task. The most common example of a metric map is the occupation grids, a

map representation wherein each cell of the grid contains a probability value which indicates

whether the related location is free space or part of an obstacle [Elfes, 1990]. It is relatively

simple to implement and has an iterative nature. An example of a occupation grids map is

shown in Figure 2.4.

Topological maps, on the other hand, produce graph-like maps that can be used much

more e�ciently. They are simpler, permit e�cient planning and do not require accurate

determination of the robot's position. In these maps, vertices correspond to important places

1Saphira Technical Manual. Available at: http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/

Konolige-Salphira/saphira.pdf

http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/Konolige-Salphira/saphira.pdf
http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/Konolige-Salphira/saphira.pdf
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Figure 2.4: Example of a Metric Map - an occupancy grid map.

Figure 2.5: Example of a Topological Map [Portugal and Rocha, 2013].

or landmarks, which are connected by edges that represent the paths between them [Portugal

and Rocha, 2012]. However, the inaccuracy of the method makes it harder for recognition

and maintaining consistency in large scale environments, particularly if sensory information

is ambiguous, which may result in perceptual aliasing, i.e., di�culties in recognizing similar

places that look alike [Rocha, 2006]. Trajectory planning is much simpler since it is possible

to adapt search algorithm known for graphs. An example of a topological map is shown in

Figure 2.5 and a overview of characteristic of both types of maps is presented in Table 2.4.

Moreover, map merging consists on building a consistent model of an environment with

data collected from di�erent robots. If the initial locations of the robots are known, as well

as their current location, map merging is a rather straightforward extension of single robot

mapping. If robots do not know their relative locations it becomes much more di�cult,
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Figure 2.6: Example of a map merging task using topological maps.

Table 2.4: Characteristics of Grid-based maps and Topological Maps.

Type Characteristics

Grid-based maps

• Metric maps
• Easier to build
• Easier to represent and to maintain
• Higher computational cost
• Memory problems depending on the size of maps
• Recognition of spaces is non-ambiguous

Topological

• Graph-like maps
• E�cient to use
• Simpler than Grid-based maps
• Does not require exact position of robot
• Vertices correspond to landmarks
• Vertices connected by edges witch represent path between them
• Harder to recognize and maintain consistency in large scale environments
• Recognition of places often ambiguous

since it is not clear how and where the robots' partial maps should be aligned together. The

concept is illustrated in Figure 2.6.

2.5 Inter-Robot Communication

Another important matter is the communication among individual robots in a MRS. For

example, robots in a MRS may be quite simple and have limited communication capabili-

ties. Communication is crucial for group architectures, because it in�uences of inter-agent

interaction, the ability of agents to model successfully other agents' states, i.e., the agents'

awareness, and the agent's ability to share information and successfully build a world model �

a basis for reasoning and coherently acting towards a global system goal. Communication in

the literature is divided into two �elds: implicit communication and explicit communication.
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Implicit communication also called stigmergy is a method of communicating through the

environment, suitable in a situation where real time response is not required (for example,

communications through RFID tags in the environment) and is usually predominant in

social insects (for example, the pheromone in trails of ants). On the other hand, explicit

communication is a direct messaging technique that can be applied when the number of

mobile agents is low and when a fast reaction is expected [Rybski et al., 2004].

The communication between robots can augment their reasoning and perception and

increase the e�ciency of the mission. While most of the research on communication for MRS

has been devoted to design axes that are mostly related with the communication structure,

there are others important questions about communication that should be answered:

• What should be communicated?

• When to communicate?

The idea behind these questions is to avoid communicating redundant information so as to

use e�ciently communication resources. Therefore the proposed MRSLAM should support

distributed control and distributed data; enabling to share e�ciently sensory data in a team

of cooperative mobile robots, using a measure of information utility; taking advantage from

the cooperation among homogeneous robots to build a map in less time than a single robot or

than a team with less robots, especially after re�ning the architecture with the coordination

mechanism.

As communication is always limited, either in resources applied to perceive the world

or in bandwidth of a communication channel, using e�ciently those resources is crucial

to scale up cooperative architectures for teams of many robots, without limiting them to

simple reactive and loosely-cooperative systems, with very limited or no awareness. These

questions about limited communication, avoiding communicating redundant information and

using e�ciently the communication resources will be discussed in more detail in next chapter,

where the description of the approach followed is presented.

2.6 Summary

Now that the issues of localization, mapping, representations and limited communica-

tion were introduced, a MRSLAM strategy that implicitly incorporates these subjects was

implemented and is described in more detail in the next chapter. As for representation, the

metric approach used is occupancy grids maps, the coordination architecture is distributed,

robots communicate when they are close by and when the probability of delivering mes-

sages exchanged between them is high, by monitoring the quality of the communication link

between them. Further details on how the maps are acquired, when the robots exchange

maps, how alignment and merging of maps is conducted and how the robots mutually detect

teammates will be discussed in the next chapter.
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Chapter 3

Implementation of a Multi-Robot SLAM
System

This chapter provides a detailed description of each module of the MRSLAM System

in order to generate a coherent global map of an environment using a team of cooperative

robots.

The algorithm consists of diverse modules that are regarded as the groundwork of this

MRSLAM's approach presented on Table 3.1. Firstly, some aspects about the framework

used and how to support MRS are presented in section 3.1. Each robot runs a single robot

SLAM approach based on RBPF-SLAM, which is described in section 3.2. In order to

maintain an update list of teammates that are currently performing the cooperative task,

we leverage the information made available by the communication protocol Optimized Link

State Routing Protocol (OLSR). This will enable the discovery and detecting departures of

teammates described in section 3.3. Furthermore, we monitor the link quality between each

pair of robots so as to conduct a rendezvous and exchange maps between them (cf., section

3.4). When a robot receives a partial map from one of its teammates, map alignment and

merging is necessary to the fuse both contributions.

exchange_robot_1/	
  map	
  

exchange_robot_2/	
  map	
  

Figure 3.1: Overview of the MRSLAM approach.
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MRSLAM Module Brief Description

MRS in ROS Organizing ROS structures for Multi-Robot Systems
SLAM approach Using RBPF-SLAM as the individual mapping proce-

dure of each robot
Discovery and Departure Continuously updating the list of teammates in the mis-

sion
Rendezvous and Map exchange Monitoring the link quality

Alignment Finding the transformation to align partial maps
Mutual Detection Avoiding mapping other robots as obstacles
Map Merging Creating the global map by fusing partial contributions

Table 3.1: Modules list and brief description.

