

Nuno Filipe Loureiro Ferreira

MRsensing - Environmental Monitoring and Context Recognition with Cooperative
Mobile Robots in Catastrophic Incidents

 Dissertação

 4 de Setembro/2013

MRsensing - Environmental
Monitoring and Context Recognition
with Cooperative Mobile Robots in

Catastrophic Incidents

Supervisor:

Prof. Doutor Rui P. Rocha

Co-Supervisor:

Eng. Micael Couceiro

Jury:

Prof. Doutor Rui Pedro Duarte Cortesão

Prof. Doutor Pedro Manuel Gens Azevedo de Matos Faia

Prof. Doutor Rui Paulo Pinto da Rocha

Project report written for the dissertation subject, included in the

Electrical and Computer Engineering Course, submitted in partial fulfillment

for the degree of Master of Science in Electrical and Computer Engineering.

Coimbra , September 2013

Agradecimentos

Agradeço antes de tudo aos meus Pais, pelo apoio incondicional neste percurso por vezes

bastante difícil, sem eles este objetivo da minha vida nunca teria sido alcançado. Obrigado

pelo homem que me fizeram ser hoje. Em seguida agradeço às minhas irmãs Cristina e

Daniela, pois elas são também a base da minha educação e um exemplo de força que

sempre foi instruído a nós pelos nossos Pais, humildade e persistência definem o nosso

nome. Ao Lourenço meu sobrinho, que tantos sorrisos me traz nos momentos difíceis e ao

meu cunhado Francisco o meu obrigado também.

Demonstro também a minha gratidão ao Professor Doutor Rui Rocha, pela insistência na

perfeição do meu trabalho. Por toda a força, apoio e ensinamentos tenho de agradecer

também ao meu Co-Orientador Micael Couceiro. Deixo também o meu obrigado ao colega

de trabalho e amigo André Araújo e ao David Portugal pela ajuda importante no trabalho

desenvolvido.

À minha namorada e amiga Joana um obrigada pela simpatia, dedicação, apoio, carinho

e encorajamento neste percurso.

Obrigado também especial ao Carlos Ramos, Fernando, Pedro, Bruno, André, Gonçalo

Ferreira, Sérgio, Gonçalo, João, Tiago, Fertuzinhos, Carlos, Nuno Ramos, Miguel Sousa, e

outros amigos pelo companheirismo, apoio e momentos de alegria que me proporcionaram.

Pela lealdade e carinho um obrigado aos meus amigos de quatro patas Boby ,Juny , Pony

e Nina.

iv

Abstract

Multi-sensor information fusion theory concerns the environmental perception activities

to combine data from multiple sensory resources. Humans, as any other animals, gather

information from the environment around them using different biological sensors. Com-

bining them allows structuring the decisions and actions when interacting with the en-

vironment. Under disaster conditions, effective mult-robot information sensor fusion can

yield a better situation awareness to support the collective decision-making. Mobile robots

can gather information from the environment by combining data from different sensors

as a way to organize decisions and augment human perception. The is especially useful

to retrieve contextual environmental information in catastrophic incidents where human

perception may be limited (e.g., lack of visibility). To that end, this work proposes a

specific configuration of sensors assembled in a mobile robot, which can be used as a

proof of concept to measure important environmental variables in an urban search and

rescue (USAR) mission, such as toxic gas density, temperature gradient and smoke parti-

cles density. This data is processed through a support vector machine classifier with the

purpose of detecting relevant contexts in the course of the mission. The outcome provided

by the experiments conducted with TraxBot and Pioneer-3DX robots under the Robot

Operating System framework opens the door for new multi-robot applications on USAR

scenarios. This work was developed within the CHOPIN research project1 which aims at

exploiting the cooperation between human and robotic teams in catastrophic accidents.

Key Words: Sensor Fusion, Information Fusion, Multi-Robot System, Optimization,

Classification, Support Vector Machine, Urban Search and Rescue, Embedded System.

1http://chopin.isr.uc.pt/

Resumo

O tema da fusão sensorial abrange a perceção ambiental para combinar dados de vários re-

cursos naturais. Os seres humanos, como todos os outros animais, recolhem informações

do seu redor, utilizando diferentes sensores biológicos. Combinando-se informação dos

diferentes sensores é possível estruturar decisões e ações ao interagir com o meio ambi-

ente. Sob condições de desastres, a fusão sensorial de informação eficaz proveniente de

múltiplos robôs pode levar a um melhor reconhecimento da situação para a tomada de

decisão coletiva. Os robôs móveis podem extrair informações do ambiente através da com-

binação de dados de diferentes sensores, como forma de organizar as decisões e aumentar

a perceção humana. Isto é especialmente útil para obter informações de contexto ambien-

tais em cenários de catástrofe, onde a perceção humana pode ser limitada (por exemplo,

a falta de visibilidade). Para este fim, este trabalho propõe uma configuração especí-

fica de sensores aplicados num robô móvel, que pode ser usado como prova de conceito

para medir variáveis ambientais importantes em missões de busca e salvamento urbano

(USAR), tais como a densidade do gás tóxico, gradiente de temperatura e densidade de

partículas de fumo. Esta informação é processada através de uma máquina de vetores

de suporte com a finalidade de classificar contextos relevantes no decorrer da missão. O

resultado fornecido pelas experiências realizadas com os robôs TraxBot e Pioneer 3DX

usando a arquitetura Robot Operating System abre a porta para novas aplicações com

múltiplos robôs em cenários USAR.

Palavras Chave: Fusão Sensorial, Fusão de Informação, Sistemas Multi-Robô, Opti-

mização, Classificação, Máquina de Vetores de Suporte, Busca e Salvamento, Sistemas

Embebidos.

Declaration

The work in this dissertation is based on research carried out at the Mobile Robotics

Laboratory of ISR (Institute of Systems and Robotics) in Coimbra, Portugal. No part of

this thesis has been submitted elsewhere for any other degree or qualification and it is all

my own work unless referenced to the contrary in the text.

Copyright © 2013 by Nuno Filipe Loureiro Ferreira.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged”.

ix

“Never confuse a single defeat with a final defeat.”

F. Scott Fitzgerald

Contents

Agradecimentos iv

Abstract v

Resumo vii

Declaration ix

Contents xiii

List of Figures xvii

List of Tables xviii

Notation xxi

1 Introduction 2

1.1 Context and motivation . 3

1.2 Objectives . 4

1.3 Organization . 4

2 Multi-Sensor Information Fusion 6

2.1 Sensors . 6

2.2 Multi-Sensor Information Fusion . 8

2.3 Summary . 10

3 Classification Methods 11

3.1 Neural Network . 11

xiii

Contents xiv

3.1.1 Types of Artificial Neural Networks 12

3.1.2 Networks based on Feedback and Feedforward connections 12

3.1.3 Methodology: Training, Testing and Validation Datasets and Clas-

sification . 13

3.2 Fuzzy Logic . 16

3.3 Bayesian Models . 19

3.3.1 Bayesian Probability . 19

3.3.2 Sensor Models and Multisensor Bayesian Inference 19

3.3.3 Sensor Models and Multisensor Bayesian Inference 20

3.3.4 Naive Bayes classifier . 20

3.4 Support Vector Machines . 22

3.4.1 SVM . 22

3.4.2 SVM kernel . 24

3.5 Comparison of Classification Methods . 26

3.5.1 Discussion and Decision . 27

3.6 Summary . 28

4 Multi-Sensor Embedded System 29

4.1 Dust sensor . 29

4.2 Thermopile array . 32

4.3 Alcohol sensor . 34

4.4 Sensors Assembling in a Mobile Robot . 35

4.5 Summary . 36

5 SVM-based Classification and Context Recognition 37

5.1 Training database . 37

5.1.1 Training database - Creation . 38

5.2 Summary . 41

6 Experimental Results and Discussion 42

6.1 Experiments with a single mobile robot . 42

6.1.1 Offline classification . 42

Contents xv

6.1.2 Online classification . 43

6.2 Experiments with cooperative mobile robots 48

6.3 Summary . 50

7 Conclusion and future work 51

References and Bibliography 52

List of Figures

2.1 Flow chart representation of the four steps to make a multi-sensor system

reliable [AAM01]. 7

2.2 A team of cooperative mobile robots wherein each robot is equipped with

multiple sensors to observe a fire from a different location. 9

3.1 A Two-layer, Feed-Forward Network with three Inputs and Two Outputs

[KRZ11]. 13

3.2 A Recurrent Neural Network with three Inputs and Two Outputs [KRZ11]. 13

3.3 Fuzzy ARTMAP architecture [Carpenter et.al.,1992]. 15

3.4 Use of fuzzy logic to model temperature. 18

3.5 Mapping of an input space non-linearly separable for a feature space [MCC04]. 23

3.6 Linear SVM example [GJC10]. 24

3.7 The model of multi-sensor information fusion based on SVM [LM09]. . . . 25

3.8 Measure of eficiency of the three classifiers [SKV11]. 27

3.9 Avarage value of the AUC [LCP+12a]. 27

4.1 Dust sensor model PPD42NS. 29

4.2 Thermopile array model TPA81. 32

4.3 Alcohol sensor model MQ303A. 34

4.4 Sensors Arduino driver. 36

4.5 The Pioneer 3-DX equipped with the set of sensors (left) and the TraxBot

equipped with a similar set of sensors (right). 36

5.1 Experimental setup for training database. a) Testbed; b) Acquisition and

pre-processig electronic setup. 38

xvii

List of Figures xviii

5.2 Classes representation . 41

6.1 Real scenario with two point of interest for SVM classification. a) Con-

tamination using alcohol and petrol; b) Fire outbreak emulated using a

500 watts spotlight. 43

6.2 Two classificaton maps during the experimental tests. 43

6.3 Real scenario with three point of interest for SVM classification. a) Fire

outbreak emulated using a 500 watts spotlight. b) Contaminated enclosed

area with alcohol. 44

6.4 Classification algorithm ml_classifier. 45

6.5 ROS topic SVM classification diagram provided by the ROS tool rxgraph. 46

6.6 Algorithm rviz_markers. 47

6.7 a) Virtual arena with one robot in rviz. b) Ideal representiton of the

classification regions. 48

6.8 Real scenario with three point of interest for SVM classification. a) Fire

outbreak emulated using a 500 watts spotlight. b) Contaminated enclosed

area with alcohol. 48

6.9 a) Virtual arena with two robots in rviz. b) Ideal representiton of the

classification regions. 49

6.10 Output classification at 3 minutes of the running test with: a) One robot;

b) Two robots. 50

List of Tables

4.1 Specifications of dust sensor model PPD42NS. 31

4.2 Specifications of thermopile array model TPA81. 33

4.3 Specifications of alcohol sensor model MQ303A. 34

5.1 Output acquired from the sensors. Column 1- TPA81 Thermopile Array

(Tn), Column 2- Dust sensor Model PPD42NS (Dn), Column 3- Alcohol

Sensor (An). 38

5.2 Training data: Samples 899 and 900 represent contamination training using

alcohol while samples 901 and 902 were retrieved using smoke training with

paper. 40

5.3 Output Classification matches the Training data from table 5.2. 40

5.4 Trainig Data, Samples of Smoke Training. 40

5.5 Output Classification. 40

xix

Notation

An Alcohol concentration.

C Normalising constant.

Dn Thermopile output.

E(wn
ij) Sum-squared error function.

P (x, z) Probability distribution.

Tn Number of particles.

X1 Contamination.

X2 Smoke.

X3 Fire.

X4 Secure.

f(x) Optimal function.

n Scalar.

outj Outputs of the neural network’s final layer.

w Vector

wij Network weights.

xxi

Chapter 1

Introduction

Nature has found a way to integrate information from multiple sources to a reliable and

feature-rich recognition. Such biological systems are able to compensate for the lack of

information by combining data obtained from different sensors. For instance, humans

combine signals from the body senses, i.e, sight, sound, smell, taste, and touch, with

knowledge of the environment, to create and update a dynamic model of the surrounding

world. The human way of merging information can inspire the design of artificial sensor

fusion systems. They both interact with the environment by perceiving new information

that is interpreted based on earlier experiences.

In the traditional method, the information acquired from multiple sensors is processed

separately, cutting off the possible connections and dependencies between the acquired

information, thus possibly overlooking at significant characteristics from the environ-

ment [LM09]. For instance, if a single dust sensor, measuring particles density in the

air, is used to detect fire by detecting the presence of smoke, ambiguity and data misin-

terpretation arise because both dust and smoke are comprised of particles.

As opposed to the traditional method, several computing methods, usually denoted as

multi-sensor information fusion methods [HL97], allow to analyse and synthesise informa-

tion from different nodes. This approach has been widely used for real-time processing,

e.g., [LM09, SVP08, PNA11a]. These computational methods appeared with the aim of

obtaining a better understanding of some phenomena through the development of artifi-

cial perception systems that combine data from different sensors. Such methods involve

techniques such as statistical inference, signal and image processing, artificial intelligence,

2

1.1. Context and motivation 3

and information sciences.

Multi-sensor information fusion is a process of information integration, merging data from

difrent sources with differing conceptual and contextual representations [HL97]. This pro-

cess fosters the decision-making and estimation to accomplish a certain mission based on

perceptual information about the environment. As in many other research areas, multi-

sensor information finds a wide application in robotics, namely for object recognition,

localisation and mapping, and environmental monitoring. The fusion of multi-sensory

information plays an important role in mobile robot perception over real-world. Robot

perception requires a system architecture support that cannot be found in simpler robot

systems [SST86]. In most cases, the integration of multi-sensory fusion in mobile robots

is devoted to navigation, visual recognition and monitoring. This work focuses on the use

of multi-sensor information fusion for environmental monitoring and context recognition

with cooperative robots in urban catastrophic incidents, namely in urban search and res-

cue (USAR) missions. The use of different sensors may largely improve the performance of

the overall system by providing consistent environmental contextual information, with the

following key advantages: redundancy, complementarity, timeliness, and cost [MMN00].

1.1 Context and motivation

Mobile robots can be useful in environments that humans cannot tolerate either due to

contamination or very high risk of combustion.

The CHOPIN project1 aims at exploiting the cooperation between human and robotic

teams in catastrophic accidents. Multi-sensor fusion can be used on mobile robots teams

to search and inspect, so as to prevent catastrophes, and monitor environments in the

aftermath [CPR13]. Adopting a multi-sensor information method allows retrieving a vari-

ety of information (e.g., temperature) to be fused, as well as achieve an accurate judgment

of contextual information (e.g., fire outbreak). The main aim in this dissertation is to use

mobile robots and multi-sensor fusion to monitor the environment and detect hazards in

the aftermath of an urban catastrophic incident (e.g. a fire).

Mobile robot technologies in complex and unknown unstructured environments, such as

1http://chopin.isr.uc.pt/

1.2. Objectives 4

catastrophic scenarios are still under study [ZLH08,VA96]. Currently, the main control

mode of search and rescue (SaR) robotics is the manual operation, also known as tele-

operation, in which complete autonomy is never achieved [CM02]. It has been recently

agreed in the literature that autonomous mobile robots require multi-sensor fusion to

perceive the environmental information [WJL+12]. By having a robotic intelligent sensor

agent capable of storing data, processing data and act upon the environment according

to the context may improve the experience of information gathering. By doing this, first

responders can perceive the environment and focus on important parameters related with

the task, while avoiding irrelevant data through an efficient use of the group of sensors.

1.2 Objectives

The objectives of this dissertation are:

1. Design and evaluation, within laboratorial experiment, of a multi-sensor embedded

system to monitor gas concentration, smoke density and temperature.

2. Design, implementation and evaluation of a supervised classifier to detect relevant

contexts in an urban fire.

3. Build a map of relevant variables within an urban fire incident zone, either with a

single mobile robot or with multiple cooperative robots.

1.3 Organization

This dissertation is organized in seven chapters. The first chapter introduces the context

and motivation, and the objectives of this work.

Chapter 2 is a revision of sensor and multi-sensor information fusion based on some of

the most relevant related work in the area.

Classification methods such as Neural Network, Fuzzy logic, Bayesian methods and Sup-

port Vector Machines (SVM), are presented and compared in Chapter 3.

Chapter 4 presents the three sensors considered in this project and proposes a specific

configuration of this sensors in a mobile robot.

1.3. Organization 5

Chapter 5 presents the SVM-Classifier and the testbed built to create the training database.

Experimental results with one and multiple robots, with both ofline and online classifica-

tion, are represented in Chapter 6.

Chapter 7 presents the main conclusions of this dissertation and future work directions.

Chapter 2

Multi-Sensor Information Fusion

2.1 Sensors

A sensor, also known as a transducer, is a device that measures a physical quantity and

converts it into an electrical signal which can be presented to an observer (e.g., in a graph)

or read by an instrument [Elm02]. Before the advent of microelectronics, sensors used to

measure physical quantities, such as temperature, pressure, and flow, were usually coupled

directly to a readout device, typically a meter, read by an observer. The sensor converted

the physical quantity being measured to a displacement. However, the microprocessor

technology introduced the requirement to have an electrical output that could be more

readily interfaced to provide unattended measurement and control. Therefore, nowadays,

sensors help translating the real world of analog signals and varying voltages into the

digital processing realm. Sensors typically convert non-electrical physical, biological or

chemical quantities into electrical or optical signals. To be useful, the signal must be

measured and transformed to a digital format which can be processed and analysed by

processing units (e.g., computers). The information can be either used by a person or an

intelligent device, to monitor the activity and take decisions that maintain or change a

course of action.

In power plants, automated vehicles, aircraft, and in other complex systems, a large num-

ber of sensors are used for monitoring and control [AAM01]. Monitoring helps the oper-

ator in performing supervisory control tasks. A monitoring system receives information

about the system through sensors and makes it available to the operator. By combining

6

2.1. Sensors 7

information from many different sources, it is possible to decrease the uncertainty and

ambiguity inherent to processing the information from a single sensor source [AAM01].

A large number of sensors measuring many different variables can collectively achieve a

high level of accuracy and reliability. Nevertheless, some steps are needed to make a

multi-sensor system reliable (see Fig. 2.1). For instance, redundancy creation generates

multiple values for the variable that is being estimated, thus improving the reliability

of the measuring process. Time-Series State prediction uses temporal information about

the variable estimate for a specified time window to predict the value of the variable be-

ing measured at the next sampling point sensor. Data validation and fusion determine

whether the information for the sensor can be trusted, thus associating a degree of be-

lief in this measurement and combining the various redundant estimates to generate a

“fused” value. In Fault detection, the statistical properties of these residues are then used

to detect failed sensors [Elm02].

Figure 2.1: Flow chart representation of the four steps to make a multi-sensor system
reliable [AAM01].

2.2. Multi-Sensor Information Fusion 8

2.2 Multi-Sensor Information Fusion

Since a single sensor generally can only perceive limited or partial information about

the environment, multiple similar and dissimilar sensors are required to provide suffi-

cient local information with different focus and from different viewpoints in an integrated

manner. Information from heterogeneous sensors can be combined using data fusion al-

gorithms to obtain observable data [ZLH08]. A multi-sensor system has the vantage to

broaden machine perception and enhance awareness of the state of the world compared

to what could be acquired with a single sensor system [ALP+11a]. Therefore, multiple

sensors are needed in response to the increasingly learning nature of the environment to

be sensed. This motivates the emerging interest in research into contextual environmen-

tal information in catastrophic incidents (e.g., urban fires1). It is also beneficial to avoid

overwhelming storage and computational requirements of a single sensor and data rich

environment, by controlling the data gathering process such that only the truly necessary

data is collected and stored. The simplest task of a sensor management is to choose

the optimal sensor parameter values, given one or more sensors, with respect to a given

task. This is called active perception, wherein sensors need to be optimally configured

for a specific purpose. Multi-sensor management architectures are closely related to the

form of the data fusion unit. Typically, there are three alternatives for system structure,

namely:

1. Centralized. In a centralized paradigm, the data fusion unit is treated as a central

mechanism. It collects information from all different platforms and sensors and decides

which tasks must be accomplished by individual sensors. All the commands sent from

the fusion center to the respective sensors must be accepted and followed with the proper

sensor actions.

2. Decentralized. In a decentralized system, the data is fused locally with a set of local

units rather than by a central unit. In this case, every sensor or multi-sensor system can

be viewed as an intelligent asset having some degree of autonomy in the decision-making.