This is described in sections 3.5 and 3.7. Additionally, a method for mutual detection of

teammates is described in section 3.6. The diagram in Figure 3.1 shows the basic operation

of the algorithm running on each robot with the respective modules.

3.1 Multi-Robot Systems in ROS

In this work, Robot Operating System (ROS) is used as the development framework.

ROS is a framework for robot software development and is maintained by Willow Garage1.

It uses a publish/subscribe semantics architecture and a central master instance known as

the roscore. The roscore provides lookup information about messages and processes for each

system. Each node (i.e., application or process) reports its register information back to the

roscore. A node that subscribes to a topic requests a connection information through the

roscore and connects directly (via peer-to-peer) to a publisher node, thus receiving messages

from it (Figure 3.2). The interpretation and the execution of algorithms are controlled by

such ROS nodes, which can be programmed in C++, Python, Java or Lisp. Therefore,

custom nodes can be developed intuitively and on a high abstraction level. Moreover, ROS

provides a series of tools and existing algorithms that can be easily tested in robots [Quigley

et al., 2009].

In general, the multi-robot case over wireless communication in ROS presents a challenge

and most of the focus for solutions is to support multiple ROS masters, i.e., distributed

roscores. To that end, a ROS package called wi�_comm2 is used to publish and subscribe

topics to/from �foreign� masters. This is done by opening a connection between the ma-

chines with known Internet Protocol (IP) which share a common topic and relaying speci�c

information from a local topic over the given connection.

Another challenge to overcome when dealing with multiple robots are the fact that each

robot should have a di�erent namespace to avoid misinterpretation of data transferred be-

tween robots. To deal with this, when passing messages between robots with similar link

1Willow Garage's site: http://www.willowgarage.com/
2wi�_comm package: http://www.ros.org/wiki/wifi_comm

http://www.willowgarage.com/
http://www.ros.org/wiki/wifi_comm


23

Node B1Node A1

Node B2

Stack B 

Sensor 
Message

Node C1

Float 
Message

Range 
Message

Package 1

Stack A

Package 2

Node Bn

Package n

Int 
Message

PointCloud 
Message

Stack C

Package 

Package 

Type of messages 
exchanged in topics

Topics
Subscriber 

Node
Publisher 

Node

Figure 3.2: ROS architecture example diagram [Araújo, 2012].

names a frame_id remapping needs to be applied, both to transform data as well as to use

a common naming convention. The use of the tf_pre�x parameter is the recommended

SHARED TOPICS 

• INTERNAL TOPICS: 

robot_1/odom 

robot_1/scan 

robot_1/cmd_vel 

… 

robot 1 robot 2 

• INTERNAL TOPICS: 

robot_2/odom 

robot_2/scan 

robot_2/cmd_vel 

… 

• namespace: 
robot_1 

• namespace: 
robot_2 

/exchange_map 

/exchange_pose 

Figure 3.3: De�nition of an unique namespace for each robots for all its information's.

standard way of using multiple robots, when sharing reference frame transforms. Addition-

ally, the user may also need to remap topics of each individual robot, for example in the

case where the di�erent robots use the same node internally: the output of a Laser Range

Finder (LRF) sensor from robot 1 should not be published in the same topic as the output

of an LRF sensor of robot 2. Each robot should publish the scan message in a di�erent and

appropriate topic. De�ning a pre�x will allow each robot to use a unique namespace for

all its data and transforms, this pre�x will turn things like the odometry reference of the

robot (typically named �/odom�) into �r1/odom� and �r2/odom� automatically, depending

on which robot it is. This is shown in Figure 3.3.
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Figure 3.4: Hierarchical multi-robot control system (rxgraph).

ROS supports replication of functionality by allowing nodes and entire roslaunch cluster-

description �les to be pushed into a child namespace, thus ensuring that there can be no

name collisions. Essentially, this prepends a string (the namespace) to all nodes, topics,

and service names, without requiring any modi�cation to the code of the node or cluster.

The graph from Figure 3.4 is obtained running the rxgraph tool in ROS. Figure 3.4 shows

hierarchical multi-robot nodes, where in each robot uses a SLAM package with its own

namespace.

3.2 SLAM approach

In this work, we will give a �rst step towards developing a MRSLAM closed solution

for the CHOPIN R&D Project. At this point, there is no out-of-the-box solution available

in ROS for MRSLAM, which has been tested successfully and with �rm credits. Accom-

plishing that is the main goal of this disseration. To that end, in this preliminary stage of

the work, a SLAM algorithm was tested in each robot. From all the existing single-robot

SLAM algorithms on ROS, Gmapping 3 is the most stable and commonly-used package with

recognized results, being continuously supported and updated by the ROS community. For

this reason, it has been adopted in this work to run on each robot. This package provides

a laser-based SLAM as a ROS node called slam_gmapping. Using slam_gmapping, one can

create a 2-D occupancy grid map from the data collected from a LRF. The slam_gmapping

node transforms each incoming scan into the odometry frame of the robot. A map is then

built which can be viewed in ROS visualizator: rviz 4.

Gmapping is a laser-based RBPF-SLAM algorithm as described by [Grisetti et al., 2007].

These kinds of algorithms represent the posterior probability by a number of weighted par-

ticles wherein each particle is given an importance factor. On the other hand, this class

of algorithms usually require a high number of particles to present adequate results. This

3Gmapping ROS package. Available at: www.ros.org/wiki/gmapping
4ROS's visualizator: Rviz. Available at: www.ros.org/wiki/rviz

www.ros.org/wiki/gmapping
www.ros.org/wiki/rviz
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requirement increases the computational complexity which is not ideal. In addition, it has

to deal with the depletion problem associated with the particle �lters resampling process

that decreases the algorithm accuracy. This particle depletion problem consists in the �ltra-

tion and consequent elimination of a large number of particles from the sample set during

the resampling stage. This situation occurs because their importance weights become in-

signi�cant,i.e., the particle has a small probability of representing the correct hypothesis.

Therefore, an adaptive resampling technique has been developed by [Grisetti et al., 2007],

which minimizes the particle depletion problem. The authors also proposed a way to com-

pute an accurate distribution by taking into account not only robot's motion, but also its

most recent observations. In mobile robotics, most of the particle �lters proposed use the

odometry motion model. However, when a mobile robot is equipped with a LRF, which is

a very accurate sensor, the model of that sensor can be used, since it achieves extremely

peaked likelihood functions. Based on these factors, the work of [Grisetti et al., 2007] in-

tegrates the most recent sensor observation zt and computes a Gaussian approximation to

e�ciently obtain the next generation of particles. The Gaussian parameters are given by the

following equations:

µ
(i)
t =

1

η(i)
.

K∑
j=1

xj.p(zt|m(i)
t−1, xj).(xt|x

(i)
t−1, xt) (3.1)

Σ
(i)
t =

K∑
j=1

p(zt|m(i)
t−1, xj).p(xj|x

(i)
t−1, µt−1).(xj − µ(i)

t )(xj − µ(i)
t )T (3.2)

where K is the number of sampled points and µ is the normalized factor. Using this

distribution, the weight of the ith particle is:

w
(i)
t = w

(i)
t−1.µ

(i) (3.3)

Equation 3.4 computes the e�ective number of particles Neff , which is a trigger that

de�nes when the resampling step should be performed:

Neff =
1∑N

i=1(w
(i))2

(3.4)

The algorithm resamples each time Neff drops bellow a given threshold of N
2
, being

N the number of particles. This adaptive re-sampling decreases the uncertainty about the

robot's pose in the prediction step of the particle �lter. Due to the scan matching process,

the number of required particles decreases since the uncertainty is lower. The number of

particles used on most the experimental tests made with Gmapping was 30, which is an

extremely low value when compared with most common particle �lter approaches.

In Figure 3.5, a transform tree diagram with the coordinate frames associated with each

robot is presented, each frame has its own pre�x that informs the ROS system to which

robot it belongs. The diagram from Figure 3.5 also shows the average rate of messages of
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Figure 3.5: Transform tree (tf tree) diagram of each robot while acquiring partial maps.

each transform and the existing frames of two robots using the Stage simulator while they

are building a partial map of the environment.

3.3 Discovery and Departure of teammates

This section describes how robots become aware of teammates that arrive and leave the

network so as to cooperatively perform the mapping task. Firstly, we assume that each

robot knows its own ID and IP address. In the beginning, each robot loads a table with

prede�ned information of all its teammates, namely their IP and ID, as shown in the Table

3.2. Using the OLSR ad hoc protocol features, a list of active teammates is maintained

throughout the mission, by resorting to the OLSR deamon (OLSRD)5. The table with

prede�ned information of all teammates is presented next.

The OLSRD is used in this work to provide the IP addresses that are reachable to a

given machine, as well as a measure of the link quality between them. The link quality is

a metric that is computed, depending on the signal's strength and the rate of packet losses.

This information is made available on ROS, using wi�_comm.

In Figure 3.6, each robot keeps track of its teammates by monitoring the link quality

between them, instead of tracking the neighbors pose permanently. Therefore, robots may

leave the network ,e.g., to map remote areas, and return without a�ecting performance

or jeopardizing the cooperative mission. In fact, even though the OLSRD is meant for

MANETs, it also supports wi� infra-estruture networks and allows to report peer-to-peer

link quality.

In Figure 3.6, we can see a list of teammates available from the point of view of an agent

(robot_1 ) for the exploration task. One can also observe that robots are identi�ed by a

5OLSRD's page: http://www.olsr.org/

http://www.olsr.org/
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IP ID 

10.234.100.19 /robot_0 

10.234.100.187 /robot_1 

10.234.101.6 /robot_2 

10.234.100.184 /robot_3 

10.234.101.36 /robot_4 

10.234.101.57 /robot_5 

Table 3.2: Example of a table with IPs and IDs of possible teammates involved in the
mission.

(a) Three robots near each other.

(b) One robot close by and other going away (link quality: 55%).

Figure 3.6: Tracking of teammates and monitoring link quality.

pre�x associated to a �xed IP and a robot's state. This state can have three values, −1

indicating the robot where the node is running, 0 if the robot has low link quality and 1
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otherwise. Link quality gives an estimate of robot's proximity, since the value is in�uenced

not only by the distance between them, but also the physical obstacles around them. As seen

in Figure 3.6a, with this parameter we can infer if the robots are near or far from each other.

This metric enables the exchange of information between robots that are considered next

to each other. Thus, we prevent in a general way the information overload of the network

and continuous use of it by only exchanging maps in a pairwise fashion, between robots

that are tightly connected inside the network. This is done when the state value becomes

1 (using a threshold for the minimum link quality) and a timeout has passed since the last

exchanged of information. It may happen that the robots move away and the link quality

decreases, getting below the threshold set. When this happens, the robot is no longer under

the necessary conditions to exchange information and the list is then updated, as shown in

Figure 3.6b (robot 2 state).

This module is critical because it allows to connect a pre�x to each robot through the

respective IP and each agent understands how many teammates are cooperating with it.