Sensor coordination is achieved based on communication in the network of robots, in

which sensors share locally fused information and cooperate with each other.

1http://chopin.isr.uc.pt/

2.2. Multi-Sensor Information Fusion 9

3. Hierarchical. This can be regarded as a mixture of centralized and decentralized

architectures. In a hierarchical system, there are usually several levels of hierarchy in

which the top level functions as the global fusion center and the lowest level consists of

several local fusion centers [ZLH08] .

The basic purpose of sensor management is to adapt sensor behavior to dynamic environ-

ments. By having limited sensing resources, sensors may not be able to serve all desired

tasks and achieve all their associated objectives. Therefore, a reasonable process has to

be made. More important tasks should be given higher priority in their competition for

resources. The first step for the sensor management system should be to utilize evidences

gathered to decide objects of interest and to prioritize which objects to look at in the time

following. An interesting scenario requiring sensor coordination is shown in Fig. 2.2 where

three autonomous robots equipped with multiple sensors cooperatively explore an area of

interest. Nevertheless, to achieve some sort of decision-making, each robot needs to be

capable of assessing the contextual information. To that end, for this learning process,

classification techniques are needed. Next chapter describes the most well-known used

classification methods in the literature.

Figure 2.2: A team of cooperative mobile robots wherein each robot is equipped with
multiple sensors to observe a fire from a different location.

2.3. Summary 10

2.3 Summary

In this chapter, the concept multi-sensor fusion was introduced as a highly important

strategy to combine different sensors, so as to achieve results which would be impossible

otherwise.

The next Chapter describes the most important classification methods used in multi-

sensor information fusion.

Chapter 3

Classification Methods

3.1 Neural Network

An Artificial Neural Network (ANN) is an information processing paradigm that is in-

spired by the way biological nervous systems (i.e. the brain), process information. In

brief, ANN may be seen as a massively parallel distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use [Ste96].

ANN are composed of interconnecting artificial neurons (programming constructs that

mimic the properties of biological neurons). Neural Networks provide the potential of an

alternative information processing paradigm that involve large interconnected networks

of processing units. These units, relatively simple and typically non-linear, are connected

to each other by communication channels, i.e. connections that carry data.

Artificial Neural Networks have a relationship with statistics. Most neural networks that

can learn to generalize effectively from noisy data are similar or identical to statistical

methods. Feed forward nets with no hidden layer, including functional-link neural nets

and higher-order neural nets, are basically generalized linear models. Probabilistic neural

nets are identical to kernel discriminant analysis. Kohonen nets for adaptive vector quan-

tization are very similar to k-means cluster analysis. Hebbian learning is closely related

to principal component analysis [Nic03].

11

3.1. Neural Network 12

3.1.1 Types of Artificial Neural Networks

1. Supervised Learning: The network is supplied with a sequence of both input data

and desired (target) output data network. It is told precisely by a "teacher" what

should be emitted as output. The teacher can, during the learning phase, "tell" the

network how well it should perform ("reinforcement learning") or what is the correct

behavior ("fully supervised learning") [Gop98].

2. Self-Organization or Unsupervised Learning: This is a training scheme in which

only the input is given to the network. The network finds out about some of the

properties of the data set and learns to reflect these properties in its output. This

type of learning presents a biologically more plausible model of learning [Gop98].

3.1.2 Networks based on Feedback and Feedforward connections

Although neural network solutions for predictive analytics, pattern recognition and clas-

sification problems can be very different, they are always the result of computations that

proceed from the network inputs to the network outputs. The network inputs are referred

to as patterns, and outputs are referred to as classes.

Frequently, the flow of these computations is in one direction, from the network input

patterns to its outputs. Networks with forward-only flow are referred to as feedforward

networks. Feedforward neural network is an artificial neural network where connections

between the units (a.k.a. perceptrons) do not form a directed cycle. This is different

from recurrent neural networks. The feedforward neural network (see Fig. 3.1), was the

first and arguably simplest type of artificial neural network devised. In this network, the

information flows only in the forward direction, from the input nodes, through the hidden

nodes (if any), to the output nodes. There are no cycles or loops in the network. Feedfor-

ward networks never contain feedback connections between units. Feedback (recurrent)

networks always do (see Fig. 3.2). The presence of feedback connections in a network

typically results in a network whose behavior is far more interesting and dynamic than

a network composed of feedforward connections alone. Recurrent neural networks, allow

data and information to flow in both directions.

3.1. Neural Network 13

Figure 3.1: A Two-layer, Feed-Forward Network with three Inputs and Two Outputs
[KRZ11].

Figure 3.2: A Recurrent Neural Network with three Inputs and Two Outputs [KRZ11].

3.1.3 Methodology: Training, Testing and Validation Datasets

and Classification

In the artificial neural networks methodology, the sample data is often subdivided into

training, validation, and test sets.

1. Training set: A set of examples used for learning to fit the parameters (weights) of

the classifier.

2. Validation set: A set of examples used to tune the parameters of a classifier, for

example to choose the number of hidden units in a neural network.

3.1. Neural Network 14

3. Test set: A set of examples used only to assess the performance (generalization) of

a fully-specified classifier.

4. Classification: Backpropagation algorithm, Fuzzy Adaptive Resonance Theory (ARTMAP).

Multi-layer perception using backpropagation is composed of layers of processing units

that are interconnected through weighted connections. The first layer consists of the

input vector while the last layer consists of the output vector representing the output

class. Intermediate layers, called “hidden” layers, receive the entire input pattern that is

modified by the passage through the weighted connections. The hidden layer provides the

internal representation of neural pathways. Learning occurs in the perception by changing

connection weights after each piece of data is processed, based on the amount of error in

the output compared to the expected result. The network weights wij(n) are adjusted so

that the sum-squared error function is minimized:

E(wn
ij) = 1

2
∑

p

∑
j

(targp
j − out

(N)
j − out(N)

j (inp
i))2,

and again we can do this by a series of gradient descent weight updates

∇w(m)
kl = −η

dE(wn
ij)

dw
(m)
kl

.

Note that it is only the outputs outj(N) of the final layer that appear in the error function.

However, the final layer outputs will depend on all the earlier layers of weights, and the

learning algorithm will adjust them all. The learning algorithm automatically adjusts the

outputs outj(N) of the earlier (hidden) layers so that they form appropriate intermediate

(hidden) representations.

Fuzzy ARTMAP is a supervised neural network architecture that is based on "Adaptive

Resonance Theory", proposed by Stephen Grossberg in 1976 [GRO76,GRO76a]. Adaptive

Resonance Theory (ART) encompasses a wide variety of neural networks based explic-

itly on human information processing and neurophysiology. ART networks are defined

algorithmically in terms of detailed differential equations intended as plausible models

of biological neurons. In practice, ART networks are implemented using analytical solu-

tions or approximations to these differential equations. Fuzzy ARTMAP, (Fig. 3.3), is

3.1. Neural Network 15

based on ART, in which internal control mechanisms create stable recognition categories

of optimal size by maximizing code compression, while minimizing predictive error dur-

ing on-line learning. Fuzzy ARTMAP incorporates fuzzy logic in its ART. It has fuzzy

set-theoretic operations instead of binary set-theoretic operations. It learns to classify

inputs by a fuzzy set of features, or a pattern of fuzzy membership values between 0 and

1 [Sha10].

Figure 3.3: Fuzzy ARTMAP architecture [Carpenter et.al.,1992].

3.2. Fuzzy Logic 16

3.2 Fuzzy Logic

Fuzzy logic is a form of many-valued logic or probabilistic logic. It deals with reasoning

that is approximate rather than fixed and exact [Zad65]. In contrast with traditional

logic, they can have varying values, where binary sets have two-valued logic, true or false,

fuzzy logic variables may have a truth value that ranges in degree between 0 and 1.

Fuzzy logic has found widespread popularity as a method for representing uncertainty

particularly in applications such as supervisory control and high-level data fusion tasks.

It provides an ideal tool for inexact reasoning, e.g. control, warning systems and adap-

tive behaviour [CFL+12a,CMR+12a,CFM12a]. For the combination step in the fusion

process, the advantages of fuzzy sets and possibilities rely in the variety of combination

operators, which may are able to deal with heterogeneous information (Dubois & Prade,

1985). An advantage of this approach is that it is able to combine heterogeneous in-

formation, which is usually the case in multi-source fusion (as in both examples given

in the chapter), and to avoid to define a more or less arbitrary and questionable metric

between pieces of information, since each piece of information is converted in membership

functions or possibility distributions over the same decision space.

A main difference between fuzzy classification and possibilistic classification is that classes

are generally considered as fuzzy sets in the first case and as crisp ones in the second case.

In the following sections, these two types of modelling are illustrated.

Consider a universal set consisting of the elements x; X = x. Consider a proper subsetA ⊆

X such that

A = {x |x has some specific property}

In conventional logic systems, we can define a membership function mA(x), also called the

characteristic function, which reports if a specific element x ∈ Xi

A
 µA(x) =
{

1 if x ∈ A 0 if x /∈ A}

In the fuzzy logic literature, this is known as a crispset.

A→ µA→[0, 1]

3.2. Fuzzy Logic 17

Composition rules for fuzzy sets follow the composition processes for normal crisp sets,

for example

A ∩B
 µA∩B(x) = min[µA(x), µB(x)]

A ∪B
 µA∪B(x) = max[µA(x), µB(x)]

The normal properties associated with binary logic remains: commutativity, associativity,

idempotence, distributivity, De Morgan’s law and absorption [KT02]. The only exception

is that the law of the excluded middle is no longer true A⋃A = X, A⋂A = φ. Together,

these definitions and laws provide a systematic means of reasoning about inexact values.

Fuzzy logic and probabilistic logic are mathematically similar – they both have truth

values ranging between 0 and 1 – but conceptually distinct, owing to different interpre-

tations. For more information please refer to the interpretations of probability theory
1. Fuzzy logic corresponds to "degrees of truth", while probabilistic logic corresponds to

"probability, likelihood". As these differ, fuzzy logic and probabilistic logic yield different

models of the same real-world situations.

A basic application might characterize subranges of a continuous variable. For instance,

a temperature measurement for fire detection. Each function maps the same temperature

value to a truth value in the 0 to 1 range. These truth values can then be used to deter-

mine how the fire should be controlled.

In Fig. 3.4, the meanings of the expressions harmless, warning , and danger are repre-

sented by functions mapping a temperature scale. A point on that scale has three "truth

values" one for each of the three functions. The vertical line in the image represents a par-

ticular temperature that the three arrows (truth values) gauge. Since the red arrow points

to zero, this temperature may be interpreted as "not hot". The orange arrow (pointing

at 0.2) may describe it as "slightly warm" and the blue arrow (pointing at 0.8) "fairly

cold" [BW07].

1http://plato.stanford.edu/entries/probability-interpret/

3.2. Fuzzy Logic 18

Figure 3.4: Use of fuzzy logic to model temperature.

3.3. Bayesian Models 19

3.3 Bayesian Models

3.3.1 Bayesian Probability

The Bayesian theory has the possibility to make predictions on future events and provides

an embedded scheme for learning [RDA08]. The Bayesian interpretation of probability can

be seen as an extension of logic that enables reasoning with propositions whose truth or

falsity is uncertain. To evaluate the probability of a hypothesis, the Bayesian probabilist

specifies some prior probability, which is then updated in the light of new, relevant data.

The use of hierarchical models and marginalization over the values of nuisance parameters.

In most cases, the computation is intractable, but good approximations can be obtained

using estimation techniques such as Hidden Markov Models (HMMs), Kalman Filters

and Particle Filters. Through the sequential use of the Bayes’ formula, when more data

becomes available after calculating a posterior distribution, the posterior becomes the

next prior. For the frequentist, a hypothesis is a proposition which must be either true or

false, so that the frequentist probability of a hypothesis is either one or zero. As in Fuzzy

Logic, in Bayesian statistics, a probability can be assigned to a hypothesis that can differ

from 0 or 1 if the truth value is uncertain.

3.3.2 Sensor Models and Multisensor Bayesian Inference

Bayes’ rule provides a means to make inferences about an object or environment of interest

described by a state, given an observation z. Bayes’ rule requires that the relationship be-

tween x and z be encoded as a joint probability or joint probability distribution P(x,z) for

discrete and continuous variables respectively. The chain-rule of conditional probabilities

can be used to expand a joint probability in two ways:

P (x, z) = P (x|z)P (z) = P (z|x)P (x)

P (x|z) = P (z|x)P (x)
P (z)

The value of this result lies in the interpretation of the probabilities P(x|z), P(z|x), and

P(x). In this fusion process, the marginal probability P(z) simply serves to normalize the

3.3. Bayesian Models 20

posterior and is not generally computed. The marginal P(z) plays an important role in

model valida-tion or data association as it provides a measure of how well the observation

is predicted by the prior. The value of Bayes’ rule is that it provides a principled means

of combining observed information with prior beliefs about the state of the world.

3.3.3 Sensor Models and Multisensor Bayesian Inference

P (z1, ..., zn|x) = P (z1|x)...P (zn|x) =
n∏

i=1
P (zi|x)

The conditional probability P (z|x) serves the role of a sensor model and can be thought

of in two ways. First, in building a sensor model, the probability is constructed by fixing

the value of x = x and then asking what probability density P (z|x = x) on z results.

Conversely, when this sensor model is used and observations are made, z = z is fixed

and a likelihood function P (z|x) on x is inferred. The likelihood function, while not

strictly a probability density, models the relative likelihood that different values of x gave

rise to the observed value of z. The multisensor form of Bayes’ rule requires conditional

independence so that

P (x|Zn) = CP (x)
n∏

i=1
P (zi|x),

P (x|Zk) = P (zk|x)P (x|Zk−1)
P (Zk|Zk−1) ,

where C is a normalising constant. This states that the posterior probability on x given all

observations Zn , is simply proportional to the product of prior probability and individual

likelihoods from each information source.

3.3.4 Naive Bayes classifier

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ theo-

rem with strong (naive) independence assumptions [PR12a]. A more descriptive term for

the underlying probability model would be "independent feature model". The probability

model for a classifier is a conditional model:

3.3. Bayesian Models 21

P (C|F1, ..., Fn).

Using Bayes theorem

p(C|F1, ..., Fn) = p(C)p(F1, ..., Fn|C)
p(F1,....,Fn) ,

is equivalent to

posterior = prior × likelihood
evidence

,

wich can be writen using the chain rule for repeated applications

p(C,F1, ..., Fn),

α p(C) p(F1, ..., Fn|C),

α p(C) p(F1|C) p(F2, ..., Fn|C,F1),

α p(C) p(F1|C) p(F2|C,F1) p(F3, ..., Fn|C,F1, F2),

α p(C) p(F1|C) p(F2|C,F1) p(F3|C,F1, F2) ...p(Fn, |C,F1, F2, F3, ..., Fn−1),

so the distribution over the class variable C can be expressed like this

p(C|F1, ..., Fn) = 1
Z
p(C)

n∏
i=1

p(Fi|C).

3.4. Support Vector Machines 22

3.4 Support Vector Machines

3.4.1 SVM

In machine learning, support vector machines (SVMs, a.k.a. support vector networks)

are supervised learning models with associated learning algorithms that analyze data and

recognize patterns, used for classification and regression analysis [Bur98,LM09,PNA11a,

ANO08a]. Given a set of training examples, each marked as belonging to one of two

categories, an SVM training algorithm builds a model that assigns new examples into one

category or the other. An SVM model is a representation of the examples as points in

space, mapped so that the examples of the separate categories are divided by a clear gap

that is as wide as possible. New examples are then mapped into that same space and

predicted as belong to a category based on which side of the gap they fall on. In addition

to performing linear classification, SVMs can efficiently perform non-linear classification

using what is called the kernel trick, implicitly mapping their inputs into high-dimensional

feature spaces (see next section).

SVM is a hybrid technique of statistical and deterministic approaches. This means that to

find the best space for classification hypothesis, a probability distribution is determined

from the input space. The technique was proposed in the work of Vapnik on the “Principle

of Risk Minimization”, in the area of statistical learning [HPH+08,Bur98]. The technique

is applied in the following way: in the case of linear space, determine the hyperplanes of

separation by an optimization problem; in the case of non-linear space, a kernel function is

applied and the new space obtained is denominated the feature space. Fig. 3.5 illustrates

the application of a kernel in the input space. In the feature space, an hyperplanes is

obtained for separation.

3.4. Support Vector Machines 23

Figure 3.5: Mapping of an input space non-linearly separable for a feature space
[MCC04].

In its simplest form, SVMs are linear binary classifiers that assign a given test sample

a class from one of the two possible labels. An instance of a data sample to be labeled in

the case of remote sensing classification is normally the individual pixel derived from the

multi-spectral or hyperspectral image. Elements of the feature vector may also include

other discriminative variable measurements based on pixel spatial relationships such as

texture. An important generalization aspect of SVMs is that frequently not all the avail-

able training examples are used in the description and specification of the separating

hyperplane. The subset of points that lie on the margin (called support vectors) are the

only ones that define the hyperplane of maximum margin.

3.4. Support Vector Machines 24

Figure 3.6: Linear SVM example [GJC10].

The implementation of a linear SVM assumes that the multi-spectral feature data are

linearly separable in the input space. In practice, data points of different class member-

ships (clusters) overlap one another. This makes linear separability difficult as the basic

linear decision boundaries are often not sufficient to classify patterns with high accuracy.

Vapnik–Chervonenkis (VC) dimension and capacity of functions:

Test ≤ Training Error + Complexity of set of Models.

If you take a high capacity set of functions (explain a lot) you get low training error, but

you might “overfit”. If you take a very simple set of models, you have low complexity, but

you get a high training error.

3.4.2 SVM kernel

The solution of SVM is mapped to the x-domain to a high-dimensional feature space

with a nonlinear function f, followed by a linear regression in high-dimensional feature

space, to obtain the effect of original non-linear space regression. Its optimal function is

expressed as:

f(x) = ω × φ(x) + n,

3.4. Support Vector Machines 25

wherein w is a vector and n a scalar. The dimensionality of φ(x) can be very large, making

w hard to represent explicitly in memory,

ω =
m∑

i=1
αiφ(xi).

So, the decision function is:

f(x) =
∑

i

αiφ(xi).φ(x) + b =
∑

i

αiK(xi, x) + b,

and the dual dormation

minP (w, b) =

1
2 ||

m∑
i=1
αiφ(xi)||2︸ ︷︷ ︸

maximize margin

+
C
∑

i

H1[yif(xi)︸ ︷︷ ︸]
minimize training error

.

Fusion problem of each information fusion node based on SVM theory can be expressed as:

for a n-dimensional input parameter x, according to the independent distribution observa-

tion samples of k:(x1,y1)...(xk, yk), XεRn [LM09]. The model of multi-sensor information

fusion based on support vector machine is shown in Fig. 3.7.

Figure 3.7: The model of multi-sensor information fusion based on SVM [LM09].

3.5. Comparison of Classification Methods 26

3.5 Comparison of Classification Methods

In Sharma et al. [SKV11], a comparative study between SVM, ANN and the Bayesian

Classifier for mutagenicity prediction was made. The performance of the classifiers was

compared to determine the best model for prediction of mutagenicity for present dataset.

The sensitivity of the SVM (69.14%) was found to be better than that of the ANN

(40.20%) and the Bayesian classifier (58.44%). The precision of the SVM model (74.9%)

is comparatively higher than the one of the ANN (70.00%) and the Bayesian (72.38%)

models. Moreover, the SVM predicts 15% and 5.5% less false negatives than ANN and

Bayesian classification models respectively. The ANN based model gave the highest speci-

ficity value (approx. 81%) as compared to the other two models. However, it stays behind

the other two models in terms of sensitivity, accuracy and precision values. The overall

accuracy of the SVM was found to be 71.73%, whereas the accuracy of both ANN and

Bayesian was 59.72% and 66.14%, respectively, this result is represented in Fig. 3.8.

These statistical studies indicate that the SVM performance is comparatively better than

the other two classifiers. In Luz et al. [LCP+12a], a comparative study was carried out

between Linear Discriminant Analysis (LDA),Quadratic Discriminant Analysis (QDA),

Bayes with Normal (Gaussian) distribution (NV), Naıive Bayes with Kernel Smoothing

Density Estimate (NVK) and Least Squares Support Vector Machines with Radial Basis

Function Kernel (SVM), for golf putting performance analysis. The five classification

methods were compared through the analysis of the confusion matrix and the area under

the Receiver Operating Characteristic (ROC) curve . From Figure 3.9, it was possible to

confirm that the SVM has the most consistent results.

3.5. Comparison of Classification Methods 27

Figure 3.8: Measure of eficiency of the three classifiers [SKV11].

Figure 3.9: Avarage value of the AUC [LCP+12a].

3.5.1 Discussion and Decision

The most widely used data fusion methods employed in robotics originate in the fields of

statistics, estimation and control. However, the application of these methods in robotics

has a unique number of features and challenges. In particular, as the autonomy is often

the goal, results must be presented and interpreted in a form from which autonomous

decisions can be made; for recognition or navigation, for example. Classification is a

computationally complex process of supervised learning where the data is separated into

different classes on the basis of one or more characteristics inherent in data. In this

3.6. Summary 28

study, it was possible to see that there are efficient alternatives to heavy probabilistic

methods, such as the well-known SVM. SVM is a recent technique suitable for binary

classification tasks, which is related to and contains elements of non-parametric applied

statistics, neural networks and machine learning. Like classical techniques, SVM also

classifies a company as solvent or insolvent according to its score value, which is a function

of selected financial ratios. As we can see in works such as [SKV11] and [LCP+12a], the

results of other classification models were acceptable, but the SVM was found to be

more efficient. Since SVM uses a kernel, it contains a non-linear transformation and no

assumptions about the functional form of the transformation are made. Thus, SVM make

data linearly separable if necessary. The transformation occurs implicitly on a robust

theoretical basis and, as a consequence, human expertise judgment beforehand is not

needed (as opposed to Fuzzy and Bayesian models). SVM provides a good out-of-sample

generalization, and by choosing an appropriate generalization grade, SVM can be robust,

even when the training sample has some bias.

3.6 Summary

In this chapter a survey of the most important classification methods for multi-sensor

information fusion was presented. After that, a comparison between the previous methods

was carried out and based on these results, the SVM was chosen.

Chapter 4 presents the sensors used in the project, and the respective assembly on mobile

robots.

Chapter 4

Multi-Sensor Embedded System

The context of this work involves urban search and rescue (USAR) emergency scenarios,

focusing on fire outbreaks occurring in large basement garages. To that end, and as proof-

of-concept, three low-cost sensors were chosen. These sensors are presented in the next

sections.

4.1 Dust sensor

Figure 4.1: Dust sensor model PPD42NS.

The dust sensor model PPD42NS1 manufactured by Grove is an inexpensive but very sen-

sitive dust sensor. This device works at 5V and measures the amount of small particles

1http://www.sca-shinyei.com/pdf/PPD42NS.pdf

29

4.1. Dust sensor 30

like smoke, dust, pollen, bacterias etc, being used for both indoor and outdoor applica-

tions.

This dust sensor measures the particulate matter (PM) level in air by counting the Lo

Pulse Occupancy time (LPO time) in a given time unit. The LPO time corresponds to

the time interval in which the output responds to PM whose size is around 1 micro meter

or larger.

4.1. Dust sensor 31

Parameter Value
Detectable
particle size

1mm
(minimum.)

Detectable
range of

concentration

0~28,000
pcs/liter

(0~8,000pcs/0.01
CF=283ml)

Supply Voltage

DC5V +/- 10%
(CN1:Pin1=GND,

Pin3=+5V)
Ripple Voltage
within 30mV

Operating
Temperature

Range
0~45°C

Operating
Humidity Range

95%rh or less
(without dew
condensation)

Power
consumption 90mA

Storage
temperature -30~60°C

Time for
stabilization

1 minute after
power turned on

Dimensions 59(W) × 45(H)
× 22(D) [mm]

Weight 24g(approx.)

Output Method

Negative Logic,
Digital output,

Hi : over
4.0V(Rev.2) Lo
: under 0.7V
(As Input
impedance :

200kW)
OP-Amp

output, Pull-up
resistor : 10kW

Table 4.1: Specifications of dust sensor model PPD42NS.

Considering D as the number of particles with at least 1µm diameter, the output of

the dust sensor is defined as:

0 ≤ D ≤ 40000

4.2. Thermopile array 32

4.2 Thermopile array

Figure 4.2: Thermopile array model TPA81.

The pyroelectric sensors that are commonly used in burglar alarms and to switch on

outside lights, detect infrared in the same wavelength. However, these pyroelectric sensors

can only detect a change in heat levels though, therefore they are movement detectors.

Although useful in robotics, their applications are limited as they are unable to detect and

measure the temperature of a static heat source. Another type of sensor is the thermopile

array. These are used in non-contact infra-red thermometers. They have a very wide

detection angle or field of view (FOV) of around 100°, and need either shrouding or a

lens, or commonly both, to get a more useful FOV of around 12°. Some even have a

built-in lens. More recently, sensors with an array of thermopiles built in electronics and

a silicon lens have become available. This is the type used in the TPA81 thermopile array.

The TPA812 (see Fig. 4.2) is a thermopile array that detects infrared light in the 2um-

22um wavelength range, which is the wavelength of radiant heat. The TPA81 has an

array of eight thermopiles arranged in a row, thus allowing to measure the temperature of

8 adjacent points simultaneously. The TPA81 can also control a servo to pan the module

and build up a thermal image, being able to detect a candle flame at a range 2 metres

(6ft) without being affected by the ambient light.

2http://www.robot-electronics.co.uk/htm/tpa81tech.htm

4.2. Thermopile array 33

Power 5V, 5mA
Temperature

Range
4° to 100°C

(39.2° to 212°F)

Size

43mm x 20mm
x 17mm tall

(1.69" x 0.79" x
0.67 tall)

Connections I2C

Field of View
(FOV)

41° x 6° (8
pixels of approx.

5° x 6°)
Accuracy (Full
FOV) 4° to 10°C
(39.2° to 50°F)

+/-3°C (5.4°F)

Accuracy (Full
FOV) 11° to

100°C (58.1° to
212°F)

+/-2°C (3.6°F)

Output Data

Outputs - 1
ambient + 8

pixel
temperatures

Size 31mm x 18mm
(1.22" x 0.71")

Servo Control
Resolution

32 steps to 180°
rotation

Table 4.2: Specifications of thermopile array model TPA81.

This sensor is characterized by its ability to output an array of 8 elements of 8 bits

each. The analog value corresponds directly to the temperature. Hence, one may define

the thermopile output as:

4ºC ≤ Ti ≤ 100º

Ti, i = 1, . . . , 8. T i 8 Bits entry T = maxi vi

4.3. Alcohol sensor 34

4.3 Alcohol sensor

Figure 4.3: Alcohol sensor model MQ303A.

The Grove alcohol3 sensor is a complete alcohol sensor module for Arduino or Seeeduino.

It is built with a MQ303A semiconductor alcohol senso having a good sensitivity and

fast response to alcohol. This sensor implements all the necessary circuitry for MQ303A,

like power conditioning and heater power supply. This sensor outputs a voltage which

inversely proportional to the alcohol concentration in air.

Item Min Typical Max Unit
Operating
Voltage 4.75 5.0 5.25 V

Current 100 120 140 mA
Detection Gas Alcohol -
Detectable

Concentration 20-1000 ppm

Table 4.3: Specifications of alcohol sensor model MQ303A.

This sensor has the feature to output a voltage A which is inversely proportional to

the alcohol concentration in the air:

0 ≤ A ≤ 700 mv

3http://www.seeedstudio.com/depot/images/product/MQ303A.pdf

4.4. Sensors Assembling in a Mobile Robot 35

4.4 Sensors Assembling in a Mobile Robot

The set of sensors presented in the previous sections were assembled in a Pioneer-3DX

[20] and in a TraxBot [ZSS11] mobile robot.

The Pioneer-3DX (see Fig. 4.5 on the left) is a well-known robotic platform for research

and education from ActivMedia. The robot is a robust differential drive platform with

8 sonars in a ring disposition, a high-performance on-board microcontroller based on

a 32-bit Renesas SH2-7144 RISC microprocessor, offering great reliability and easiness

of use. The Traxbot (see Fig. 4.5 on the right) is a small differential Arduino-based

mobile platform, developed in our laboratory. As the Pioneer-3DX, this platform is fully

integrated in the open-source Robot Operating System (ROS) framework [Qui09] and is

capable of supporting a netbook on top of it [APC+13a]. Therefore, both platforms were

extended with netbooks using Ubuntu 11.10 operating system and the ROS framework

with Fuerte4 version on top of them. To explore the scenario, the robots were teleoperated

using a wiimote5 ROS node with the Wii remote controller.

The three sensors were assembled in an aluminium support mounted in the front of the

robots (see Fig. 4.5). This provides a better analysis by benefiting from the natural air

flow generated by the robots’ movements during the scenario exploration. Moreover, this

configuration took into consideration a better horizontal positioning of the field of view

for the thermopile array sensor. To preprocess the received data from the sensors, an

Arduino Uno board embedded within both platforms was used. The main features of the

driver developed for the three sensors is summarized in Fig 4.4.

4http://ros.org/wiki/fuerte
5http://www.ros.org/wiki/wiimote

4.5. Summary 36

Algorithm 1. MrSensing Arduino Driver

1 void sensorSetup()
 2

set 16bit counter for measure the wide of sensor ;

3

Set clock 1024/16MHz,unit is 6.4us;

4

enable capture interrupt and overflow interrupt;

5

 join i2c bus (address optional for master) ;

6
 7

DUST PIN INPUT

8

 set the heaterSelPin as digital output.;

9

fanpin OUTPUT;

10

when heaterSelPin is set, heater is switched off;

11 int MRsensing::getDustSensor(){

12

return quantity;

13 void MRsensing::getThermopileSensor(int thermopile_tab[]) {

14

begin Transmission TPA81ADDR ;

15

Wait for incoming idx thermopile frame;

16

receive a byte as character ;

17 int MRsensing::getAlcoholSensor()

18

switch on the heater of Alcohol sensor;

19

read the analog value;

Figure 4.4: Sensors Arduino driver.

The dust sensor was connected to a digital port, the alcohol sensor to an analogic port

and the thermopile array sensor via Inter-Integrated Circuit (I2C) Arduino ports. The

data exchanged between the Arduino board and the netbooks was handled using a ROS

driver developed in our previous work through serial communication [APC+13a].

Figure 4.5: The Pioneer 3-DX equipped with the set of sensors (left) and the TraxBot
equipped with a similar set of sensors (right).

4.5 Summary

This chapter presented the three sensors used in this dissertation project and their as-

sembly in the two mobile robots. The next chapter presents the SVM classifier designed

to detect contexts with robots during a search and rescue mission in an urban incident.

Chapter 5

SVM-based Classification and

Context Recognition

5.1 Training database

To minimize undesired external contamination during the training process of the SVM,

an experimental multi-sensor testbed platform setup was built (Fig. 5.1). This testbed

was designed as an isolated and controlled environment. The testbed presented on Fig.3a

is based on a sealed glass aquarium that was transformed to create air flow inside the

test area with the integration of two 120 mm fans fixed on the top of aquarium: one for

air inflow and another for air outflow. Clean or contaminated controlled air flow samples

were introduced within the testbed to measure all achievable range of classes.

An additional fan was afterwards equipped near the alcohol sensor for a faster settling

time of the readings (Fig.3 b). An Arduino Uno board with embedded Atmel 328 mi-

crocontroller was used to preprocess the output data from the sensors. Afterwards, the

data was sent through a serial connection to a computer using Robot Operating System

(ROS) [Qui09] taking into account the future use of the classifier ml_classifier1 in the

real experiments.

1http://www.ros.org/wiki/ml_classifiers

37

5.1. Training database 38

Figure 5.1: Experimental setup for training database. a) Testbed; b) Acquisition and
pre-processig electronic setup.

5.1.1 Training database - Creation

In this project, several preliminary tests under different conditions were carried out for

acquisition of the training data. The data returned from the sensors was acquired as:

X =


T1 D1 A1

...

Tn Dn An


wherein the number of rows n represents the number of acquired samples, i.e., trials. An

example of the acquired output are presented in Table 5.1.

Tn Dn An

20 110 570
21 110 575
20 110 578
21 110 581
21 110 582

Table 5.1: Output acquired from the sensors. Column 1- TPA81 Thermopile Array
(Tn), Column 2- Dust sensor Model PPD42NS (Dn), Column 3- Alcohol
Sensor (An).

The LS-SVMlab Toolbox2 for Matlab was used for the initial training and learning

based on the data acquired from the sensors. This was a preliminary step to evaluate the

2http://www.esat.kuleuven.be/sista/lssvmlab/

5.1. Training database 39

chosen classes and the reliability of the sensors. All preliminary experiments were carried

out on the setup presented in Fig. 5.1 dividing the space into four distinct typical classes

from USAR applications:

• 1. Contamination (X1) Air contamination means that alcohol sensor is above

the 500mv. Contamination can be caused by gas, petrol, or some kind of alcohol

container.

• 2. Smoke (X2) Smoke is detected for an output of the dust sensor above 20.000

particles, with at least 1 µm diameter in the read-ing area.

• 3. Fire (X3) Fire needs information from the dust sensor, the thermo-pile sensor,

and the alcohol sensor. The dust sensor allows detecting smoke, the thermopile

sensor the temperature gradient, and the alcohol sensor the type of fire (e.g., fire

emanating from a chemical explosion).

X1, X2, X3 are matrices with the test results for the dif-ferent training cases. At least, a

final class may be defined to assess the safe situation:

• 4. Secure (X4) This class was introduced to minimize the error of the classifier.

This class was introduced to minimize the error of the classifier.

X =


S1x1 S2x1 S3x1

S1x2 S2x2 S3x2

S1x3 S2x3 S3x3

Y = [Class]

For classification purposes, the on-the-fly data (i.e., testing data) is represented as:

X =


Tt1 Dt1 At1

...

Ttn Dtn Atn


Table 5.2 shows the output variable. Every sample has a class matching from the training

database, represented by the numbers 1, 2, 3 and 4 according to X1, X2, X3 and X4

previously described. After adding 20% noise to the training data Xi, i.e.,X
t
i = 1.2×Xi,

5.1. Training database 40

with i = 1, 2, 3, one may observe in Table 5.3 that the SVM is still able to accurately

identify each class.

Sample Tn Dn An

899 23 0 642
900 22 0 642
901 24 26218 651
902 23 26218 653

Table 5.2: Training data: Samples 899 and 900 represent contamination training using
alcohol while samples 901 and 902 were retrieved using smoke training with
paper.

Sample Class

899 1
900 1
901 2
902 2

Table 5.3: Output Classification matches the Training data from table 5.2.

In Table 5.4, the noise was incremented by 30% to the training data Xi, i.e.,X
t
i =

1.3×Xi, withi = 1, 2, 3. It is now possible to observe a classification error in 949 and 950

samples, which the SVM incorrectly classifies class 2 by class 3 in some situations Table

5.5.

Sample Tn Dn An

947 22 21402 610
948 23 21402 608
949 24 21402 607
950 23 21402 604
951 22 21402 602

Table 5.4: Trainig Data, Samples of Smoke Training.

Sample Class

947 2
948 2
949 3
950 3
951 2

Table 5.5: Output Classification.

5.2. Summary 41

Figure 4 illustrates the classification regions based on the two sensors that the SVM

classifier judges as the most important, i.e., the ones that presents more independency

between themselves. The classifier assigns dust sensor and temperature sensor as the ones

with more relevant differences between different classes.

Figure 5.2: Classes representation

5.2 Summary

This chapter describes the creation of the training database for the SVM classifier, this

database was important to make the selection of the best values from the multiple exten-

sive tests and for the different SVM classifiers used and created in this project.

Chapter 6 presents the experimental results and discussion, the offline and online classifier

are described and results are presented for the proof of the concept.

Chapter 6

Experimental Results and Discussion

6.1 Experiments with a single mobile robot

Some tests with the mobile robot depicted in Fig. 6.1 left were conducted in an indoor

laboratory setting, in a scenario with dimensions 4.0 × 4.6 meters, with several obstacles

(Fig. 6.1). A laptop using Ubuntu 11.10 operating system and ROS [Qui09] framework

Fuerte version was placed on top of the Pioneer-3DX. To explore the scenario, the robot

was teleoperated using a wiimote ROS node with the Wii remote controller.

6.1.1 Offline classification

Two points of interest were introduced in the experimental arena to simulate critical

conditions for the classification. More specifically, the gas air contamination was simulated

with alcohol and petrol inside containers (Fig. 6.1a), while the fire outbreak (Fig. 6.1b)

was emulated using a 500 watts spotlight ideal to produce heat. The SVM classifier works

offline after the tests with the data recorded from the set of sensors to detect the different

classes. During the experiments, it was possible to match the different classes throughout

the several trials with minor misclassification errors. The classes in the SVM Library are

represented with circles of different colors, namely, red for fire, green for smoke or dust,

and blue for air contamination.

42

6.1. Experiments with a single mobile robot 43

Figure 6.1: Real scenario with two point of interest for SVM classification. a) Con-
tamination using alcohol and petrol; b) Fire outbreak emulated using a
500 watts spotlight.

Comparing Fig. 6.1 from the real scenario configuration and the output from the

reading and classification in Fig. 6.2, we can observe that the classification output matches

the real scenario. We can observe that the fire class (red circles) is early mapped without

any misclassification error. This was predictable due to the high sensing capability of the

thermopile array sensor of up to a distance of two meters. The spread of the contamination

(blue circles) caused by the natural air flow along the arena till the end point is also easily

detectable by the sensors.

Figure 6.2: Two classificaton maps during the experimental tests.

6.1.2 Online classification

Three points of interest were added in the experimental arena to simulate the necessary

critical conditions for classification purposes. More specifically, the fire outbreak (Fig.

6.1. Experiments with a single mobile robot 44

6.3a) was emulated using a 500 watts spotlight, ideal to produce heat, while the gas air

contamination was simulated by inserting alcohol in an enclosed region within the scenario

(Fig. 6.3b). Particles insertion for the assessment of the smoke class was not considered

due to environmental constraints associated with the laboratory.

)

a)

a)

b)

Figure 6.3: Real scenario with three point of interest for SVM classification. a) Fire
outbreak emulated using a 500 watts spotlight. b) Contaminated enclosed
area with alcohol.

To directly classify the contextual information, the ROS SVM classifier ml_classifier1,

described in Fig. 6.4, was used.

1http://www.ros.org/wiki/ml_classifiers

6.1. Experiments with a single mobile robot 45

Figure 6.4: Classification algorithm ml_classifier.

The SVM classifier works in an online fashion based on the training data previously

acquired (section IV). During the exploration mode, the SVM classifier was continuously

running so as to detect the different classes. In the process, the acquired data from the

set of sensors is streamed, as it can be observed in the rxgraph ROS tool (Fig. 6.5).

6.1. Experiments with a single mobile robot 46

Figure 6.5: ROS topic SVM classification diagram provided by the ROS tool rxgraph.

In these experiments, a distributed ROS core system (a.k.a. multi-master ROS sys-

tem) for classification was implemented in each robot laptop. A third desktop computer

running a ROS core network was added for analysis purposes. The map of the arena was

considered to be known a priori for localization purposes by using the Adaptive Monte

Carlo Localization2 (AMCL) algorithm. The AMCL is a probabilistic localization system

that uses a particle filter to track the pose of the robot in the map. To that end, both

robots were equipped with Hokuyo laser range finders.

The ROS 3D visualization tool rviz3 was used for an augmented representation of the

output classes.

2http://www.ros.org/wiki/amcl
3http://www.ros.org/wiki/rviz

6.1. Experiments with a single mobile robot 47

Figure 6.6: Algorithm rviz_markers.

Figure 6.7a depicts a virtual representation of the arena in rviz and the virtual model

of the robot used in the real test. Figure 6.7b represents the ideal output of the classes on

the virtual arena. This ideal representation was retrieved using the setup from Fig. 5.1b,

in which the average value from 30 readings coming the set of sensors was considered for

each 0.20 × 0.20 meters cell within the scenario for a total amount of 460 cells.

6.2. Experiments with cooperative mobile robots 48

a) b)

Figure 6.7: a) Virtual arena with one robot in rviz. b) Ideal representiton of the
classification regions.

6.2 Experiments with cooperative mobile robots

b)

a

)

a)

Figure 6.8: Real scenario with three point of interest for SVM classification. a) Fire
outbreak emulated using a 500 watts spotlight. b) Contaminated enclosed
area with alcohol.