Assigning a pre�x to each robotic agent also allows to share the necessary information by,

correctly handling the topic to create the publisher/subscriber. This information can be of

di�erent types, like occupation grids, poses, laser scans, point clouds or messages about the

link quality. Another important feature about this module is that it enables the organization

of all information unambiguously using the pre�xes. Figure 3.7 illustrates an example of

information organization in topics.

Figure 3.7: List of ROS topics organized by pre�x of each robot.

3.4 Dynamic topics, Rendezvous and Map Exchange

As this is a generic and distributed MRS approach wherein the number of robots is

variable, one cannot de�ne all communication channels (i.e., ROS topics) in the beginning

of the mission. Therefore, dynamic topics that are created along the mission should be

supported. In most cases, the user de�nes static topics for each node whenever the subscriber

or the publish are initialized. Consider the robot running a given node, called robot_home

and the neighbor robots running a node called robot_away. There will be a 1 to P relation,

where P represents the number of neighbors of robot_home. The program must be prepared

to access each neighbor robot information. If all robots taking part of the mission were
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known at the beginning, this would be straightforward by using P static topics. However,

this is not the case. After running the discovery module, robot_home is capable of retrieving

the number and IDs of its neighbors and, from that moment, it is capable of manipulating

topics in order to access each neighbor's data the program must be able to dynamically

create the topics whenever teammates are discovered, considering robots' pre�xes. In Figure

3.8 a simple example of the previous statement is shown, for the case of static and dynamic

topics with three robots.

 
robot_0 

 

 
robot_1 

 

 
robot_4 

 

/exchange_0_3 

? 

? 

(a) Static topics created in the beginning of the mis-
sion.

 
robot_0 

 

 
robot_1 

 

 
robot_4 

 

(b) Dynamic topics created after teammates discov-
ery.

Figure 3.8: An example of a mission with 3 robots: robot_0, robot_1 and robot_4. Creation
of static and dynamic topics.

Dynamic topics are created similarly to static topics. However, they are only de�ned

when robots generate the discovery table. Their naming through string manipulation is

fairly straightforward once the robots' IDs are known. A rendezvous is a meeting between

two or more agents at an appointed place and time, e.g., when two people meet at a fa-

miliar restaurant. The problem of rendezvous is ubiquitous in nature. MRS also have

an inherent need for the ability of inter-agent rendezvous. The ability to meet facilitates

localization, allows collaborative map exploration and has a plethora of other advantages

but, most importantly, enables a reliable communication as most existing hardware agents

are only capable of communication over short distances. Environmental geometry, wireless

transmission technology, power considerations and atmospheric conditions all contribute to

fairly short communication limits. A common constraint that is rarely satis�ed in the real

world for a successful communication is to maintain �line-of-sight� between agents. However,

MRS for the majority of real-life applications are highly rewarded only with some level of

communication, when compared with single agent systems or MRS that do not communi-

cate. In an unknown environment, however, the assumption of an absolute rendezvous spot

is not passive to be taken. A common strategy in MRSLAM is to consider that one agent

should wait to be found by other agents.

In the early stages of this project this problem did not deserve much attention because the

�rst arena was considerably small and therefore, the maps were smaller and the information
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(a) E�cient and relevant exchange of information between two robots considering a timeout and signal
quality.

(b) Transform tree diagram of two robots exchanging their maps
and poses into a common referential frame. Note that this is the
point of view of robot_0.

Figure 3.9: Example of e�cient exchange of information between robots and the respective
Transform tree diagram.

traveled smoothly through the network.

For larger arenas, this issue appeared and required prompt solution. The best solution
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was to constrain the information exchange between the robots, and to communicate all the

relevant information by respecting a timeout. Doing so, speci�c topics with temporary sub-

scribers were created only for the robots who needed to exchange information, thus limiting

the information to the necessary robots only. The �rst measure was to consider exchange

of information between robots based on their link quality. That way, a robot only sends

information to another robot when the link quality between them is higher than a threshold,

in this case, 80%. The second measure was to de�ne a timeout (30 seconds) in order to allow

the robots to explore new areas after the last exchange of maps. These measures were cre-

ated in order to improve the �exibility of the MRSLAM approach and to avoid overloading

the network. Both the threshold and the timeout are adjustable depending on the type of

mission. These measures, combined with an extremely limited communication, foster not

only an e�cient and robust control, but mostly a good shareable information management

without constantly �ooding the network. Figure 3.9 shows an e�cient information exchange

by considering these measures and a transform tree diagram of two robots exchanging their

maps into a common referential frame designated as /Global_map .

Every time the link quality is within acceptable values (in this case, 80%) and the robots

have not changed maps for more than the de�ned timeout (in this case, 25 seconds), maps

are exchanged again.

Despite the proposed measures, additional measures could be implemented to further

maximize communication e�ciency. The implementation of a method to retrieved which map

cells were updated would be a positive asset, as it would allow to send only the index as well as

the value of the updated cell instead of the entire map. This contribution, combined with the

herein considered measures, would signi�cantly optimize the information exchange process,

as well as to considerably minimize the network overload with unnecessary information.

3.5 Map Alignment

The problem of fusing two maps represented as occupancy grids is similar to the image

registration problem studied in computer vision [Brown, 1992]. Maps can be in fact, seen as

pictures, and map fusing can be seen as a particular case of image registration. Map fusion

is tackled in two di�erent stages:map alignment and map merging.

In the alignment stage, the objective is to �nd the transformation between the di�erent

reference systems of the local maps. In this situation, most approaches try to �nd the relative

position of robots. In this sense, the relative position of robots is supposed to be known,

since robots establish a meeting point in order to measure their relative positions using, for

example, cameras and color codes to identify teammates.