6.2. Experiments with cooperative mobile robots 49

a) b)

Figure 6.9: a) Virtual arena with two robots in rviz. b) Ideal representiton of the
classification regions.

The rviz representation of each class was achieved by filling the virtual arena with markers

of different colors, according with the classification output sent from the ml_classifier.

Green cells for secure cells (X4), blue cells for contamination cells (X1) and red cells for

fire cells (X3). Then, the intensity of the color was defined to be proportional to the

output value from the relevant sensor.

In Fig. 6.10, a comparison from the output of the tests with a single mobile robot and

with two robots was considered, wherein one can observe the completeness of the mission

after 3 minutes. For instance, in Fig. 6.10b the concentration of the output classes covers

almost all the area of the arena, thus getting closer to the ideal representation from Fig.

6.9b.

6.3. Summary 50

a) b)

Figure 6.10: Output classification at 3 minutes of the running test with: a) One robot;
b) Two robots.

This environmental mapping with one and two robots can be better perceived in

the video of the experimental trials4 reported in a paper submitted recently to the 11th

IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR2013)

[NMA+13a], which was accepted for presentation. The ROS drivers to control and acquir-

ing data from the sensors set assembled in the StingBot and Traxbot robots. Developed

in ISR, University of Coimbra are available online5.

6.3 Summary

In this chapter, experimental results were presented and discussed, including offline and

online SVM classification.

In the next chapter the main conclusions of the work are distilled and future work direc-

tions are described.

4http://www2.isr.uc.pt/~nunoferreira/videos/SSRR2013/
5http://www.ros.org/wiki/mrl_robots_sensors

Chapter 7

Conclusion and future work

This work presented a multi-sensor setup to infer contextual information with a mobile

robotic platform and multiple robots platforms within urban catastrophic incidents. The

concept multi-sensor fusion was introduced as a highly important strategy to combine

different sensors, so as to achieve results which would be impossible otherwise.

Then a survey of the most important classification methods for multi-sensor information

fusion was studied and a comparison between the previous methods was carried out and

based on these results, the SVM was chosen. A multi-sensor embedded system to monitor

gas concentration, smoke density and temperature was design, implemented and tested

within laboratorial experiment. After that the training database for the SVM classifier

was created, this database was important to make the selection of the best values from

the multiple extensive tests and for the different SVM classifiers used and created in this

project. The SVM classifiers were tested with one and two mobile robots, and results

were represented online in a map of relevant variables.

In the future special attention should be given to the group communication architecture,

because robots should be able to share information between themselves and teams of

humans (e.g., teams of firefighters) in an efficient way by using the notion of shared

context between these. More robots should be equipped with the same set of sensors, and

tested in the same conditions.

51

References and Bibliography

[AAM01] S. Alag, A. M. Agogino, M. Morjaria, “A methodology for intelligent sensor

measurement, validation, fusion, and fault detection for equipment monitor-

ing and diagnostics”, AI EDAM, Volume 15, Issue 04, September 2001, pp

307-320.

[ALP+11a] H. Aliakbarpour, L. Almeida, P. Menezes, J. Dias, “Multi-sensor 3D Volu-

metric Reconstruction Using CUDA”, Publisher 3D Display Research Center,

December 2011.

[ANO08a] R.Araújo, U. Nunes, L. Oliveira, P. Sousa, P. Peixoto , “Support Vector Ma-

chines and Features for Environment Perception in Mobile Robotics”, Coim-

bra, Portugal, 2008.

[APC+12] A. Araújo, D. Portugal, M. Couceiro, C. Figueiredo and R. P. Rocha.

“TraxBot: Assembling and Programming of a Mobile Robotic Platform”, in

Proceedings of the 4th International Conference on Agents and Artificial

Intelligence (ICAART’2012), Vilamoura, Algarve, Portugal, February 6-8,

2012.

[APC+12a] A. Araújo, D. Portugal, M. Couceiro, C. Figueiredo and R. P. Rocha. “Small

and Compact Mobile Robots Surveying and Comparing Platforms”, in Pro-

ceedings of the 1st International Automatics Conference of the Technical Uni-

versity of Sofia (AUTOMATICS’2012), Sozopol, Bulgaria, June 1-4, 2012.

[APC+13a] A. Araújo, D. Portugal, M. S. Couceiro and R. P. Rocha, “Integrating

Arduino-based Educational Mobile Robots in ROS”, In Proc, 13th Interna-

52

References and Bibliography 53

tional Conference on Autonomous Robot Systems and Competitions, Lisbon,

April 2013.

[Bur98] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”,

Data Mining and Knowledge Discovery June 1998, Volume 2.

[BW02] L.Biel, P.Wide, Dept. of Technol., Orebro Univ., Sweden, “An intelligent

model approach for combination of sensor information”, in Proceedings Hap-

tic Virtual Environments and Their Applications, IEEE International Work-

shop 2002 HAVE, Orebro, Sweden, 2002.

[BW07] T. Born , A. Wright, “Layered Mode Selection Logic Control with Fuzzy Sen-

sor Fusion Network”, Proc. SPIE 6561, Unmanned Systems Technology IX,

65610L, Orlando, (May 02, 2007).

[CFL+12a] M. S. Couceiro, C. M. Figueiredo, J. M. A. Luz, M. J. Delorme. "Zombie Infec-

tion Warning System Based on Fuzzy Decision-Making", In: R. Smith? (ed)

Mathematical Modelling of Zombies, University of Ottawa Press, in press,

2012.

[CFM12a] M. S. Couceiro, N. M. F. Ferreira & J. A. T. Machado. “Hybrid Adaptive

Control of a Dragonfly Model”, Journal of Communications in Nonlinear Sci-

ence and Numerical Simulation, Volume 17, Issue 2, pp. 893-903, Elsevier,

2012.

[CM02] J.Casper, Dr. R.Murphy, “Human-robot interactions during the robot-assisted

urban search and rescue response at the world trade center”, 33:367–385, 2002.

[CMR+12a] M. S. Couceiro, J. A. T. Machado, R. P. Rocha, N. M. F. Ferreira. “A

fuzzified systematic adjustment of the robotic Darwinian PSO”, Robotics and

Autonomous Systems, Vol. 60, Issue 12, pp. 1625-1639, 2012.

[CPR13] Couceiro, M. S., Portugal, D., & Rocha, R. P. (2013). ”A Collective Robotic

Architecture in Search and Rescue Scenarios”. Proceedings of the 28th Sym-

posium On Applied Computing, SAC2013, pp. 64-69, March 18–22, Coimbra,

Portugal.

References and Bibliography 54

[Elm02] Wilfried Elmenreich, “An Introduction to Sensor Fusion”, November 19, 2002

Vienna University of Technology, Austria.

[Fen12] M.Fengying, “Sensor networks-based Monitoring and Fuzzy Information Fu-

sion System for underground Gas disaster”, 2012 9th International Confer-

ence on Fuzzy Systems and Knowledge Discovery (FSKD 2012).

[FG08] H. Frigui, L. Gader, “Context-Dependent Multi-Sensor Fusion for Landmine

Detection”, in Geoscience and Remote Sensing Symposium, 2008. IGARSS

2008. IEEE International,Boston, MA, 7-11 July 2008.

[Gop98] Sucharita Gopal, “Artificial Neural Networks for Spatial

Data Analysis”, NCGIA Core Curriculum in GIScience,

http://www.ncgia.ucsb.edu/giscc/units/u188/u188.html, posted Decem-

ber 22, 1998.

[GRO76] S. Grossberg, “Adaptive pattern classification and universal recoding: I. Par-

allel development and coding of neural feature detectors. Biological Cybernet-

ics”, 23:121-134, 1976.

[GRO76a] S. Grossberg, “Adaptive pattern recognition and universal recoding: II. Feed-

back, expectation, olfaction, and illusions. Biological Cybernetics”, 23:187-

202, 1976.

[GJC10] G. Mountrakis, J. Im, C. Ogole, “Support vector machines in remote sensing:

A review”, in ISPRS Journal of Photogrammetry and Remote Sensing, 2010.

[HPH+08] De-Kun Hu ; Hui Peng ; Ju-Hong Tie ,Software Dept., Chengdu Univ. of Inf.

Technol., Chengdu , “A Multi-Sensor Information Fusion Algorithm based on

SVM”, Apperceiving Computing and Intelligence Analysis, 2008. ICACIA

2008, 13-15 Dec. 2008.

[HL97] D.L. Hall, J. Llinas, “An introduction to multisensor data fusion”, Proceed-

ings of the IEEE, 85(1), pp. xx-yy, 1997.

References and Bibliography 55

[KKK94] P. E. Keller, R. T. Kouzes, L. J. Kangas, “Three Neural Network Based

Sensor Systems for Environmental Monitoring”, in Electro/94 International.

Conference Proceedings. Combined Volumes, 10-12 May 1994.

[KRZ11] Krzysztofcyran, “Secondary and tertiary structure stability analysis and pre-

diction”, http://lib.bioinfo.pl/courses/view/501.

[KT02] H. Kikuchi, N. Takagi, “de Morgan Bisemilattice of Fuzzy Truth Value”, in

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued

Logic (ISMVLí02).

[LBL+05] Dae-Sik Lee, Sang-Woo Ban, Minho Lee, and Duk-Dong Lee, “Micro Gas

Sensor Array With Neural Network for Recognizing Combustible Leakage

Gases”, in IEEE SENSORS JOURNAL, VOL. 5, NO. 3, JUNE 2005.

[LCP+12a] J. Miguel A. Luz , M. Couceiro, D. Portugal, Rui Rocha, H. Araujo, G.

Dias, “Comparison of Classification Methods for Golf Putting Performance

Analysis”, Coimbra, Portugal.

[LM09] Z. Li, Y. Ma, “A new method of multi-sensor information fusion based on

SVM”, in Proceedings of the Eighth International Conference on Machine

Learning and Cybernetics, Baoding, pp.2-15, July 2009.

[LMA10] S. Larionova, L. Marques, A.T. de Almeida, “Sensor Fusion for Automated

Landmine Detection with a Mobile Robot”, in Emerging Robotics and Sensor

Technologies for Humanitarian Demining and Risky Interventions, M. Habib

and Y. Baudoin, Woodhead Pub, ISBN 1 84569 786 3, 2010.

[LS07] R.C.Luo, K.L. Su, “Autonomous Fire-Detection System Using Adaptive Sen-

sory Fusion for Intelligent Security Robot”, in IEEE/ASME TRANSAC-

TIONS ON MECHATRONICS, VOL. 12, NO. 3, JUNE 2007.

[LS10] X.Ling,L.Shen, “Application of Fuzzy Closeness and Probabilistic Neural Net-

work in Multi-sensor Fusion”, Wuhan,China,10-12 Dec. 2010.

[MCC04] D. McCulloch, An Investigation into Novelty Detection,

http://www.enm.bris.ac.uk/teaching/projects/2004_05/dm1654/kernel.html.

References and Bibliography 56

[MMN00] A. Martinelli, F. Martinelli, S.Nicosia, P. Valigi, “Multisensor Fusion For

Mobile Robot Positioning and Navigation”, 2000.

[Nic03] S. P. Niculescu, “Artificial neural networks and genetic algorithms in QSAR”,

Journal of Molecular Structure: THEOCHEM, Volume 622, Issues 1-2 March

2003.

[NMA+13a] N. L. Ferreira, M. S. Couceiro, A. Araújo and R. P. Rocha “Multi-Sensor

Fusion and Classification with Mobile Robots for Situation Awareness in Ur-

ban Search and Rescue using ROS” in 11th IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR2013). [Accepted].

[Nob10] W.Noble, “What is a support vector machine?”, 2006 Nature Publishing

Group.

[OCS+05] L. Oliveira, A. Costa, L. Schnitman, J. Souza, “An Architecture of Sensor

Fusion for Spatial Location of Objects in Mobile Robotics”, Progress in Arti-

ficial Intelligence Lecture Notes in Computer Science Volume 3808, 2005, pp

462-473.

[PNA11a] Premebida, C. , Nunes, U. , Araújo, R.,Ludwig, O., “Evaluation of Boosting-

SVM and SRM-SVM Cascade Classifiers in Laser and Vision-based Pedes-

trian Detection”, 2011 14th International IEEE Conference on, Washington,

DC, 5-7 Oct. 2011.

[POM+10] G. Pavlina, P. Oudea, M. Marisa, J. Nunninka, T. Hoodb, “A multi-agent

systems approach to distributed bayesian information fusion”, in Information

Fusion.

[PR12a] D. Portugal and R. P. Rocha, "Decision Methods for Distributed Multi-Robot

Patrol", In Proceedings of the 2012 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR’2012), College Station, Texas, USA,

November 5-8, 2012.

References and Bibliography 57

[Qui09] M. Quigley, et al. “ROS: an open-source Robot Operating System” in Proc.

Open-Source Software workshop of the International Conference on Robotics

and Automation (ICRA 2009), Kobe, Japan, May, 2009.

[RDA08] J. Rett, J. Dias, J.-M. Ahuactzin "Laban Movement Analysis using a Bayesian

model and perspective projections" In: Brain, Vision and AI - Edited by

Cesare Rossi.

[Sha10] S.Sharma, “implementation of artificial neural network for odor identification

using e-nose”, NCCI 2010 -National Conference on Computational Instru-

mentation CSIO Chandigarh, INDIA, 19-20 March 2010.

[SKV11] A. Sharma , R. Kumar , P. Varadwaj, A. Ahmad , G. Ashraf, “A Comparative

Study of Support Vector Machine”, Artificial Neural Network and Bayesian

Classifierer for Mutagenicity Prediction, Jhalwa, Allahabad, 211012, Uttar

Pradesh, India,2011 Jun 14.

[SMC+04] C. Sutton, C. Morrison, P. Cohen, J. Moody, J. Adibi, “A Bayesian Black-

board for Information Fusion”, Fusion 2004: Seventh International Confer-

ence on Information Fusion; Stockholm; Sweden; 28 June-1 July 2004. 2004.

[SST86] Shafer, Steven A.; Stentz, Anthony; and Thorpe, Charles E., “An architecture

for sensor fusion in a mobile robot” (1986). Robotics Institute. Paper 585.

http://repository.cmu.edu/robotics/585.

[Ste96] C. Stergiou, “What is a Neural Network?”,

Suprise 96 Journal ,Article 1 (cs11) London,1996,

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/cs11/article1.html.

[SVP08] Shishir B. , G. Venayagamoorthy , B.Paudel, “Embedded Neural Network for

Fire Classification Using an Array of Gas Sensors”, SAS 2008 – IEEE Sensors

Applications Symposium Atlanta, GA, February 12-14, 2008.

[TTT+03] F. Temurtas, C. Tasaltin, H. Temurtas, N. Yumusak, Z. Ziya Ozturk, “Fuzzy

Logic and Neural Network Applications on Gas Sensor Data: Concentration

References and Bibliography 58

Estimation”, Lecture Notes in Computer Science Volume 2869, 2003, pp 179-

186,18th International Symposium, Antalya, Turkey, November 3-5, 2003.

[WJL+12] P. Wang,W. Jiang , X. Li , S. Kang ,J.i Xin, “Research for Multi-sensor In-

formation Fusion Algorithm of Search and Rescue Robot Based on Embedded

Control Network”, in Journal of computers, vol. 7, no. 5, may 2012.

[VA96] D. Vlachos, J. Avaritsiotis, “Fuzzy neural networks for gas sensing”, in Sen-

sors and Actuators B 33 (1996) 77-82 , 157-73 Zographou, Athens, Greece.

[XS02] N. Xiong, P. Svensson, “Multi-sensor management for information fusion:

issues and approaches”, Elsevier, June 2002.

[YYH+10] Y.Yao,Jing Yang ,C. Huang ,W. Zhu , “Fire Monitoring System Based on

Multi-sensor Information Fusion”, in Information Engineering and Electronic

Commerce (IEEC), 2010 2nd International Symposium on 23-25 July 2010.

[Zad65] L.A.Zadeh, “Fuzzy Sets*”, Information and Control, 8, 338-353 1965.

[ZLH08] X. Zhao, Q. Luo, B. Han , “Survey on robot multi-sensor information fusion

technology”, Intelligent Control and Automation, 2008. WCICA 2008. 7th

World Congress on 25-27 June 2008.

[ZMC11] D.Zhang,X, Ma ,A.Chang, “Design of Gas fire-extinguishing Control panel

Based on Multi-sensor Information Fusion” , in Multimedia Technology

(ICMT), 2011 International Conference on 26-28 July 2011

[ZSS11] S. Zaman, W. Slany and G. Steinbauer, "ROS-based Mapping, Localization

and Autonomous Navigation using a Pioneer 3-DX Robot and their Relevant

Issues", In Proc. of the IEEE Saudi International Electronics, Communica-

tions and Photonics Conference, Riad, Saudi-Arabia, 2011.

Annex 1: font Driver Mrsensors

Annex 2: header file Mrsensors

Annex 3: arduino ROS driver

Annex 4: ml_classifier Algorithm

Annex 5: rviz markers class robot0 (traxbot)

Annex 6: rviz markers class robot1 (pioneer)

Annex 7: arduino Pioneer node

Annex 8: frames 1

Annex 9: frames 2

Annex 10: paper for the 11th IEEE International

Symposium on Safety, Security, and Rescue Robotics

(SSRR2013) [submitted]

Annex 1

C:\MRsensing.cpp
Página 1 de 4 26-08-2013 00:03:57

 1 /***
 2 *
 3 * Software License Agreement (BSD License)
 4 *
 5 * Copyright (c) 2012, ISR University of Coimbra.
 6 * All rights reserved.
 7 *
 8 * Redistribution and use in source and binary forms, with or without
 9 * modification, are permitted provided that the following conditions
 10 * are met:
 11 *
 12 * * Redistributions of source code must retain the above copyright
 13 * notice, this list of conditions and the following disclaimer.
 14 * * Redistributions in binary form must reproduce the above
 15 * copyright notice, this list of conditions and the following
 16 * disclaimer in the documentation and/or other materials provided
 17 * with the distribution.
 18 * * Neither the name of the ISR University of Coimbra nor the names of it

s
 19 * contributors may be used to endorse or promote products derived
 20 * from this software without specific prior written permission.
 21 *
 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 26 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 32 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 33 * POSSIBILITY OF SUCH DAMAGE.
 34 *
 35 * Author: Nuno Ferreira on 15/05/2013
 36 ***/
 37
 38 #include "MRsensing.h"
 39 #include <Wire.h>
 40
 41
 42
 43 unsigned long time_rise=0;
 44 unsigned long time_fall=0;
 45 unsigned long time_mus=0;
 46 unsigned int ov_counter=0;
 47 int quantity=0;//2011/12/29 change by bruce
 48 float time_sum=0;
 49 float rate=0;
 50
 51 void MRsensing::sensorSetup() {
 52
 53 //set 16bit counter for measure the wide of sensor
 54 TCCR1A = 0;
 55 TCCR1B |=1<<(CS12)|0<<(CS11)|1<<(CS10);//Set clock 1024/16MHz,unit is 6.4

us
 56 TIMSK1 |=1<<(ICIE1)|1<<(TOIE1); //enable capture interrupt and overflow i

nterrupt
 57 TCNT1 = 0;

- 1 -

C:\MRsensing.cpp
Página 2 de 4 26-08-2013 00:03:57

 58 delay(3000);
 59
 60 Wire.begin(); // join i2c bus (address optional for master)
 61
 62 pinMode(DUST_PIN,INPUT);
 63 pinMode(ALCOHOL_SelPin,OUTPUT); // set the heaterSelPin as digital out

put.
 64 pinMode(fan_pin,OUTPUT);
 65 digitalWrite(ALCOHOL_SelPin,HIGH); //when heaterSelPin is set, heater is

switched off.
 66 digitalWrite(fan_pin,HIGH);
 67
 68 sei();//enable interrupt
 69 }
 70
 71
 72 int MRsensing::getLDRsensor() {
 73
 74 int LDRsensorValue = 0;
 75 LDRsensorValue = analogRead(LDR_Pin);
 76 return LDRsensorValue;
 77
 78 }
 79
 80
 81
 82 int MRsensing::getAlcoholSensor() {
 83
 84 int sensorValue = 0;
 85 digitalWrite(ALCOHOL_SelPin,LOW); //switch on the heater o

f Alcohol sensor
 86 sensorValue = analogRead(ALCOHOL_InDatPin); //read the analog value
 87 sensorValue = 1023 - sensorValue;
 88
 89 return sensorValue;
 90 }
 91
 92
 93 int MRsensing::getDustSensor(){
 94 return quantity;
 95 }
 96
 97
 98
 99 void MRsensing::getThermopileSensor(int thermopile_tab[]) {
100
101 int idx=0;
102
103 for (idx=1; idx<=9; idx++) {
104
105 Wire.beginTransmission(TPA81ADDR);
106 Wire.write(idx);
107 Wire.endTransmission();
108 Wire.requestFrom(TPA81ADDR, 1);
109 while(Wire.available() < 1) { // Wait for incoming idx thermopile f

rame
110 }
111
112 thermopile_tab[idx-1]= Wire.read(); // receive a byte as character
113 }