In many approaches, the transformation between maps is performed with the matching of

landmarks [Howard, 2006]. With relation to the previous strategies based on the rendezvous

case, it is clear that the alignment between maps is possible and immediate if robots succeed

in detecting each other. More di�cult would be the approach in which robots determinate
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whether any alignment exists or not, without the need of explicitly meeting just by sharing

the information of their maps [León et al., 2008]. The selected aligning method is crucial,

since it must be robust to sparse correspondent landmarks between the maps and o�er an

accurate solution to the map alignment problem. The robots start at di�erent positions and

begin their navigation tasks independently. That is to say, they have no knowledge about

other robots positions nor observations. Each local map is referred to a di�erent reference

system, which is located at the initial position of the robot. The 2D aligning method

computes the transformation between the two local maps, which consists of three alignment

parameters: translation in x and y and the rotation θ. In order to do so, the method �rst

obtains a list of correspondent landmarks between the maps. It is noticeable that the method

obtains only a �rst estimate of the aligning parameters. The set of correspondences and this

estimate are used as the input of a least squares minimization that eliminates outliers and

obtains the �nal solution that is expressed in the same global reference system. Fortunately,

ROS provides a package for alignment that does exactly that, called mapstitch6.

After studying and testing the package, it was necessary to implement minor changes in

some functions to adapt to the MRSLAM problem. These small changes have to do with

veri�cation of the rotation matrices produced by the alignment function. A rotation matrix

is a linear transformation that when multiplied by any vector causes a rotation of that vector

along an axis, maintaining its length. The properties of these matrices are:

• M ∈ RN×N is a rotation matrix if and only if M is orthogonal. M is orthonormal

if the scalar product between two vectors column is zero, and the scalar product with

itself is a unit vector.

• M is anti-symmetric. Therefore, the inverse of the rotation matrix is equal to its

transpose, allowing the rotation of a vector in a clockwise direction: M−1 =M>

• The rotation matrix determinant is equal to 1: detM = 1

Some of these properties were not ful�lled in the original package, as the matrix multipli-

cation (i.e., translation to the origin, rotation around Z axis of θ degrees and translation back

to the point where it was) would cause one of the maps to translate to in�nite. Therefore, we

have used the Speeded-Up Robust Features (SURF) detector available in OpenCV7, which

is a computer vision framework that is included in ROS. SURF was presented in [Bay et al.,

2006]. It is based on the similar properties of Scale-invariant feature transforms because of

its remarkably good performance as compared to other detectors and descriptors.

For the process of �nding frame-to-frame correspondences, called as matching procedure,

we use brute-force matcher which looks for each descriptor in the �rst set and the closest

descriptor in the second and attempts each one. To reject wrong correspondences, a cross-

match technique is used. The idea is to match train descriptors with the query set and

6mapstitch ROS package. Available at: http://ros.org/wiki/mapstitch
7OpenCV's page: http://opencv.org/

http://ros.org/wiki/mapstitch
http://opencv.org/
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Figure 3.10: Example of Map stitching.

vice versa. Only common matches for these two matches are returned. Such techniques

usually produce satisfactory results with minimal number of outliers, when there are enough

matches.

Summing up, this module will generate transforms corresponding to alignment of the

maps, given the features detected by the robots when they are mapping the environment.

An example of this is illustrated in Figure 3.10.

3.6 Mutual Detection Model

To bene�t from the multi-robot mapping approach, robots must be able to locate them-

selves relative to one another in a fast, accurate and reliable manner. This means that

robots working for a common goal must possess the ability to sense each other. To achieve

this ability, we assume that we have a team of homogeneous robots and that the physical

dimensions of robots are known. In order to avoid mapping incorrectly the environment, due

to obstructions caused by teammates, a process that �lters the robot laser scan has been

developed. This process, denoted as mutual detection, bene�ts from the received transform

that results from the map alignment between two robots and relate the robots' maps, as well

as their respective poses, in a common referential. That enables the use of a boundary box

that will de�ne a region whose center is located in the Cartesian coordinates of the detected

teammate's pose. Each robot shape is approximated by a circle of radius that is adjustable

according to the robot's model used on the mission. The de�nition of this technique is fun-

damental for the �ltering process, since one can check if the robot's laser scans intersect the

de�ned region. In these situations, the robot is detecting a second robot and the generated
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map will not match the real scenario. Hence, a republication of the laser message needs to

be carried out, in which all the scans that intersect that region are discarded. The result of

that �ltering process is a map of the environment without robot footprints.

Figure 3.11: Illustrative �gure of the module's operation.

A new node named ��lter� was created to republish the laser scan messages and the

�ltered messages by the mutual detection module at a 10Hz rate. This laser message pub-

lishing node works in a fairly simple fashion. When the laser scan of a robot is detecting

a teammate, a �ag is activated and the mutual detection module will start �ltering scans.

That node, which initially only published original messages from the robot's laser to Gmap-

ping will now publish �ltered laser messages by the proposed mutual detection module. The

node will �lter messages while the robot is detecting a teammate. To switch back to the

normal laser messages at the end of the mutual detection module, the �ag is activated once

again and the system informs the publishing node to switch back.

Figure 3.11 represents the exploration of an area using a team of two robots easily

distinguished by their colors. We can observe on the right side the information relative

to the green robot. The red arrow that represents the pose of the red robot was only

introduced to promote an easier visualization of the map created by the green robot. The

green and white dots corresponds to the �ltered laser scan and the untreated data laser scan,

respectively. The laser readings that detect the red robot are discarded, thus allowing the

creation of the map without unwanted detection's from other teammates.

3.7 Map Merging

Map merging is a challenging task, especially for real-time multi-robot SaR operations

in disaster environments. Combining the partial maps of all robots into a global map allows

the robot team to avoid a repeated and undesired exploration of the regions by di�erent

robots. In this dissertation, we introduce a novel map merging methodology for occupancy
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grid maps to obtain a global and consistent environment map for multi-robot exploration

operations in SaR environments. A map fusion methodology that can be used in any generic

environment is proposed. The presented algorithm is capable of successfully merging the

partial occupancy grid map of robots with a limited degree of overlapping regions between

their maps.