- 2 -

C:\MRsensing.cpp
Página 3 de 4 26-08-2013 00:03:57

114
115 }
116
117 int MRsensing::getBearing(){
118
119 byte highByte, lowByte, fine; // highByte and lowByte store

 high and low bytes of the bearing and fine stores decimal place of bearing
120 char pitch, roll; // Stores pitch and roll valu

es of CMPS10, chars are used because they support signed value
121 int bearing; // Stores full bearing
122
123 Wire.beginTransmission(CMPS10); //starts communication with CM

PS10
124 Wire.write(2); //Sends the register we wish

 to start reading from
125 Wire.endTransmission();
126
127 Wire.requestFrom(CMPS10, 4); // Request 4 bytes from CMPS10
128 while(Wire.available() < 4); // Wait for bytes to become a

vailable
129 highByte = Wire.read();
130 lowByte = Wire.read();
131 pitch = Wire.read();
132 roll = Wire.read();
133
134 bearing = ((highByte<<8)+lowByte)/10; // Calculate full bearing
135 fine = ((highByte<<8)+lowByte)%10; // Calculate decimal place of

 bearing
136
137 return bearing;
138
139 }
140
141 //duty measure
142 ISR(TIMER1_OVF_vect)
143 {
144 if(ov_counter==7)
145 {
146 PORTD^=0x40;
147 ov_counter=0;
148 //Serial.println(time_sum);
149 rate=(float)(time_sum/336000);
150 if(rate<=8)
151 {
152 quantity=rate*562.5;//8 equal 4500 pcs Particle accordi

ng to the datasheet.
153 }
154 else
155 quantity=4500+(rate-8)*750;
156
157 //Serial.print("quantity is :");
158 //Serial.println(quantity);
159 //Serial.print("rate is :");
160 //Serial.println(rate,8);
161 time_sum=0;
162 }
163 else
164 {
165 ov_counter++;
166 //digitalWrite(6,HIGH);

- 3 -

C:\MRsensing.cpp
Página 4 de 4 26-08-2013 00:03:57

167 //Serial.println(ov_counter);
168 }
169 }
170
171
172 ISR(TIMER1_CAPT_vect)
173 {
174
175 if((PORTB^0x01)==1)
176 {
177 //time_fall=ICR1;
178 time_fall=micros();
179 TCCR1B=0x45; //change to rising capture and with 1024 prescaler
180 digitalWrite(13,HIGH);
181 //TIFR1|=1<<(TOV1);//reset the flag
182 }
183 else
184 {
185 time_rise=micros();
186 TCCR1B=0x05; //change to negative and with 1024 prescaler
187 digitalWrite(13,LOW);
188 //TIFR1|=1<<(TOV1);//reset the flag
189 if(time_rise>time_fall)
190 time_mus=20000+(time_rise-time_fall);//20000 is countervail for

 program run
191 time_sum+=+time_mus;
192 }
193
194 };
195

- 4 -

Annex 2

C:\MRsensing.h
Página 1 de 2 26-08-2013 00:22:35

 1 /***
 2 *
 3 * Software License Agreement (BSD License)
 4 *
 5 * Copyright (c) 2012, ISR University of Coimbra.
 6 * All rights reserved.
 7 *
 8 * Redistribution and use in source and binary forms, with or without
 9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 * * Neither the name of the ISR University of Coimbra nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 *
35 * Author: Nuno Ferreira on 15/05/2013
36 ***/
37
38 #include <EEPROM.h>
39 #include "Arduino.h"
40
41
42 #define ALCOHOL_InDatPin 0 //Alcohol Sensor DAT Pin is connected to Analog

Input Pin 0 (A0)
43 #define ALCOHOL_SelPin 15 //Alcohol Sensor SEL Pin is connected to Analog I

nput Pin 1 (A1). In this case it is used as digital ouput. 15 is mapped to A
1

44 #define TPA81ADDR 0x68
45 #define DUST_PIN 8
46 #define fan_pin 7
47 #define CMPS10 0x60
48 #define LDR_Pin 2 // Analog Input Pin (A2) Light Reading sensor
49
50
51
52 class MRsensing
53 {
54 public:
55 void sensorSetup();
56 int getAlcoholSensor();
57 int getDustSensor();

- 1 -

C:\MRsensing.h
Página 2 de 2 26-08-2013 00:22:35

58 void getThermopileSensor(int thermopile_tab[]);
59 int getBearing();
60 int getLDRsensor();
61
62 private:
63
64
65 };
66
67
68
69
70

- 2 -

Annex 3

C:\Arduino_ROSdriver_v5.ino
Página 1 de 8 26-08-2013 00:25:42

 1 /***
 2 *
 3 * Software License Agreement (BSD License)
 4 *
 5 * Copyright (c) 2013, ISR University of Coimbra.
 6 * All rights reserved.
 7 *
 8 * Redistribution and use in source and binary forms, with or without
 9 * modification, are permitted provided that the following conditions
 10 * are met:
 11 *
 12 * * Redistributions of source code must retain the above copyright
 13 * notice, this list of conditions and the following disclaimer.
 14 * * Redistributions in binary form must reproduce the above
 15 * copyright notice, this list of conditions and the following
 16 * disclaimer in the documentation and/or other materials provided
 17 * with the distribution.
 18 * * Neither the name of the ISR University of Coimbra nor the names of it

s
 19 * contributors may be used to endorse or promote products derived
 20 * from this software without specific prior written permission.
 21 *
 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 26 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 32 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 33 * POSSIBILITY OF SUCH DAMAGE.
 34 *
 35 * Modified by: Andre Araujo & David Portugal on 04/01/2013
 36 * Modified by: Nuno Ferreira & João Santos on 15/05/2013
 37 * Version: Traxbot_Stingbot_DriverROS_v1
 38 ***/
 39
 40 // Arduino libraries
 41 #include <EEPROM.h>
 42 #include <stdlib.h>
 43 #include <Wire.h>
 44 #include <string.h>
 45 #include <math.h>
 46
 47 // Traxbot robot & Omni3MD lib
 48 #include "Robot.h"
 49
 50 // RobotSerial Communication lib
 51 #include "RobotSerialComm.h"
 52
 53 // MRsensing ambiental sensors lib
 54 #include "MRsensing.h"
 55
 56 Omni3MD omni;
 57 Robot robot;
 58 MRsensing sensor;
 59 double ROBOT_ID = 0;

- 1 -

C:\Arduino_ROSdriver_v5.ino
Página 2 de 8 26-08-2013 00:25:42

 60
 61 // Arguments for the reply
 62 unsigned int reply_arg[5];
 63
 64 // RobotSerial Communication
 65 RobotSerialComm port;
 66
 67 //Streaming without interrupt:
 68 boolean stream1=false;
 69 boolean stream2=false;
 70 boolean stream3=false;
 71 boolean stream4=false;
 72
 73 //Variables for motion control
 74 double lin_speed_si=0.0; //Linear speed in m/s
 75 double ang_speed_si=0.0; //Rotational speed in rad/s
 76
 77
 78 // ******* Setup *******
 79 void setup(){
 80
 81
 82 // Serial port stuff
 83 Serial.begin(BAUD_RATE); // defined in "Robot.h"
 84
 85 // I2C connection
 86 omni.i2c_connect(OMNI3MD_ADDRESS); //set i2c connection
 87 delay(10); // pause 10 milliseconds
 88
 89 omni.stop_motors(); // stops all motors
 90 delay(10);
 91
 92 omni.set_i2c_timeout(0); // safety parameter -> I2C communication must oc

cur every [byte timeout] x 100 miliseconds for motor movement

 93 delay(5); // 5ms pause required for Omni3MD eeprom writin
g

 94
 95 // Encoders Reset
 96 omni.set_enc_value(1,0); // presets the encoder value [byte encoder, wo

rd encValue]
 97 omni.set_enc_value(3,0); // presets the encoder value [byte encoder, wo

rd encValue]
 98
 99 //set_prescaler(byte encoder, byte value) value: 0 - 1 pulse; 1 - 10 pul

ses; 2 - 100 pulses; 3 - 1000 pulses; 4 - 10000 pulses (requires 10ms)
100 omni.set_prescaler(1, 0); //sets the prescaler to 100; encoder count wil

l increment by 1 each 100 pulses [byte encoder, byte value]
101 delay(10); // 10ms pause required for Omni3MD eeprom writ

ing
102 omni.set_prescaler(3, 0);
103 delay(10);
104
105
106 ROBOT_ID = robot.EEPROMReadDouble(0); // TraxBot #1,#2,#3 - StingBot #

4,#5 - Pioneers #6,#7,#8,#9,#10
107 word ramp_time;
108 double axis_radius,whell_radius;
109
110 if (ROBOT_ID <=3) { // To TraxBot #1,#2,#3

- 2 -

C:\Arduino_ROSdriver_v5.ino
Página 3 de 8 26-08-2013 00:25:42

111 ramp_time = 2500;
112 axis_radius = 87;
113 whell_radius = 27;
114 } else { // To StingBot #4,#5
115 ramp_time = 1500;
116 axis_radius = 110;
117 whell_radius = 19;
118 }
119
120 omni.set_PID(Kp,Ki,Kd); // Adjust paramenters for PID control [word Kp, w

ord Ki, word Kd]
121 delay(15); // 15ms pause required for Omni3MD eeprom writ

ing
122
123 omni.set_ramp(ramp_time,0); // set acceleration ramp and limiar take of

f parameter gain[word ramp_time, word Kl]
124 delay(10); // 10ms pause required for Omni3MD eeprom writ

ing
125
126 omni.set_differential(axis_radius,whell_radius,gearbox_factor,encoder_cpr

);
127 delay(20);
128
129 // Give 5v to power sonars, digital pin 13
130 delay(250);
131 pinMode(13, OUTPUT);
132 digitalWrite(13, HIGH);
133
134 // Give 5v to digital pin 12
135 pinMode(12, OUTPUT);
136 digitalWrite(12, LOW);
137 /* Sensors Setup */
138 sensor.sensorSetup();
139 }
140
141
142 // ******* Helper functions *******
143
144 void sendEncodersReads(){
145
146 reply_arg[0] = omni.read_enc3();
147 reply_arg[1] = omni.read_enc1();
148 port.reply(OMNI_READ_ENCODERS, reply_arg, 2);
149 }
150
151 void sendSonarsReads(){
152
153 reply_arg[0] = robot.getRange(FRONT_SONAR);
154 reply_arg[1] = robot.getRange(LEFT_SONAR);
155 reply_arg[2] = robot.getRange(RIGHT_SONAR);
156 port.reply(READ_SONARS, reply_arg, 3);
157 }
158
159 void sendEncodersSonarsReads(){
160
161 reply_arg[0] = omni.read_enc3();
162 reply_arg[1] = omni.read_enc1();
163 reply_arg[2] = robot.getRange(FRONT_SONAR);
164 reply_arg[3] = robot.getRange(LEFT_SONAR);
165 reply_arg[4] = robot.getRange(RIGHT_SONAR);

- 3 -

C:\Arduino_ROSdriver_v5.ino
Página 4 de 8 26-08-2013 00:25:42

166 port.reply(READ_ENCODERS_SONARS, reply_arg, 5);
167 }
168
169 void sendRobotInfo(){
170
171 double value = robot.EEPROMReadDouble(0); //read Address "0" robot id

(expected to be written previously)
172 reply_arg[0] = round(omni.read_temperature() * 100);
173 reply_arg[1] = round(omni.read_firmware() * 100);
174 reply_arg[2] = round(omni.read_battery() * 100);
175 reply_arg[3] = ROBOT_FIRMWARE_VERSION;
176 reply_arg[4] = (int)value; // Robot ID
177 port.reply(ROBOT_INFO, reply_arg, 5);
178 }
179
180 void sendSensorsInfo(int *thermopile_array){
181
182 int tmax, x;
183 sensor.getThermopileSensor(thermopile_array);
184
185 for(x = 0; x < 8 ; x++){
186 if(x == 0) tmax = thermopile_array[x];
187 if(thermopile_array[x] > tmax) tmax = thermopile_array[x];
188 }
189
190 if (ROBOT_ID <= 5) {
191 reply_arg[0] = omni.read_enc3();
192 reply_arg[1] = omni.read_enc1();
193 } else {
194 reply_arg[0] = 999;
195 reply_arg[1] = 999;
196 }
197 reply_arg[2] = sensor.getAlcoholSensor();
198 reply_arg[3] = sensor.getDustSensor();
199 reply_arg[4] = tmax;
200 port.reply(MRSENSING_START_STREAM, reply_arg, 5);
201 }
202
203 void sendSensorsLDRInfo(int *thermopile_array){
204
205 int tmax, x;
206 sensor.getThermopileSensor(thermopile_array);
207
208 for(x = 0; x < 8 ; x++){
209 if(x == 0) tmax = thermopile_array[x];
210 if(thermopile_array[x] > tmax) tmax = thermopile_array[x];
211 }
212
213 if (ROBOT_ID <= 5) {
214 reply_arg[0] = omni.read_enc3();
215 reply_arg[1] = omni.read_enc1();
216 } else {
217 reply_arg[0] = 999;
218 reply_arg[1] = 999;
219 }
220 reply_arg[2] = sensor.getAlcoholSensor();
221 reply_arg[3] = sensor.getDustSensor();
222 reply_arg[4] = tmax;
223 reply_arg[5] = sensor.getLDRsensor();
224 port.reply(SENSORS_LDR_START_STREAM, reply_arg, 6);

- 4 -

C:\Arduino_ROSdriver_v5.ino
Página 5 de 8 26-08-2013 00:25:42

225 }
226
227
228 void sendBearing(){
229 reply_arg[0] = sensor.getBearing();
230 port.reply(COMPASS_START_STREAM, reply_arg, 1);
231 }
232
233
234
235 // ******* Main loop *******
236 void loop(){
237
238 unsigned int arg[5];
239 int action = port.getMsg(arg);
240
241 if(action==0 && stream1==true){
242 action=ACTION_START_STREAM;
243 }
244
245 if(action==0 && stream2==true){
246 action=MRSENSING_START_STREAM;
247 }
248
249 if(action==0 && stream3==true){
250 action=COMPASS_START_STREAM;
251 }
252
253 if(action==0 && stream4==true){
254 action=SENSORS_LDR_START_STREAM;
255 }
256
257
258 // If we got an action...Process it:
259 switch(action){
260
261 case OMNI_CALIBRATION: // "@1e", no reply
262 omni.calibrate(1,0,0);
263 delay(95);
264 break;
265
266 case OMNI_SET_PID: //@2,"KP","KI","KD"e, no

reply
267 omni.set_PID(arg[0], arg[1], arg[2]);
268 break;
269
270 case OMNI_SET_PRESCALER: //@3,"enc","value"e, no r

eply
271 omni.set_prescaler(arg[0], arg[1]);
272 break;
273
274 case OMNI_SET_ENC_VALUE: //@4,"enc","enc_value"e, no

 reply
275 omni.set_enc_value(arg[0], arg[1]);
276 break;
277
278 case ROBOT_INFO: //@5e, reply: @5,"temp","fi

rm","bat","r_firm","r_id"e
279 sendRobotInfo();
280 break;

- 5 -

C:\Arduino_ROSdriver_v5.ino
Página 6 de 8 26-08-2013 00:25:42

281
282 case OMNI_READ_ENCODERS: //@6e, reply: @6,"enc1(R)","

enc2(L)"e
283 sendEncodersReads();
284 break;
285
286 case READ_SONARS: //@7e, reply: @7,"son1(F)","so

n2(L)","son3(R)"e
287 sendSonarsReads();
288 break;
289
290 case READ_ENCODERS_SONARS: //@8e, reply: @8,"enc1(R)","en

c2(L)","son1(F)","son2(L)","son3(R)"e
291 sendEncodersSonarsReads();
292 break;
293
294 case LINEAR_MOVE_PID: //@9,"speed1","speed3"e, no re

ply
295 omni.mov_lin3m_pid(arg[0], 0, arg[1]);
296 break;
297
298 case LINEAR_MOVE_NOPID: //@10,"speed1","speed2"e, no r

eply
299 omni.mov_lin3m_nopid(arg[0], 0, arg[1]);
300 break;
301
302 case MOVE_DIFFERENTIAL_SI: //@11,"vel_linear","vel_ang

ular"e, no reply
303 lin_speed_si= ((double)arg[0]/1000);
304 ang_speed_si= ((double)arg[1]/1000);
305 omni.mov_dif_si(lin_speed_si, ang_speed_si);
306 break;
307
308 case MOVE_POSITIONAL: //@12,"motor_nr","speed","en

coder_Position"e, no reply
309 omni.mov_pos(arg[0], arg[1], arg[2], 1); // move motor1 at

 speed1 until encoder count reaches the defined position and then stop with
 holding torque

310 delay(1); // wait 1ms for Omni3MD
to process information

311 break;
312
313 case STOP_MOTORS: //@13e, no reply
314 omni.stop_motors();
315 break;
316
317 case ENCODERS_RESET: //@14e, no reply
318 robot.encodersReset();
319 break;
320
321 case ACTION_GET_DEBUG: //@15e, reply (to the console)

: @13,"0/1"e
322 reply_arg[0] = port.getDebug();
323 port.reply(ACTION_GET_DEBUG, reply_arg, 1);
324 break;
325
326 case ACTION_SET_DEBUG: //@16,"0/1"e, no reply
327 port.setDebug(arg[0]);
328 break;
329

- 6 -

C:\Arduino_ROSdriver_v5.ino
Página 7 de 8 26-08-2013 00:25:42

330 case ACTION_GET_STREAM: //@17e, reply @15,"0/1"e
331 reply_arg[0] = stream1;
332 port.reply(ACTION_GET_STREAM, reply_arg, 1);
333 break;
334
335 case ACTION_START_STREAM: // "@18e, reply: @8,"enc1(R)","

enc2(L)","son1(F)","son2(L)","son3(R)"e (repeatedly)
336 stream1 = true;
337 sendEncodersSonarsReads();
338 //delay(65); //encoders read update (+- 15Hz

)
339 break;
340
341 case ACTION_STOP_STREAM: // "@19e, no reply
342 stream1 = false;
343 break;
344
345 case READ_ALCOHOL_SENSOR: // "@20e, reply: @21,"Analog outpu

t of Alcohol Sensor in mV"e
346 reply_arg[0] = sensor.getAlcoholSensor();
347 port.reply(READ_ALCOHOL_SENSOR, reply_arg, 1);
348 break;
349
350 case READ_DUST_SENSOR: // "@21e, reply: @22,"Dust senso

r values in PPM"e
351 reply_arg[0] = sensor.getDustSensor();
352 port.reply(READ_DUST_SENSOR, reply_arg, 1);
353 break;
354
355 case READ_THERMOPILE_SENSOR: // "@22e, reply: @20,"Fram

e1","Frame2","Frame3","Frame4","Frame5","Frame6","Frame7","Frame8"e
356 int thermopile_arrayy[8];
357 sensor.getThermopileSensor(thermopile_arrayy);
358 reply_arg[0] = thermopile_arrayy[0];
359 reply_arg[1] = thermopile_arrayy[1];
360 reply_arg[2] = thermopile_arrayy[2];
361 reply_arg[3] = thermopile_arrayy[3];
362 reply_arg[4] = thermopile_arrayy[4];
363 reply_arg[5] = thermopile_arrayy[5];
364 reply_arg[6] = thermopile_arrayy[6];
365 reply_arg[7] = thermopile_arrayy[7];
366 port.reply(READ_THERMOPILE_SENSOR, reply_arg, 8);
367 break;
368
369 //case MRSENSING_START_STREAM: // "@23e, reply: @23,"Al

cohol Sensor","Dust sensor","Frame1","Frame2","Frame3","Frame4","Frame5","F
rame6","Frame7","Frame8"e