We assume that an occupancy grid map M is a matrix with r rows and c columns. Each

cellM(i, j) may contain three di�erent values, indicating whether the cell is free, occupied, or

if its status is unknown. Maps produced by contemporary SLAM algorithms usually encode

occupancy beliefs for each cell, and can therefore be easily converted into the representation

we require. The spatial location of cell M(i, j) is indicated as (xi,j, yi,j). Given two maps,

M1 and M2, and a rigid transformation T , as in (3.5), between the reference frames of the

robots calculated in the alignment phase in section 3.5, the goal is to generate a merged map

overlapping each partial map.

The second robot's environment map is transformed using (3.6), such that it aligns its

own map with the �rst robot's map.

T =

Cos(θ) −Sin(θ) ∆x

Sin(θ) Cos(θ) ∆y

0 0 1

 (3.5)

M
′

2 =

[
1 0 0

0 1 0

]
.T (∆x,∆y, θ).M2 (3.6)

The transformed occupancy grid map of the second robot M
′
2, can then be fused with

the �rst robot's map. Given two maps M1 and M2, there can be multiple transformations

overlapping them. Therefore, it is necessary to establish a metric to decide which one is

better, and to reject possible false positives.

In this subsection, we present the approach to manipulate occupancy grids and merge

them into a global one. In order to achieve this, a stable package available in ROS, called

occupancy_grid_utils8 was employed. This package contains a few utilities for dealing with

occupancy grids, represented as nav msgs::OccupancyGrid objects. These include coordinate

conversions, shortest paths, ray tracing, and union of multiple unaligned grids, which is

fundamental for what we intend to achieve: a global map built from two incomplete robot

maps.

When the alignment function returns a possible transform between the maps to a com-

mon referential, that transform may be considered valid or rejected if it does not meet the

alignment requirements. The requirements correspond to three parameters that represent

the di�erences between the rotation and the translation, in X and Y, of the last two trans-

formations of the maps of the same robots. A given transform is considered valid if those

di�erences are inferior to a certain error parameter.

8occupancy_grid_utils ROS package. Available at: http://www.ros.org/wiki/occupancy_grid_utils

http://www.ros.org/wiki/occupancy_grid_utils
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(a) Partial Map from Robot #1 (b) Partial Map from Robot #2

(c) Global Map

Figure 3.12: Simple example of the map merging process.

From the moment a valid transform exists, the conditions are set for map merging. To

that end, the ROS package described in the beginning of the subsection is used to generate

a merged map from the two occupancy grids and the transformation between them. Figure

3.12 presents an example of the map merging process.

3.8 Summary

In this chapter, the MRSLAM Algorithm and all its integrating modules have been fully

explained. In the next chapter, simulation and real world experiments are described and

discussed. The simulation tests were conducted using teams of two and three homogeneous

robots and the experimental test were conducted using teams of two physical mobile robots.



Chapter 4

Results and Discussion

This chapter depicts and discusses the experimental results of the tests considered in this

work. All tests were ful�lled using a distributed approach, wherein each robot is responsible

for aligning and merging the maps in order to obtain the environment's global map. To

represent the environment, occupancy grids maps were considered. In the next section,

multi-robot simulation experiments are presented. Afterwards, we show experimental results

retrieved in a real world scenario.

4.1 Simulation results

Simulation results using the Stage multi-robot simulator1 in several arenas are presented

in this section. In Figure 4.1, the ground truth of the test arena is presented. This arena is

a small enclosed environment (around 4x4 m) and with only a few number of obstacles. It is

located at the Mobile Robotics Laboratory in the Institute of Systems and Robotics (ISR)

at the University of Coimbra. These preliminary results were taken in an initial phase of

this work and only the alignment and map merging modules were functional at the time.

Figure 4.1: Test arena #1 used in Stage simulations with two robots at their starting point.

In order to distinguish the robots, a di�erent color was assigned to each one: robot_0

1Stage ROS package. Available at: http://www.ros.org/wiki/stage

http://www.ros.org/wiki/stage
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(a) Partial map built by
robot_0.

(b) Partial map built by robot_1.

(c) Global map built by merging the partial
maps from each robot at their starting point.

(d) Final global map at the end of
the simulation. In this experiment,
mutual detection was not consid-
ered.

Figure 4.2: Simulation results in arena #1 with two robots on stage.

is green, while robot_1 is red. To enrich the experiments and easily interpret the results,

the laser beams of each robot are presented. After merging the partial maps, it is possible

to observe a global map with a de�nable resolution. The initial pose (x, y, θ) from robot_0

(green) in the stage world is (1.0, 1.0, 90o) and the initial pose from robot_1 (red) is (2.0,

1.0, 90o), as shown in Figure 4.1. The goal of the simulation is to test the map merging

procedure and demonstrate problems that may arise if mutual detection is not dealt with,

explicitly. To that end, in this test, robots should build the test arena using the two robots

partial maps. The partial maps have a resolution of 0.02 m/pixel and a height/width of

1248 cells each. In this preliminary simulation experiment, robots are teleoperated and a

centralized server receives their partial maps continuously at a rate of 0.2Hz. Therefore, the

global map is merged every 5 seconds and publishes it to an adequate topic. Figures 4.2a

and 4.2b represent each robot's partial map when they start their task. Figure 4.2c presents

an instance of the global map, after merging the partial maps in Figure 4.2a and 4.2b. The

global map has a resolution of 0.01 m/pixel and height/width of 2496 cells.

Figure 4.2d presents the �nal global map, after robot_0 navigates through the test arena,

while robot_1 stays in the same initial place. It is noteworthy that mutual detection is still

not implemented, therefore, robot_1 is still detected as an obstacle by robot_0, as illustrated
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by the red box in Figure 4.2d.

The results obtained in Figure 4.2 show that each robot's partial map was well aligned

and merged. This validates the map alignment and merging processes since the global map

obtained resembles the map in stage's virtual world.

The next results were obtained in a more mature phase of the project by considering the

implementation of all modules described in chapter 3.

Figure 4.3 illustrates a snapshot of the stage window. This arena is a closed environment

of large dimensions (around 13x9 m) with several obstacles. It is located at a classroom

in the Department of Electrical Engineering and Computers (DEEC) at the University of

Coimbra.

Figure 4.3: Test arena #2 used in Stage simulations with two robots at their starting point.

In order to distinguish the robots, a di�erent color was assigned to each one: robot_0 is

red, while robot_1 is blue as seen in Figure 4.3. The goal of the simulation is to build the

entire test arena using the two robot's partial maps. The partial maps have a resolution of

0.04 m/pixel and a height/width of 544 cells each. In the simulation experiments, robots are

teleoperated2 using the keyboard and each robot sends its own partial maps to its teammates

with a 30 seconds timeout, since the metric of link quality is not available in simulations.

Each robot merges the map and publishes it to an adequate internal topic. Figures 4.4a

and 4.4b represent each robot's partial map when they �rst meet. Figure 4.4 presents an

instance of the global map, after merging the partial maps in Figure 4.4a and 4.4b. This

map has a resolution of 0.01 m/pixel and height/width of 3329x2177 cells.

The results obtained show that each robot's partial map was well aligned and merged. To

further evaluate the proposed strategies, Additional simulation experiments using the same

arena with three robots on Stage were considered.

The robot with pre�x robot_2 was added to the same arena and identi�ed with the green

color as seen in Figure 4.5. The partial maps have the same resolution as in the previous

2teleoperation ROS package. Available at: http://www.ros.org/wiki/teleop_twist_keyboard

http://www.ros.org/wiki/teleop_twist_keyboard
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(a) Partial map built by robot_0. (b) Partial map built by robot_1.

(c) Global map built by merging the partial maps
from each robot.

Figure 4.4: Simulation results with two robots on stage.

Figure 4.5: Test arena #2 used in Stage simulations with three robots at their starting point.

experiment. The robots send their partial maps to each other every 30 seconds, merging the

maps into a global map and publishing it to an adequate internal topic. Figures 4.6a, 4.6b

and 4.6c represent each robot's partial map before map exchange. When robot_0 exchanges
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(a) Partial map built by robot_0. (b) Partial map built by robot_1.

(c) Partial map built by robot_2.

Figure 4.6: Partial maps from each robot using Gmapping on simulations.

Figure 4.7: Result of merging the maps from robot_0 and robot_1.

its map with robot_1, the partial maps of the robots are updated based on the result of the

map fusion, as shown in Figure 4.7. Then, when robot_1 exchanges maps with robot_2,

the merging of the partial maps originates a global map with the contribution of all robots.

This map has a resolution of 0.01 m/pixel and height/width of 3329*2177 cells. Figure 4.8

presents an instance of the global map, after merging the partial maps in Figure 4.7 and

4.6c.

Figure 4.8a presents the �nal global map, after the robots navigate through the test

arena. The results obtained in �gure 4.8b show that each robot's partial map was correctly

aligned and merged and it can be concluded that the test was successful, since the global

map obtained resembles the map in Stage's virtual world. It is also possible to see that,

for such a large environment,Gmapping performance was outstanding. The reason for such
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(a) Global map built by merging the contribution
from each robot.

(b) Global map with the poses of each robot (rviz ).

Figure 4.8: Simulation results with three robots on stage.

performance is mainly related with existence of several landmarks in the arena. The following

section will discuss similar experiments carried out in the real world.

4.2 Real-World Results

The promising results from the simulation experiments, naturally suggested transferring

our experimental setup into real robots. This section presents the results obtained from such

experiments, in a real world testing environment. The proposed methods are tested with a

team of two Pioneers 3-DX3, one of which is presented in Figure 4.9.

Figure 4.9: One of the robots used in the experiments.

The Pioneer 3-DX is a small lightweight di�erential wheeled robot ideal for indoor labo-

ratory or classroom use. The robot is equipped with front sonar array and a Laser Hokuyo-

URG-04lx-UG014. This kind of research robot is one of the world's most popular mobile

robots for education and research because of its versatility, reliability and durability. Pio-

neers are pre-assembled, customized and upgradeable. The robots are placed in the arena

3Pioneer 3-DX page. Available at: http://mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
4Hokuyo page. Available at: http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html

http://mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
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of approximately 120 square meters (Figure 4.3) whose virtual model was used in the pre-

vious two simulation experiments. Some photos of such space, located at the Department

of Electrical and Computer Engineering of the University of Coimbra, can be seen in Figure

4.10.

(a) Picture #1 (b) Picture #2

(c) Picture #3 (d) Picture #4

Figure 4.10: Photos of the real world arena used in the experimental results.

The goal of this experiment, similarly to the simulation, is to obtain a global map of the

arena from two partial maps retrieved by the team of two Pioneers 3-DX. Note, however,

that in this case, the laser range scans are subject to inherent noise of real world experiments.

The partial maps have a resolution of 0.04 m/pixel and height/width of 544 cells each.

This experiment follows the previously described procedure, that is, the robots are tele-

operated using the wii remote5 and each sends its own map to the other, when the conditions

are met, in order to generate a global representation. At a given point of a trial, robots trade

partial maps, as exempli�ed in Figures 4.11a and 4.11b. Communication occurs when robots

acknowledge each other. Upon exchanging information, a merging phase occurs generating

the global map, as shown in Figure 4.11c. The global map has a resolution of 0.04 m/pixel

and height/width of 572 cells each. The map from robot_0 is acquired normally (see Figure

4.11a). As for the map acquired from robot_1, it is not, at least in a latter stage. We can

observe that, as the robot explores, its self-location deteriorates. This is due to odometry

error accumulation, a common problem in SLAM and MRSLAM, and the problem of dis-

tinguishing places that the robot has visited before, known by loop closure. Noise a�ecting

the laser reading and/or the odometer, prevent the robot from connecting the map. This

occurrence is naturally re�ected in the �nal merged map, visible in Figure 4.11c.