370 case MRSENSING_START_STREAM: // "@23e, reply: @23,"en
c1(R)","enc2(L)","Alcohol Sensor","Dust sensor","TempMax"e

371
372 stream2 = true;
373 int thermopile_array[8];
374 sendSensorsInfo(thermopile_array);
375 break;
376
377 case MRSENSING_STOP_STREAM: // "@24e, no reply
378 //Serial.println("[STOP]");
379 stream2 = false;
380 break;
381

- 7 -

C:\Arduino_ROSdriver_v5.ino
Página 8 de 8 26-08-2013 00:25:42

382 case SENSORS_LDR_START_STREAM: // "@25e, reply: @25,"en
c1(R)","enc2(L)","Alcohol Sensor","Dust sensor","TempMax","LDR"e

383
384 stream4 = true;
385 int thermopilee_array[8];
386 sendSensorsLDRInfo(thermopilee_array);
387 break;
388
389 case SENSORS_LDR_STOP_STREAM: // "@26e, no reply
390 //Serial.println("[STOP]");
391 stream4 = false;
392 break;
393
394 case COMPASS_START_STREAM: // "@27e, reply: @25,"Bearin

g"e
395 stream3 = true;
396 sendBearing();
397 break;
398
399 case COMPASS_STOP_STREAM: // "@28e, no reply
400 stream3 = false;
401 break;
402
403 default:
404 break;
405
406
407 } // switch
408 //delay(1000);
409 } // loop()
410
411 // EOF
412
413
414
415
416
417
418
419
420
421

- 8 -

Annex 4

C:\teste.py
Página 1 de 4 26-08-2013 00:28:01

 1 #!/usr/bin/env python
 2
 3 import roslib; roslib.load_manifest('ml_classifiers')
 4 import rospy
 5 from std_msgs.msg import String
 6 from std_msgs.msg import Float64
 7 from geometry_msgs.msg import Vector3
 8 import ml_classifiers.srv
 9 import ml_classifiers.msg
 10
 11
 12 #Wrapper for calls to ROS classifier service and management of classifier d

ata
 13
 14 class ClassifierWrapper:
 15
 16 def __init__(self):
 17 #Set up Classifier service handles
 18 print 'Waiting for Classifier services...'
 19 rospy.wait_for_service("/ml_classifiers/create_classifier")
 20 self.add_class_data = rospy.ServiceProxy(
 21 "/ml_classifiers/add_class_data",
 22 ml_classifiers.srv.AddClassData, persistent=True)
 23 self.classify_data = rospy.ServiceProxy(
 24 "/ml_classifiers/classify_data",
 25 ml_classifiers.srv.ClassifyData, persistent=True)
 26 self.clear_classifier = rospy.ServiceProxy(
 27 "/ml_classifiers/clear_classifier",
 28 ml_classifiers.srv.ClearClassifier, persistent=True)
 29 self.create_classifier = rospy.ServiceProxy(
 30 "/ml_classifiers/create_classifier",
 31 ml_classifiers.srv.CreateClassifier, persistent=True)
 32 self.load_classifier = rospy.ServiceProxy(
 33 "/ml_classifiers/load_classifier",
 34 ml_classifiers.srv.LoadClassifier, persistent=True)
 35 self.save_classifier = rospy.ServiceProxy(
 36 "/ml_classifiers/save_classifier",
 37 ml_classifiers.srv.SaveClassifier, persistent=True)
 38 self.train_classifier = rospy.ServiceProxy(
 39 "/ml_classifiers/train_classifier",
 40 ml_classifiers.srv.TrainClassifier, persistent=True)
 41 print 'OK\n'
 42
 43
 44 def addClassDataPoint(self, identifier, target_class, p):
 45 req = ml_classifiers.srv.AddClassDataRequest()
 46 req.identifier = identifier
 47 dp = ml_classifiers.msg.ClassDataPoint()
 48 dp.point = p
 49 dp.target_class = target_class
 50 req.data.append(dp)
 51 resp = self.add_class_data(req)
 52
 53
 54 def addClassDataPoints(self, identifier, target_classes, pts):
 55 req = ml_classifiers.srv.AddClassDataRequest()
 56 req.identifier = identifier
 57 for i in xrange(len(pts)):
 58 dp = ml_classifiers.msg.ClassDataPoint()
 59 dp.point = pts[i]

- 1 -

C:\teste.py
Página 2 de 4 26-08-2013 00:28:01

 60 dp.target_class = target_classes[i]
 61 req.data.append(dp)
 62 resp = self.add_class_data(req)
 63
 64
 65 def classifyPoint(self, identifier, p):
 66 req = ml_classifiers.srv.ClassifyDataRequest()
 67 req.identifier = identifier
 68 dp = ml_classifiers.msg.ClassDataPoint()
 69 dp.point = p
 70 req.data.append(dp)
 71 resp = self.classify_data(req)
 72 return resp.classifications[0]
 73
 74
 75 def classifyPoints(self, identifier, pts):
 76 req = ml_classifiers.srv.ClassifyDataRequest()
 77 req.identifier = identifier
 78 for p in pts:
 79 dp = ml_classifiers.msg.ClassDataPoint()
 80 dp.point = p
 81 req.data.append(dp)
 82
 83 resp = self.classify_data(req)
 84 return resp.classifications
 85
 86
 87 def clearClassifier(self, identifier):
 88 req = ml_classifiers.srv.ClearClassifierRequest()
 89 req.identifier = identifier
 90 resp = self.clear_classifier(req)
 91
 92
 93 def createClassifier(self, identifier, class_type):
 94 req = ml_classifiers.srv.CreateClassifierRequest()
 95 req.identifier = identifier
 96 req.class_type = class_type
 97 resp = self.create_classifier(req)
 98
 99
100 def loadClassifier(self, identifier, class_type, filename):
101 req = ml_classifiers.srv.LoadClassifierRequest()
102 req.identifier = identifier
103 req.class_type = class_type
104 req.filename = filename
105 resp = self.load_classifier(req)
106
107
108 def saveClassifier(self, identifier, filename):
109 req = ml_classifiers.srv.SaveClassifierRequest()
110 req.identifier = identifier
111 req.filename = filename
112 resp = self.save_classifier(req)
113
114
115 def trainClassifier(self, identifier):
116 req = ml_classifiers.srv.TrainClassifierRequest()
117 req.identifier = identifier
118 resp = self.train_classifier(req)
119

- 2 -

C:\teste.py
Página 3 de 4 26-08-2013 00:28:01

120 def classificationCallback(data):
121 #rospy.loginfo(rospy.get_name() + ": I heard %s" % data.data)
122
123 cw = ClassifierWrapper()
124 cw.createClassifier('test','ml_classifiers/SVMClassifier')
125
126 import xlrd
127 import xlwt
128 import sys
129 sample = 3
130 pts = []
131 targs = []
132
133 wb = xlrd.open_workbook('/home/ds_pimp/Desktop/ml_classf_excel/x1.xlsx'

)
134 sh = wb.sheet_by_index(0)
135 for rownum in range(sample):
136 pts.append(sh.row_values(rownum))
137
138
139 wb = xlrd.open_workbook('/home/ds_pimp/Desktop/ml_classf_excel/x2.xlsx'

)
140 sh = wb.sheet_by_index(0)
141 for rownum in range(sample):
142 pts.append(sh.row_values(rownum))
143
144
145 wb = xlrd.open_workbook('/home/ds_pimp/Desktop/ml_classf_excel/x3.xlsx'

)
146 sh = wb.sheet_by_index(0)
147 for rownum in range(sample):
148 pts.append(sh.row_values(rownum))
149
150 wb = xlrd.open_workbook('/home/ds_pimp/Desktop/ml_classf_excel/x4.xlsx'

)
151 sh = wb.sheet_by_index(0)
152 for rownum in range(sample):
153 pts.append(sh.row_values(rownum))
154
155
156 # print pts
157 for rownum in range(sample):
158 targs.append('1')
159 for rownum in range(sample):
160 targs.append('2')
161 for rownum in range(sample):
162 targs.append('3')
163 for rownum in range(sample):
164 targs.append('4')
165
166
167 cw.addClassDataPoints('test', targs, pts)
168 cw.trainClassifier('test')
169
170 #testpts = [[20.0, 500.0, 560.0]]
171
172 testpts = [[data.x,data.y,data.z]]
173
174 print testpts
175 resp = cw.classifyPoints('test',testpts)

- 3 -

C:\teste.py
Página 4 de 4 26-08-2013 00:28:01

176 print resp
177
178 pub.publish(String(str(resp)))
179
180
181 if __name__ == '__main__':
182
183 pub = rospy.Publisher('/mrsensing_classiffication', String)
184 rospy.init_node('mrsensing')
185 rospy.Subscriber("/mrsensing_dataSensors_throttle", Vector3, classifica

tionCallback)
186
187 rospy.spin()
188
189
190
191

- 4 -

Annex 5

C:\rviz_markers_class_robot0.cpp
Página 1 de 3 26-08-2013 00:33:21

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <math.h>
 4 #include <string.h>
 5 #include <unistd.h>
 6 #include <string>
 7 #include <vector>
 8
 9 #include <ros/ros.h>
 10 #include <visualization_msgs/Marker.h>
 11 #include <nav_msgs/Odometry.h>
 12 #include <geometry_msgs/Vector3.h>
 13 #include <geometry_msgs/PoseWithCovarianceStamped.h>
 14
 15 float x=0, y=0, z=0, w=0;
 16 float x_temp=0, y_temp=0, z_temp=0, w_temp=0;
 17 float dust_sensor=0, acohol_sensor=0, thermopile_sensor=0;
 18 int cnt=0;
 19
 20 ros::Publisher marker_pub;
 21 ros::Subscriber classification_sub;
 22 ros::Subscriber dataSensors_sub;
 23 ros::Subscriber odom_sub;
 24 ros::Subscriber amcl_sub;
 25
 26 // void classificationCallback(std::string * data) {
 27 //
 28 // }
 29
 30 void dataSensorsCallback(const geometry_msgs::Vector3::ConstPtr& msg) {
 31
 32 acohol_sensor=msg->x;
 33 dust_sensor=msg->y;
 34 thermopile_sensor=msg->z;
 35
 36 }
 37
 38
 39 //void amclCallback(const geometry_msgs::PoseWithCovarianceStamped::ConstPt

r& msg) {
 40 void odomCallback(const nav_msgs::Odometry::ConstPtr& msg) {
 41
 42 x=msg->pose.pose.position.x;
 43 y=msg->pose.pose.position.y;
 44 z=msg->pose.pose.orientation.z;
 45 w=msg->pose.pose.orientation.w;
 46
 47
 48 uint32_t shape = visualization_msgs::Marker::CUBE;
 49 //shape = visualization_msgs::Marker::SPHERE;
 50 //shape = visualization_msgs::Marker::ARROW;
 51 //shape = visualization_msgs::Marker::CYLINDER;
 52 //shape = visualization_msgs::Marker::CUBE;
 53
 54 visualization_msgs::Marker marker;
 55 // Set the frame ID and timestamp. See the TF tutorials for information

on these.
 56 marker.header.frame_id = "robot_0/base_link";
 57 marker.header.stamp = ros::Time::now();
 58

- 1 -

C:\rviz_markers_class_robot0.cpp
Página 2 de 3 26-08-2013 00:33:21

 59 // Set the namespace and id for this marker. This serves to create a uni
que ID

 60 // Any marker sent with the same namespace and id will overwrite the old
one

 61
 62 marker.ns = "basic_shapes_robot0";
 63 marker.id = cnt;
 64 cnt++;
 65 marker.type = shape;
 66 marker.action = visualization_msgs::Marker::ADD;
 67 marker.pose.position.x = 0;
 68 marker.pose.position.y = 0;
 69 marker.pose.position.z = 0;
 70 marker.pose.orientation.x = 0.0;
 71 marker.pose.orientation.y = 0.0;
 72 marker.pose.orientation.z = 0;
 73 marker.pose.orientation.w = 0;
 74
 75 marker.scale.x = 0.20;
 76 marker.scale.y = 0.23;
 77 marker.scale.z = 0.3;
 78
 79 if((thermopile_sensor>40) && (thermopile_sensor<145)){
 80 marker.color.r = 1.0f;
 81 marker.color.g = 0.0f;
 82 marker.color.b = 0.0f;
 83 marker.color.a = 0.02;
 84 } else if ((thermopile_sensor>145) && (thermopile_sensor<160)) {
 85
 86 marker.color.r = 1.0f;
 87 marker.color.g = 0.0f;
 88 marker.color.b = 0.0f;
 89 marker.color.a = 0.08;
 90 } else if (thermopile_sensor>160) {
 91
 92 marker.color.r = 1.0f;
 93 marker.color.g = 0.0f;
 94 marker.color.b = 0.0f;
 95 marker.color.a = 0.3;
 96 } else {
 97
 98 marker.color.r = 0.0f;
 99 marker.color.g = 1.0f;
100 marker.color.b = 0.0f;
101 marker.color.a = 0.02;
102 }
103
104
105
106
107
108 if((acohol_sensor>360) && (acohol_sensor<390)){
109 marker.color.r = 0.0f;
110 marker.color.g = 0.0f;
111 marker.color.b = 1.0f;
112 marker.color.a = 0.02;
113 } else if ((acohol_sensor>390) && (acohol_sensor<410)) {
114
115 marker.color.r = 0.0f;
116 marker.color.g = 0.0f;

- 2 -

C:\rviz_markers_class_robot0.cpp
Página 3 de 3 26-08-2013 00:33:21

117 marker.color.b = 1.0f;
118 marker.color.a = 0.08;
119 } else if (acohol_sensor>410) {
120
121 marker.color.r = 0.0f;
122 marker.color.g = 0.0f;
123 marker.color.b = 1.0f;
124 marker.color.a = 0.3;
125 } else if (thermopile_sensor<40){
126
127 marker.color.r = 0.0f;
128 marker.color.g = 1.0f;
129 marker.color.b = 0.0f;
130 marker.color.a = 0.02;
131 }
132
133
134 // thermopile_sensor=thermopile_sensor/100;
135 // if (thermopile_sensor>100 || thermopile_sensor==0) {
136 // thermopile_sensor=1;
137 // }
138
139 marker.lifetime = ros::Duration();
140
141 marker_pub.publish(marker);
142
143
144 }
145
146
147
148 int main(int argc, char** argv)
149 {
150 ros::init(argc, argv, "classification_markers_robot0");
151 ros::NodeHandle n;
152 ros::Rate r(1);
153 marker_pub = n.advertise<visualization_msgs::Marker>("robot_0/visualizati

on_marker_robot", 1);
154 odom_sub = n.subscribe("robot_0/odom", 1, odomCallback);
155 //amcl_sub = n.subscribe("robot_0/amcl_pose", 1, amclCallback);
156 //classification_sub = n.subscribe("mrsensing_classiffication", 1, classi

ficationCallback);
157 dataSensors_sub = n.subscribe("robot_0/mrsensing_dataSensors", 1, dataSen

sorsCallback);
158
159 ros::spin();
160
161 }
162

- 3 -

Annex 6

C:\rviz_markers_class_robot1.cpp
Página 1 de 4 04-09-2013 00:58:50

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <math.h>
 4 #include <string.h>
 5 #include <unistd.h>
 6 #include <string>
 7 #include <vector>
 8
 9 #include <ros/ros.h>
 10 #include <visualization_msgs/Marker.h>
 11 #include <nav_msgs/Odometry.h>
 12 #include <geometry_msgs/Vector3.h>
 13 #include <geometry_msgs/PoseWithCovarianceStamped.h>
 14
 15 float x=0, y=0, z=0, w=0;
 16 float x_temp=0, y_temp=0, z_temp=0, w_temp=0;
 17 float dust_sensor=0, acohol_sensor=0, thermopile_sensor=0;
 18 int cnt=0;
 19
 20 ros::Publisher marker_pub;
 21 ros::Subscriber classification_sub;
 22 ros::Subscriber dataSensors_sub;
 23 ros::Subscriber odom_sub;
 24 ros::Subscriber amcl_sub;
 25
 26 void classificationCallback(std::string * data) {
 27
 28 class_svm=data;
 29
 30 }
 31
 32
 33 void dataSensorsCallback(const geometry_msgs::Vector3::ConstPtr& msg) {
 34
 35 acohol_sensor=msg->x;
 36 dust_sensor=msg->y;
 37 thermopile_sensor=msg->z;
 38
 39 }
 40
 41
 42 //void amclCallback(const geometry_msgs::PoseWithCovarianceStamped::ConstPt

r& msg) {
 43
 44 void odomCallback(const nav_msgs::Odometry::ConstPtr& msg) {
 45
 46 x=msg->pose.pose.position.x;
 47 y=msg->pose.pose.position.y;
 48 z=msg->pose.pose.orientation.z;
 49 w=msg->pose.pose.orientation.w;
 50
 51 //ROS_INFO("x=%f y=%f z=%f w=%f",x,y,z,w);
 52
 53
 54 uint32_t shape = visualization_msgs::Marker::CUBE;
 55 //shape = visualization_msgs::Marker::SPHERE;
 56 //shape = visualization_msgs::Marker::ARROW;
 57 //shape = visualization_msgs::Marker::CYLINDER;
 58 //shape = visualization_msgs::Marker::CUBE;
 59

- 1 -

C:\rviz_markers_class_robot1.cpp
Página 2 de 4 04-09-2013 00:58:50

 60 visualization_msgs::Marker marker;
 61 // Set the frame ID and timestamp. See the TF tutorials for information

on these.
 62 marker.header.frame_id = "robot_1/base_link";
 63 marker.header.stamp = ros::Time::now();
 64
 65 // Set the namespace and id for this marker. This serves to create a uni

que ID
 66 // Any marker sent with the same namespace and id will overwrite the old

one
 67
 68 marker.ns = "basic_shapes_robot1";
 69 marker.id = cnt;
 70 cnt++;
 71 marker.type = shape;
 72 marker.action = visualization_msgs::Marker::ADD;
 73 marker.pose.position.x = 0;
 74 marker.pose.position.y = 0;
 75 marker.pose.position.z = 0;
 76 marker.pose.orientation.x = 0.0;
 77 marker.pose.orientation.y = 0.0;
 78 marker.pose.orientation.z = 0;
 79 marker.pose.orientation.w = 0;
 80
 81 marker.scale.x = 0.20;
 82 marker.scale.y = 0.43;
 83 marker.scale.z = 0.3;
 84
 85
 86 if(class_svm=1) {
 87 marker.color.r = 0.0f;
 88 marker.color.g = 0.0f;
 89 marker.color.b = 1.0f;
 90 marker.color.a = 0.3;
 91 } else if (class_svm=3) {
 92 marker.color.r = 1.0f;
 93 marker.color.g = 0.0f;
 94 marker.color.b = 0.0f;
 95 marker.color.a = 0.3;
 96 } else if (class_svm=4) {
 97 marker.color.r = 0.0f;
 98 marker.color.g = 1.0f;
 99 marker.color.b = 0.0f;
100 marker.color.a = 0.02;
101 }
102
103 if((thermopile_sensor>40) && (thermopile_sensor<145)){
104 marker.color.r = 1.0f;
105 marker.color.g = 0.0f;
106 marker.color.b = 0.0f;
107 marker.color.a = 0.02;
108 } else if ((thermopile_sensor>145) && (thermopile_sensor<150)) {
109
110 marker.color.r = 1.0f;
111 marker.color.g = 0.0f;
112 marker.color.b = 0.0f;
113 marker.color.a = 0.08;
114 } else if (thermopile_sensor>150) {
115
116 marker.color.r = 1.0f;

- 2 -

C:\rviz_markers_class_robot1.cpp
Página 3 de 4 04-09-2013 00:58:50

117 marker.color.g = 0.0f;
118 marker.color.b = 0.0f;
119 marker.color.a = 0.3;
120 } else {
121
122 marker.color.r = 0.0f;
123 marker.color.g = 1.0f;
124 marker.color.b = 0.0f;
125 marker.color.a = 0.02;
126 }
127
128
129 if((acohol_sensor>360) && (acohol_sensor<390)){
130 marker.color.r = 0.0f;
131 marker.color.g = 0.0f;
132 marker.color.b = 1.0f;
133 marker.color.a = 0.02;
134 } else if ((acohol_sensor>390) && (acohol_sensor<410)) {
135
136 marker.color.r = 0.0f;
137 marker.color.g = 0.0f;
138 marker.color.b = 1.0f;
139 marker.color.a = 0.08;
140 } else if (acohol_sensor>410) {
141
142 marker.color.r = 0.0f;
143 marker.color.g = 0.0f;
144 marker.color.b = 1.0f;
145 marker.color.a = 0.3;
146 } else if (thermopile_sensor<40){
147
148 marker.color.r = 0.0f;
149 marker.color.g = 1.0f;
150 marker.color.b = 0.0f;
151 marker.color.a = 0.02;
152 }
153
154
155 // thermopile_sensor=thermopile_sensor/100;
156 // if (thermopile_sensor>100 || thermopile_sensor==0) {
157 // thermopile_sensor=1;
158 // }
159
160 marker.lifetime = ros::Duration();
161 marker_pub.publish(marker);
162
163
164 }
165
166
167
168 int main(int argc, char** argv)
169 {
170 ros::init(argc, argv, "classification_markers_robot1");
171 ros::NodeHandle n;
172 ros::Rate r(1);
173 marker_pub = n.advertise<visualization_msgs::Marker>("robot_1/visualizati

on_marker_robot", 1);
174 odom_sub = n.subscribe("robot_1/odom", 1, odomCallback);
175 //amcl_sub = n.subscribe("robot_1/amcl_pose", 1, amclCallback);

- 3 -

C:\rviz_markers_class_robot1.cpp
Página 4 de 4 04-09-2013 00:58:50

176 //classification_sub = n.subscribe("mrsensing_classiffication", 1, classi
ficationCallback);

177 dataSensors_sub = n.subscribe("robot_1/mrsensing_dataSensors", 1, dataSen
sorsCallback);

178
179 ros::spin();
180
181 }
182

- 4 -

Annex 7

C:\arduinoPioneer_node.cpp
Página 1 de 3 26-08-2013 00:52:11

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <string>
 4 #include <vector>
 5
 6 #include <ros/ros.h>
 7 #include <tf/transform_broadcaster.h>
 8 #include <nav_msgs/Odometry.h> // odom
 9 #include <geometry_msgs/Twist.h> // cmd_vel
 10
 11 #include <cereal_port/CerealPort.h>
 12 #include <geometry_msgs/Vector3.h>
 13 #include <std_msgs/String.h>
 14 #include <std_msgs/Float32.h>
 15
 16
 17
 18
 19 ros::Publisher pub_sensors;
 20 ros::Publisher pub_LDRsensor;
 21
 22 cereal::CerealPort serial_port;
 23
 24
 25 bool signof (int n) { return n >= 0; }
 26 bool confirm_communication = true;
 27 int ID_Robot = 0;
 28
 29
 30
 31 //Receive encoder ticks and send 'odom' and 'tf'
 32 void robotDataCallback(std::string * data){
 33
 34 if (confirm_communication){
 35 //ROS_INFO("Robot -- Communication OK! Received: \"%s\"", data->c_str

());
 36 ROS_INFO("Traxbot is Streaming Data.");
 37 confirm_communication = false;
 38 }
 39
 40 int first_at = data->find_first_of("@", 0);
 41 int second_at = data->find_first_of("@", first_at+1);
 42 int first_comma = data->find_first_of(",", 0);
 43 int second_comma = data->find_first_of(",", first_comma+1);
 44
 45 //protection against broken msgs from the buffer (e.g., '@6,425@6,4250,

6430e')
 46 if (second_at > -1 || second_comma == -1){
 47 ROS_WARN("%s ::: ENCODER MSG IGNORED", data->c_str());
 48 return;
 49 }
 50
 51 int left_encoder_count, right_encoder_count, alcohol_sensor, dust_senso

r, temp_max, ldr;
 52 sscanf(data->c_str(), "@25,%d,%d,%d,%d,%d,%de", &right_encoder_count, &

left_encoder_count, &alcohol_sensor, &dust_sensor, &temp_max, &ldr); //en
coder msg parsing

 53
 54 geometry_msgs::Vector3 msg;
 55 msg.x=alcohol_sensor;

- 1 -

C:\arduinoPioneer_node.cpp
Página 2 de 3 26-08-2013 00:52:11

 56 msg.y=dust_sensor;
 57 msg.z=temp_max;
 58
 59 std_msgs::Float32 msg_ldr;
 60 msg_ldr.data=ldr;
 61
 62 // Publish the message
 63 pub_LDRsensor.publish(msg_ldr);
 64 pub_sensors.publish(msg);
 65 ros::spinOnce();
 66 }
 67
 68
 69 int main(int argc, char** argv){ //typical usage: "./traxbot_node /dev/ttyA

CMx"
 70
 71 ros::init(argc, argv, "traxbot_node");
 72 ros::NodeHandle n;
 73 ros::NodeHandle pn("~");
 74 std::string port;
 75
 76 if (argc<2){
 77 port="/dev/ttyACM0";
 78 ROS_WARN("No Serial Port defined, defaulting to \"%s\"",port.c_str());
 79 ROS_WARN("Usage: \"rosrun [pkg] robot_node /serial_port\"");
 80 }else{
 81 port=(std::string)argv[1];
 82 ROS_INFO("Serial port: %s",port.c_str());
 83 }
 84
 85 // ROS publishers and subscribers
 86 pub_sensors = n.advertise<geometry_msgs::Vector3>("/mrsensing_dataS

ensors", 1);
 87 pub_LDRsensor = n.advertise<std_msgs::Float32>("/LDR_Sensor", 1);
 88
 89
 90 // baud_rate and serial port:
 91 int baudrate;
 92 pn.param<std::string>("port", port, port.c_str());
 93 pn.param("baudrate", baudrate, 115200);
 94
 95 // Open the serial port to the robot
 96 try{ serial_port.open((char*)port.c_str(), baudrate); }
 97 catch(cereal::Exception& e){
 98 ROS_FATAL("Robot -- Failed to open serial port!");
 99 ROS_BREAK();
100 }
101
102 //wait (2.5 seconds) until serial port gets ready
103 ros::Duration(2.5).sleep();
104
105 // Ask Robot ID from the Arduino board (stored in the EEPROM)
106 ROS_INFO("Starting Traxbot...");
107 serial_port.write("@5e");
108 std::string reply;
109
110 try{ serial_port.readBetween(&reply,'@','e'); }
111 catch(cereal::TimeoutException& e){
112 ROS_ERROR("Initial Read Timeout!");
113 }

- 2 -

C:\arduinoPioneer_node.cpp
Página 3 de 3 26-08-2013 00:52:11

114
115 int VDriver, Temperature, OMNI_Firmware, Battery;
116 sscanf(reply.c_str(), "@5,%d,%d,%d,%d,%de", &Temperature, &OMNI_Firmwar

e, &Battery, &VDriver, &ID_Robot); //encoder msg parsing
117
118 ROS_INFO("Traxbot ID = %d", ID_Robot);
119 if (ID_Robot < 1 || ID_Robot > 10){
120 ROS_WARN("Attention! Unexpected Traxbot ID!");
121 }
122 ROS_INFO("OMNI Board Temperature = %.2f C", Temperature*0.01);
123 ROS_INFO("OMNI Firmware = %.2f", OMNI_Firmware*0.01);
124 ROS_INFO("Arduino Firmware Version = %d.00", VDriver);
125
126 if (VDriver > 1500){
127 ROS_ERROR("Reset Robot Connection and try again.");
128 return(0);
129 }
130
131 // Start receiving streaming data
132 if(!serial_port.startReadBetweenStream(boost::bind(&robotDataCallback,

 _1), '@', 'e')){
133 ROS_FATAL("Robot -- Failed to start streaming data!");
134 ROS_BREAK();
135 }
136 serial_port.write("@25e");
137
138 ros::spin(); //trigger callbacks and prevents exiting
139 return(0);
140 }
141
142
143
144
145
146
147
148
149

- 3 -

Annex 8

view_frames Result

/robot_0/base_link

/robot_0/acrylic_support

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.205 Hz

Most recent transform: -0.439 sec old
Buffer length: 4.867 sec

/robot_0/tracks_bat_caster

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.205 Hz

Most recent transform: -0.439 sec old
Buffer length: 4.867 sec

/robot_0/wheels_sonars

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.205 Hz

Most recent transform: -0.439 sec old
Buffer length: 4.867 sec

/robot_0/laser

Broadcaster: /base_link_to_laser_0
Average rate: 10.174 Hz

Most recent transform: 1.833 sec old
Buffer length: 4.816 sec

/robot_0/odom

Broadcaster: /traxbot_node
Average rate: 147.721 Hz

Most recent transform: 1.898 sec old
Buffer length: 4.915 sec

/robot_1/base_link

/robot_1/back_sonar

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

/robot_1/front_sonar

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

/robot_1/p3dx_left_wheel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.208 Hz

Most recent transform: 0.079 sec old
Buffer length: 4.800 sec

/robot_1/p3dx_right_wheel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.208 Hz

Most recent transform: 0.079 sec old
Buffer length: 4.800 sec

/robot_1/top_plate

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

/robot_1/swivel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.208 Hz

Most recent transform: 0.079 sec old
Buffer length: 4.800 sec

/robot_1/odom

Broadcaster: /ROSARIA
Average rate: 10.204 Hz

Most recent transform: 1.994 sec old
Buffer length: 4.802 sec

/robot_1/p3dx_left_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

/robot_1/p3dx_right_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

/robot_1/center_wheel

/robot_1/center_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.203 Hz

Most recent transform: -0.473 sec old
Buffer length: 4.900 sec

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.208 Hz

Most recent transform: 0.079 sec old
Buffer length: 4.800 sec

/map

Broadcaster: /amcl_traxbot
Average rate: 10.213 Hz

Most recent transform: 1.946 sec old
Buffer length: 4.798 sec

Broadcaster: /amcl_pioneer
Average rate: 10.189 Hz

Most recent transform: 1.905 sec old
Buffer length: 4.809 sec

Recorded at time: 1375309592.813

Annex 9

view_frames Result

/robot_1/base_link

/robot_1/p3dx_left_wheel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.202 Hz

Most recent transform: 0.065 sec old
Buffer length: 4.868 sec

/robot_1/p3dx_right_wheel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.202 Hz

Most recent transform: 0.065 sec old
Buffer length: 4.868 sec

/robot_1/swivel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.202 Hz

Most recent transform: 0.065 sec old
Buffer length: 4.868 sec

/robot_1/back_sonar

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/robot_1/front_sonar

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/robot_1/top_plate

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/robot_1/laser

Broadcaster: /base_link_to_laser_1
Average rate: 10.192 Hz

Most recent transform: 2.001 sec old
Buffer length: 4.808 sec

/robot_1/p3dx_left_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/robot_1/odom

Broadcaster: /ROSARIA
Average rate: 10.204 Hz

Most recent transform: 2.109 sec old
Buffer length: 4.802 sec

/robot_1/p3dx_right_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/robot_1/center_wheel

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 15.202 Hz

Most recent transform: 0.065 sec old
Buffer length: 4.868 sec

/robot_1/center_hubcap

Broadcaster: /robot_1/robot_state_publisher_pioneer
Average rate: 30.202 Hz

Most recent transform: -0.485 sec old
Buffer length: 4.900 sec

/map

Broadcaster: /amcl_pioneer
Average rate: 10.172 Hz

Most recent transform: 2.030 sec old
Buffer length: 4.817 sec

/robot_0/odom

Broadcaster: /amcl_traxbot
Average rate: 10.229 Hz

Most recent transform: 2.027 sec old
Buffer length: 4.888 sec

/robot_0/base_link

Broadcaster: /traxbot_node
Average rate: 9.967 Hz

Most recent transform: 2.100 sec old
Buffer length: 4.816 sec

/robot_0/laser

Broadcaster: /base_link_to_laser_0
Average rate: 10.164 Hz

Most recent transform: 2.000 sec old
Buffer length: 4.821 sec

/robot_0/acrylic_support

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.209 Hz

Most recent transform: -0.470 sec old
Buffer length: 4.866 sec

/robot_0/tracks_bat_caster

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.209 Hz

Most recent transform: -0.470 sec old
Buffer length: 4.866 sec

/robot_0/wheels_sonars

Broadcaster: /robot_0/robot_state_publisher_traxbot
Average rate: 15.209 Hz

Most recent transform: -0.470 sec old
Buffer length: 4.866 sec

Recorded at time: 1375313807.416

Annex 10

1

Abstract— Multi-sensor information fusion theory concerns

the environmental perception activities to combine data from

multiple sensory resources. Mobile robots can gather infor-

mation from the environment by combining information from

different sensors as a way to organize decisions and augment

human perception. This is especially useful to retrieve contextu-

al environmental information in catastrophic incidents where

human perception may be limited (e.g., lack of visibility). To

that end, this paper proposes a specific configuration of sensors

assembled in a mobile robot, which can be used as a proof con-

cept to measure important environmental variables in an urban

search and rescue (USAR) mission, such as toxic gas density,

temperature gradient and smoke particles density. This data is

processed through a support vector machine classifier with the

purpose of detecting relevant contexts in the course of the mis-

sion. The outcome provided by the experimental experiments

conducted with TraxBot and Pioneer-3DX robots under the

Robot Operating System framework opens the door for new

multi-robot applications on USAR scenarios.

I. INTRODUCTION

Within traditional methods, the information acquired from
multiple sensors is processed separately, cutting off the possi-
ble connections and dependencies between the acquired in-
formation, thus possibly losing significant characteristics
from the environment [1]. For instance, in this work, a dust
sensor is included to detect smoke as a possible existence of
fire in the vicinities. However, as dust and smoke are particle
composites, this may induce in a misclassification error. As
opposed to the traditional method, several computing meth-
ods, usually denoted as multi-sensor information fusion
methods [2], allow to analyze and synthesize information
from different nodes. Such approach has been widely used for
real-time processing, e.g., [1][3].

The topic regarding multi-sensor information on mobile
robot environmental monitoring has been recently exploited
in the literature. For instance, the work of Larionova et al. [4]
describes a multi-sensor information approach for landmine
detection. Similarly to our approach, the authors extract the
most relevant features used for the adequate classification.
Afterwards, the well-known principal component approach
(PCA) is adopted to assess the detection of landmines. Alter-
natively, the approach of Belur et al. [5] went further in terms
of information levels at which the fusion is accomplished.
The authors took into consideration the objectives of the fu-
sion process, the application domain and the types of sensors
employed, or the sensor suite configuration for each situation.
More directed to the mobile robotic field, Jason et al. [6]
presented the need of integrating multiple sensors to accom-
plish tasks such as map building, object recognition, obstacle

This work was supported by the CHOPIN research project (PTDC/EEA-

CRO/119000/2010), by PhD scholarships SFRH/BD/64426/2009 and

SFRH/BD /73382/2010, and by Institute of Systems and Robotics (project

PEst-C/EEI/UI0048/2011), all of them funded by the Portuguese science

agency "Fundação para a Ciência e a Tecnologia" (FCT).
N. Ferreira, M. Couceiro, A. Araújo and R. P. Rocha are with the Institute of

Systems and Robotics, University of Coimbra, Pólo II, 3030-290 Coimbra,

Portugal, email: {nunoferreira, micaelcouceiro, aaraujo, rprocha}@isr.uc.pt.

avoidance, self-localization and path planning, surveying
several sensor fusion categories. More recently, the work of
Julien et al. [7] presented an information-theoretic approach
to distributively control multiple robots equipped with sensors
to infer the state of an environment. To that end, the authors
proposed a non-parametric Bayesian method for representing
the robots’ beliefs and likely observations to enable distribut-
ed inference and coordination.

Despite the large scope of applicability of multi-sensor fu-
sion on robotics, only some few works have recently focused
on catastrophic incidents, as it is the example of the Coopera-
tion between Human and rObotic teams in catastroPhic Inci-
dents (CHOPIN) R&D Project 2. The CHOPIN project aims
at exploiting the human-robot symbiosis in the development
of human rescuers’ support systems for urban search and
rescue (USAR) missions. One of the test scenarios that was
chosen to develop a proof of concept is the occurrence of fire
outbreaks in a large basement garage. In this use case, the
project aims to demonstrate the deployment of a fleet of
ground mobile robots to cooperatively explore the basement
garage wherein the fire is progressing, thus helping human
rescuers to detect and localize fire outbreaks and victims [8].

Following the trend of research, this work benefits from

the Robotic Operating System (ROS) framework [9], so as to

perform real world experimentation while having access to a

large number of tools for both analysis and visualizations (e.g.

rviz and rxgraph). ROS is currently the most popular robotic

framework in the world, being the closest one to become the

standard that the robotics community urgently needed [9].
This paper presents the first steps towards the implemen-

tation of a multi-sensor fusion strategy on such a team of
cooperative mobile robots. From the analysis of related work,
one may conclude that there are two main topics that need to
be addressed: the multi-sensor fusion architecture, and the
method to infer information from multi-sensor data. Hence,
before presenting our approach, let us introduce some con-
cepts regarding these two topics.

II. MULTI-SENSOR SYSTEM ARCHITECTURES

Since a single sensor generally can only perceive limited
or partial information about the environment, multiple similar
and dissimilar sensors are required to provide sufficient local
information with different focus and from different view-
points in an integrated manner. Information from heterogene-
ous sensors can be combined using data fusion algorithms to
obtain observable data [10]. A multi-sensor system has the
advantage to broaden machine perception and enhance
awareness of the state of the world compared to what could be
acquired with a single sensor system [11].

Therefore, multiple sensors are needed in response to the
increasingly learning nature of the environment to be sensed.
This motivates the emerging interest in research into contex-
tual environmental information in catastrophic incidents (e.g.,
urban fire). It is also beneficial to avoid overwhelming stor-
age and computational requirements in a sensor and data rich

2 http://chopin.isr.uc.pt/

Multi-Sensor Fusion and Classification with Mobile Robots for

Situation Awareness in Urban Search and Rescue using ROS

Nuno L. Ferreira, Micael S. Couceiro, Student Member, IEEE, Andre Araújo,

and Rui P. Rocha, Member, IEEE

environment, by controlling the data gathering process such
that only the truly necessary data is collected and stored. The
simplest task of sensor management is to choose the optimal
sensor parameter values, given one or more sensors, with
respect to a given task. This is called active perception where-
in sensors need to be optimally configured for a specific pur-
pose.

The basic purpose of sensor management is to adapt the
sensor’s behavior to dynamic environments. By having lim-
ited sensing resources, sensors may not be able to serve all
desired tasks and achieve all their associated goals. Therefore,
a reasonable process has to be made. In other words, more
urgent or important tasks should be given higher priority in
their competition for resources. The first step for the sensor
management system should be to utilize evidences gathered to
decide upon objects of interest and to prioritize which objects
to look at in the near future. An illustrative scenario requiring
sensor coordination is shown in Fig. 1, wherein 3 mobile
robots equipped with different sensor devices cooperatively
explore an area of interest.

Figure 1. A team of mobile robots with multi-sensors cooperatively

observing an area of fire in different points.

However, to achieve some sort of decision-making, each
robot needs to be capable of inferring its local contextual
information. To that end, for this learning process, pattern
classification techniques are needed.

III. CLASSIFICATION METHODS

The literature provides more methods for multi-sensor in-

formation that one may be able to use; the options are almost

limitless. In brief, the classification is the process of super-

vised learning where the data is separated into different clas-

ses on the basis of one or more characteristics. Artificial Neu-

ral Network (ANN), Fuzzy Logic, Bayesian Probability and

Support Vector Machine (SVM) are some of the most used

classification technics in sensor fusion for back-propagation

learning algorithms. In this work, we use and describe with

some detail one of the most well-known classification meth-

ods – the Support Vector Machine (SVM). At the end of this

section, the rationale behind the choice of SVM is presented.