5Wiimote ROS package. Available at: http://wiki.ros.org/wiimote

http://wiki.ros.org/wiimote
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(a) Partial map built by robot_0. (b) Partial map built by robot_1.

(c) Global map built by merging the partial maps
from each robot.

Figure 4.11: Real world test results with a team of two robots.

Apart from these issues a�ecting the robot's perception of the environment, experimental

set-up complexity and problems also increase due to external factors: network interruptions;

limited autonomy of the batteries supporting the logical unit controlling the robot and the

robot itself; the task of teleoperating multiple robots simultaneously without extra human

assistance; and other logistic related issues. These factors have decisively limited the real-

ization of multiple experiments, preventing a more in depth and extended statistical result

analysis, such as measuring the error on pose for mutual detection.

Some experiments have been successfully performed without any relevant technical issues,

critically jeopardizing data acquisition. An example of those experiments follows. The robots

are again teeoperated using the wii remote, and share information every 30 seconds, when

link quality conditions are met, time at which merging occurs so to generate the global map.

In this case, locally built, partial maps are represented by accurate data, as illustrated in

Figures 4.12a and 4.12b. This local reconstruction accuracy propagates to the global map

in Figure 4.12c, which has the same resolution as before, where height/width also have the

same number of cells. Comparing results from Figures 4.11 and 4.12, allow concluding that,

once real experiment complexity, hardware problems and issues like loop closure are dealt

with, the proposed methods can present highly accurate maps and be e�ectively applied
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(a) Partial map built by robot_0. (b) Partial map built by robot_1.

(c) Global map built by merging the partial
maps from each robot.

Figure 4.12: Real world test results with a team of two robots.

in map alignment and fusion for real applications. It is also noteworthy that a team of

multiple robots exploring such scenario, is able to cooperatively map the environment in a

much quicker way than a single robot, in the same conditions (robot speed, SLAM technique,

etc.). As expected, technical issues have impaired our algorithm's ability when compared to

�awless simulation performances. Nonetheless, these problems are recurrent in SLAM and

MRSLAM approaches, for which we consider results to be extremely positive.

4.3 Summary

In this chapter, simulation and real world results to test the MRSLAM approach were

presented and discussed. In the subsequent chapter, an overview of the dissertation is done.

The algorithm's bene�ts and weaknesses are debated and �nally this dissertation ends with

conclusions and future work.
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Chapter 5

Conclusion

Multi-Robot Simultaneous Localization and Mapping still has great potential for research

and the work presented in this dissertation is one way of achieving the ultimate goal of

obtaining a global map from the contributions of each robotic agent's map engaged in the

task. This was done using a completely distributed approach, where each pair of robots

exchange maps according to their geometric distance, communication quality and time since

the last exchange of maps in order to merge locally their individual contributions.

In this last chapter, a global and self-critical overview of the proposed approach takes

place in order to sum up the work. Also, �nal conclusions and possible related future work

directions are discussed.

5.1 MRSLAM Approach overview

In recent years, several authors proposed distinct solutions for the SLAM problem. How-

ever, extensions for the multi-robot case are still lacking. MRSLAM is characterized by

rigid communication limitations and the robots initial position being often known. In this

dissertation, a distributed MRSLAM approach was presented, where the initial relative po-

sition are unknown and a RBPF-SLAM-based algorithm was adopted. A description of the

implementation of alignment of occupancy grids, robot mutual detection and map merging

in ROS was given, so as to create a global map from the respective partial maps supplied by

each robot using communication based on a MANET to share relevant data.

Beyond the limited communication between the robotic agents, other challenges included

the limited resources available such as data storage memory and computational e�ort. To

clearly identify each robot and the data recovered by each one in ROS, a pre�x was used to

separate the namespaces. Local map alignment and merging depends on meetings between

teammates in the environment when conditions to exchange maps are guaranteed to exist.

During rendezvous, the robots exchange their maps and �lter the detected teammate obser-

vations in the merged map. Each robot's partial map will be updated at rendezvous and, as

time moves on, more information is gathered, thus we expect that several common cells will

exist between partial maps, easening the alignment and map fusion. The alignment/fusion

process optimization is based on the communication between robots: maps are exchanged

when robots are close to each other, taking in account the link quality. In the context of the
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CHOPIN project, the central command of operations (CCO) will receive global maps from

the robot which is closer to it, in order to reduce communication burden.

The only assumptions of the algorithm are know IPs and robot IDs as well as teams of

homogeneous robots with known physical dimension. Results in both simulation and real

world experiments show that the maps obtained present high quality and are able to provide

�ne details of the environment, meaning that the methods adopted bring good perspectives

in the future. The results show that it is possible to use a team of robots to explore and

navigate in unknown environments.

There are, however, some limitations that were identi�ed, such as maintaining consistency

when robots start from very distant positions and also when there is a rendezvous with more

than two robots. Since alignment is made in peer-to-peer fashion it becomes hard to deal

with mutual detection for robots that are not included in the alignment task, which may

cause a possible detection of these robots on the global map. It would be necessary to solve

the Alignment problem for P robots instead of doing it in pairs, to cover all possible cases

wrt the processing data in the mutual detection's module.

5.2 Future Work

Some issues are still left open and correspond to future guidelines that can be followed

to improve current work. Concerning the context in which the work is inserted (project

CHOPIN), the SLAM technique should be extended to deal with environments �lled with

smoke. Optimization of map exchanges using a compression method would also be important,

to reduce the load of communication and time needed for information exchange between

robots. Before data compression, would be important to optimize the information exchange,

at the time of map merging (section 3.7). This optimization should signal the robot about

which cells in the occupation grid map have new information since the last exchange, with

respect to all robots in the team.

Another interesting feature would be to implement a module to align maps that did not

depend on functions from OpenCV, in order to make the process faster, lighter and more

importantly, compatible for P robots instead of being limited to pairs of robots. Finally, in

terms of navigation and coordination of robots, it would be interesting to have an autonomous

exploration technique for robots to explore the environment without depending on human

teleoperation.
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