A. Support Vector Machine (SVM)

In machine learning, a SVM is a supervised learning mod-
el involving a learning algorithm to analyze data and recog-
nize patterns, used for classification and regression analysis
[1], [13], [14] and [15]. Given a set of training examples, each
marked as belonging to one of two categories, an SVM train-
ing algorithm builds a model that assigns new examples into
one category or the other. An SVM model is a representation
of examples as points in space, mapped so that the examples
of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that
same space and predicted to belong to a category based on
which side of the gap they fall in. In addition to performing

linear classification, SVMs can efficiently perform non-linear
classification using what is called the kernel trick, implicitly
mapping their inputs into high-dimensional feature spaces.
The technique originated from the work of Vapnik on the
Principle of Risk Minimization, in the area of Statistical
Learning [14][16]. The technique can take two different vari-
ants: in the case of linear space, the hyperplanes of separation
are determined by an optimization algorithm; in the case of
non-linear space, a kernel function is applied and the new
space obtained is denominated the feature space [1]. Its opti-
mal function can be expressed as:

𝑓(𝑥) = 𝑤 × ∅(𝑥) + 𝑛, (1)

in which 𝑤 is a vector and 𝑛 a scalar. The dimensionality of

∅(𝑥) can be very large, making 𝑤 hard to represent explicit-

ly in memory as,

𝑤 = ∑ ∝𝑖

𝑚

𝑖=1

∅(𝑥𝑖). (2)

So the decision function is represented as:

𝑓(𝑥) = ∑ ∝𝑖𝑖=1 ∅(𝑥𝑖)∅(𝑥) + 𝑏 = ∑ ∝𝑖𝑖=1 𝐾(𝑥𝑖 , 𝑥) + 𝑏, (3)

and the dual dormation as

𝑚𝑖𝑛 𝑃(𝑤, 𝑏) =
1

2
||∑ ∝𝑖

𝑚
𝑖=1 (𝑥𝑖)|| + 𝐶 ∑ 𝐻1[𝑦𝑖𝑓(𝑥𝑖)]𝑖=1 . (4)

B. Comparison of Classification Methods

The literature is not consensual on deciding upon the most

adequate classification method. In fact, in most situations, it

depends on the requirements, either in terms of computational

and memory complexity or in terms of type and dependency

between measured variables. In [17], a comparative study of

SVM, Artificial Neural Network (ANN) and Bayesian Classi-

fier (BC) was carried out. The performance of the classifiers

were compared to determine the best model for prediction of

mutagenicity of the dataset. A higher sensitivity regarding the

SVM (69.14%) was found, outperforming the ANN (40.20%)

and the BC (58.44%). Also, the precision of the SVM model

(74.9%) was comparatively higher than both the ANN

(70.00%) and the BC (72.38%) models. Moreover, the SVM

was able to predict 15% and 5.5% less false negatives than

the ANN and the BC models, respectively. The overall accu-

racy of the SVM was found to be 71.73%, whereas the accu-

racy of the ANN and the BC approaches were 59.72% and

66.14%, respectively. Fig. 2 represents the measure of effi-

ciency of the three classifiers.

In a very different domain, the work on [18] presented a

comparative study between Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA), Naive Bayes

with Normal (Gaussian) distribution (NV) [19], Naive Bayes

with Kernel Smoothing Density Estimate (NVK) and Least

Squares SVM with Radial Basis Function Kernel, for golf

putting performance analysis.

Figure 2. Measure of efficiency of the three classifiers [17].

The parameters of the putter’s trajectory mathematical model

were used as sample of the classification algorithms. To that

end, 6 expert golfers (i.e., 6 classes) performed 30 putt execu-

tions in which the horizontal trajectory was fitted by a sinus-

oidal function. The five classification methods were com-

pared through the analysis of the confusion matrix and the

area under the Receiver Operating Characteristic curve

(AUC). From TABLE I it was possible to confirm that the

SVM presented the most consistent results for the accurate

classification of each golfer.

TABLE I. AVERAGE VALUE OF THE AUC [18].

Class LDA NV NVK SVM

1 0.619 0.601 0.680 0.744
2 0.650 0.623 0.685 0.737

3 0.566 0.582 0.761 0.737

4 0.507 0.585 0.675 0.690
5 0.622 0.651 0.766 0.797

6 0.493 0.602 0.718 0.745

C. Discussion and Decision

The most widely used data fusion methods employed in ro-

botics comes from the fields of statistics, estimation and con-

trol. However, the applicability of these methods in robotics

has a number of unique features and challenges. In particular,

and as the autonomy is the main goal, the results must be

presented and interpreted in a form from which autonomous

decisions (e.g., recognition or navigation) can be made. In this

study, it was possible to enumerate a set of efficient alterna-

tives to heavy probabilistic methods. Within such set, the

SVM present itself as a recent technique suitable for binary

classification tasks, which is related to and contains elements

of non-parametric applied statistics, neural networks and

machine learning. As we can see in [17] and [18], the results

arising from alternative models are acceptable, but the SVM

was found to be more efficient in the overall analysis. Since

SVM uses kernel, it contains a non-linear transformation

without assumptions about the functional form of the trans-

formation, which makes data linearly separable. The trans-

formation occurs implicitly on a robust theoretical basis and,

contrarily to fuzzy logic or NV, human expertise judgment

beforehand is not needed. SVM provides a good out-of-

sample generalization. This means that, by choosing an ap-

propriate generalization grade, the SVM can be robust even

when the training sample has some bias.

IV. PROPOSED MULTI-SENSOR FUSION SYSTEM

The context of this work involves Urban Search and Res-

cue (USAR) emergency scenarios, focusing on fire outbreaks

occurring in large basement garages. To that end, and as

proof-of-concept, three low-cost sensors were chosen:

A.1 Dust sensor (model PPD42NS3). Manufactured by

Grove, this sensor returns a modulated digital output

based on the detected Particulate Matters (PM). The out-

put responds to PM whose size is around 1 micro meter

or larger. Considering 𝐷 as the number of particles with,

at least, 1µm diameter, the output of the dust sensor is de-

fine as:

 0 ≤ 𝐷 ≤ 40000 [𝑝𝑐𝑠/𝑙𝑖𝑡𝑟𝑒] (5)

A.2 Thermopile Array sensor (model TPA814). This

sensor is characterized by its ability to output an array of

8 elements of 8 bits each. The analog value corresponds

directly to the temperature. Hence, one may define the

thermopile output as:

10 ≤ 𝑇𝑖 ≤ 100 [℃]
 (𝑇𝑖, 𝑖 = 1, … ,8. 𝑇𝑖 8 𝑏𝑖𝑡𝑠 𝑒𝑛𝑡𝑟𝑦𝑇 = max

𝑖
𝑣𝑖) (6)

A.3 Alcohol Sensor (model MQ303A5). This sensor has

the feature to output (𝐴) a voltage inversely proportional

to the alcohol concentration in the air:

 0 ≤ 𝐴 ≤ 700 [𝑚𝑉] (7)

The choice of these three sensors took into account the en-

vironmental variables involved in the CHOPIN project. As

previously stated, as a single sensor may induce to misclassi-

fication, the dust sensor was chosen to work with the ther-

mopile array to detect fire, and with the alcohol sensor to

detect air contamination, like gas leaks.

A. Experimental Setup for Training Database

To minimize undesired external contamination during the

training process of the SVM, an experimental multi-sensor

testbed platform setup was built (Fig. 3). This testbed was

designed as an isolated and controlled environment. The

testbed presented on Fig.3a is based on a sealed glass aquari-

um that was transformed to create air flow inside the test area

with the integration of two 120 mm fans fixed on the top of

aquarium: one for air inflow and another for air outflow.

Clean or contaminated controlled air flow samples were

introduced within the testbed to measure all achievable range

of classes. An additional fan was afterwards equipped near

the alcohol sensor for a faster settling time of the readings

(Fig.3b).

An Arduino Uno board with embedded Atmel 328 micro-

controller was used to preprocess the output data from the

sensors. Afterwards, the data was sent through a serial con-

nection to a computer using Robot Operating System (ROS)

[9], taking into account the future use of the classifier

ml_classifier6 in the real experiments.

3 http://www.sca-shinyei.com/pdf/PPD42NS.pdf
4 http://www.robot-electronics.co.uk/htm/tpa81tech.htm
5 http://www.seeedstudio.com/depot/images/product/MQ303A.pdf
6 http://www.ros.org/wiki/ml_classifiers

http://www.sca-shinyei.com/pdf/PPD42NS.pdf
http://www.robot-electronics.co.uk/htm/tpa81tech.htm
http://www.seeedstudio.com/depot/images/product/MQ303A.pdf
http://www.ros.org/wiki/ml_classifiers

Figure 3. Experimental setup for training database. a) Testbed;

b) Acquisition and pre-processig electronic setup.

B. SVM Classification and Results

In this project, several preliminary tests under different

conditions were carried out for acquisition of the training

data. The data returned from the sensors was acquired as:

𝑋 = [
𝑇1 𝐷1 𝐴1

⋮
𝑇𝑛 𝐷𝑛 𝐴𝑛

],

wherein the number of rows 𝑛 represents the number of ac-

quired samples, i.e., trials. An example of the acquired output

are presented in TABLE II.

TABLE II. OUTPUT ACQUIRED FROM THE SENSORS. COLUMN 1- TPA81

THERMOPILE ARRAY (𝑇𝑛), COLUMN 2- DUST SENSOR MODEL PPD42NS

(𝐷𝑛), COLUMN 3- ALCOHOL SENSOR (𝐴𝑛).

𝑻𝒏 𝑫𝒏 𝑨𝒏

20 110 570
21 110 575

20 110 578

21 110 581
21 110 582

The LS-SVMlab Toolbox 7 for Matlab was used for the ini-

tial training and learning based on the data acquired from the

sensors. This was a preliminary step to evaluate the chosen

classes and the reliability of the sensors. All preliminary

experiments were carried out on the setup presented in Fig. 3

dividing the space into four distinct typical classes from

USAR applications:

1. Contamination (X1)

Air contamination means that alcohol sensor is above the

500mv. Contamination can be caused by gas, petrol, or

some kind of alcohol container.

2. Smoke (X2)

Smoke is detected for an output of the dust sensor above

20.000 particles, with at least 1 µm diameter in the read-

ing area.

3. Fire (X3)

Fire needs information from the dust sensor, the thermo-

pile sensor, and the alcohol sensor. The dust sensor al-

lows detecting smoke, the thermopile sensor the tempera-

ture gradient, and the alcohol sensor the type of fire (e.g.,

fire emanating from a chemical explosion).

X1, X2, X3 are matrices with the test results for the dif-

ferent training cases. At least, a final class may be defined to

assess the safe situation:

4. Secure (X4)

This class was introduced to minimize the error of the

classifier.

𝑋 = [

𝑆1𝑥1 𝑆2𝑥1 𝑆3𝑥1

𝑆1𝑥2 𝑆2𝑥2 𝑆3𝑥2

𝑆1𝑥3 𝑆2𝑥2 𝑆3𝑥3

] Y = [Class]

7 http://www.esat.kuleuven.be/sista/lssvmlab/

 For classification purposes, the on-the-fly data (i.e., test-

ing data) is represented as:

𝑋𝑡 = [
𝑇𝑡1 𝐷𝑡1 𝐴𝑡1

⋮
𝑇𝑡𝑛 𝐷𝑡𝑛 𝐴𝑡𝑛

]

TABLE III shows the output variable. Every sample has a

class matching from the training database, represented by the

numbers 1, 2, 3 and 4 according to X1, X2, X3 and X4 pre-

viously described. After adding 20% noise to the training

data 𝑋𝑖, i.e., 𝑋𝑖
𝑡 = 1.2 × 𝑋𝑖, with 𝑖 = {1,2,3}, one may ob-

serve in TABLE IV that the SVM is still able to accurately

identify each class.

TABLE III. TRAINING DATA: SAMPLES 899 AND 900 REPRESENT

CONTAMINATION TRAINING USING ALCOHOL WHILE SAMPLES 901 AND 902

WERE RETRIEVED USING SMOKE TRAINING WITH PAPER BURNING.

Sample 𝑻𝒏 𝑫𝒏 𝑨𝒏

899 23 0 642

900 22 0 642
901 24 26218 651

902 23 26218 653

TABLE IV. OUTPUT CLASSIFICATION MATCHES THE TRAINING DATA FROM

TABLE III.

Sample Real Class Estimated Class

899 1 1
900 1 1

901 2 2

902 2 2

In TABLE V, the noise was incremented by 30% to the

training data 𝑋𝑖, i.e., 𝑋𝑖
𝑡 = 1.3 × 𝑋𝑖, with 𝑖 = {1,2,3},. It is

now possible to observe a classification error in 0 which the

SVM incorrectly classifies class 2 by class 3 in some situa-

tions (TABLE VI).

TABLE V. TRAINING DATA, SAMPLES OF SMOKE TRAINING.

Sample 𝑻𝒏 𝑫𝒏 𝑨𝒏

947 22 21402 610

948 23 21402 608

949 24 21402 607
950 23 21402 604

951 22 21402 602

Figure 4 illustrates the classification regions based on the

two sensors that the SVM classifier judges as the most im-

portant, i.e., the ones that presents more independency be-

tween themselves. The classifier assigns dust sensor and

temperature sensor as the ones with more relevant differ-

ences between different classes.

TABLE VI. OUTPUT CLASSIFICATION.

Sample Real Class Class

947 2 2

948 2 2
949 2 3

950 2 3

951 2 2

a) b)

http://www.esat.kuleuven.be/sista/lssvmlab/

Figure 4. Classes representation.

V. EXPERIMENTAL RESULTS

The same set of sensors presented in section IV was as-

sembled in a Pioneer-3DX [20] and in a TraxBot [21] robot.

The Pioneer-3DX is a well-known robotic platform for re-

search and education from ActivMedia. The robot is a robust

differential drive platform with 8 sonars in a ring disposition,

a high-performance on-board microcontroller based on a 32-

bit Renesas SH2-7144 RISC microprocessor, offering great

reliability and easiness of use. The Traxbot is a small differ-

ential Arduino-based mobile platform, developed in our

laboratory. As the Pioneer-3DX, this platform is fully inte-

grated in the open-source ROS framework [9] and is capable

to support a netbook on top of it [22]. Therefore, both plat-

forms were extended with netbooks using Ubuntu 11.10

operating system and the ROS framework with Fuerte8 ver-

sion on top of them. To explore the scenario, the robots were

teleoperated using a wiimote9 ROS node with the Wii remote

controller.

 The three sensors were assembled in an aluminium support

mounted in the front of the robots (Fig. 5). This provides a

better analysis by benefiting from the natural air flow gener-

ated by the robots’ movements during the scenario explora-

tion. Moreover, this configuration took into consideration a

better horizontal positioning of the field of view for the

thermopile array sensor. As stated at the end of section IV-B,

to pre-process the received data from the sensors, an Arduino

Uno board embedded within both platforms was used. The

dust sensor was connected to a digital port, the alcohol sen-

sor to an analogic port and the thermopile array sensor via

I2C Arduino ports. The data exchanged between the Arduino

board and the netbooks was handled using a ROS driver

developed in our previous work [22].

Figure 5. Robots eqquiped with the set of sensors:

a) Pioneer-3DX; b) TraxBot.

8 http://ros.org/wiki/fuerte
9 http://www.ros.org/wiki/wiimote

A. Experiments with Mobile Robots

Some tests with mobile robots were conducted in an in-

door scenario with 4.0 × 4.6 meters endowed with several

obstacles (Fig. 6). Three points of interest were added in the

experimental arena to simulate the necessary critical condi-

tions for classification purposes. More specifically, the fire

outbreak (Fig. 6a) was emulated using a 500 watts spotlight,

ideal to produce heat, while the gas air contamination was

simulated by inserting alcohol in an enclosed region within

the scenario (Fig. 6b). Particles insertion for the assessment

of the smoke class was not considered due to environmental

constraints associated with the laboratory.

Figure 6. Real scenerio with three point of interest for SVM classification.

a) Fire outbreak emulated using a 500 watts spotlight. b) Contaminated
enclosed area with alcohol.

To directly classify the contextual information, the ROS

SVM classifier ml_classifier10 was used. The SVM classifier

works in an online fashion based on the training data previ-

ously acquired (section IV). During the exploration mode,

the SVM classifier was continuously running so as to detect

the different classes. In the process, the acquired data from

the set of sensors is streamed, as it can be observe in the

rxgraph ROS tool (Fig.7).

Figure 7. ROS topic SVM classification diagram provided

by the ROS tool rxgraph.

In this experiments, a distributed ROS core systems for

classification was implemented in each robot laptop. A third

desktop computer running a ROS core network was added for

analysis purposes. The map of the arena was considered to be

known, a priori, for localization purposes by using an

AMCL11 algorithm. The AMCL is a probabilistic localization

system that uses a particle filter to track the pose of the robot

in the map. To that end, both robots were equipped with

Hokuyo range finder laser.

The ROS 3D visualization tool rviz12 was used for an aug-

mented representation of the output classes. Figure 8a depicts

virtual representation of the arena in rviz and the virtual

model of the robots used in real test. Figure 8b represents the

10 http://www.ros.org/wiki/ml_classifiers
11 http://www.ros.org/wiki/amcl
12 http://www.ros.org/wiki/rviz

b)

a)

a)

a) b)

http://ros.org/wiki/fuerte
http://www.ros.org/wiki/wiimote
http://www.ros.org/wiki/ml_classifiers
http://www.ros.org/wiki/amcl
http://www.ros.org/wiki/rviz

ideal output of the classes on the virtual arena. This ideal

representation was retrieved using the setup from Fig. 3b, in

which the average value from 30 readings coming the set of

sensors was considered for each 0.20 × 0.20 meters cell

within the scenario for a total amount of 460 cells.

Figure 8. a) Virtual arena with two robots in rviz. b) Ideal represantiton of

the classification regions.

The rviz representation of each class was achieved by fill-

ing the virtual arena with markers of different colors, accord-

ing with the classification output sent from the ml_classifier.

Green cells for secure cells (X4), blue cells for contamination

cells (X1) and red cells for fire cells (X3). Then, the intensity

of the color was defined to be proportional to the output

value from the relevant sensor.

In Fig. 9 a comparison from the output of the tests with a

single mobile robot and with two robots was considered,

wherein one can observe the completeness of the mission

after 3 minutes. For instance, in Fig. 9b the concentration of

the output classes covers almost all the area of the arena, thus

getting closer to the ideal representation from Fig. 8b.

Figure 9. Output classification at 3 minutes of the runnig test with: a) One

robot; b) Two robots.

This environmental mapping with one and two robots can

be better perceived in the video of the experimental trials13.

VI. CONCLUSION AND FUTURE WORK

This work presented a multi-sensor setup to assess con-

textual information within mobile robotics platforms under

catastrophic incidents. By validating this valuable approach

in real platforms, the foundations were laid for a whole series

of possible new multi-robot applications on USAR scenarios.

Moreover, special attention should be given to the group

communication architectures. Robots should be able to share

information between themselves and teams of humans (e.g.,

first responders) in an efficient way by communicating con-

13 http://www2.isr.uc.pt/~nunoferreira/videos/SSRR2013/

text commonly shared between teams of humans in such

incidents.

REFERENCES

[1] Z. LI, Y. Ma, A new method of multi-sensor information fusion based

on SVM,in Proceedings of the Eighth International Conference on Ma-

chine Learningand Cybernetics, Baoding, 12-15 July 2009.
[2] D.L. Hall,J. Llinas, , "An introduction to multisensor data fusion",

Proceedings of the IEEE, vol 85, issue 1, 1997.

[3] Shafer, Steven A.; Stentz, Anthony; and Thorpe, Charles E., "An
architecture for sensor fusion in a mobile robot" (1986). Robotics Insti-

tute. Paper 585.

[4] Larionova, S., Marques, L., & de Almeida, A. T. (2006, October).
Multi-Stage Sensor Fusion for Landmine Detection. In Intelligent Ro-

bots and Systems, 2006 IEEE/RSJ International Conference on (pp.

2943-2948). IEEE.
[5] Dasarathy, Belur V. "Sensor fusion potential exploitation-innovative

architectures and illustrative applications." Proceedings of the IEEE

85.1 (1997): 24-38.
[6] Gu, Jason, et al. "Sensor fusion in mobile robot: some perspectives."

Intelligent Control and Automation, 2002. Proceedings of the 4th

World Congress on. Vol. 2. IEEE, 2002.
[7] Julian, Brian J., et al. "Distributed robotic sensor networks: An infor-

mation-theoretic approach." The International Journal of Robotics Re-

search 31.10 (2012): 1134-1154.
[8] Micael S. Couceiro, David Portugal & Rui P. Rocha. "A Collective

Robotic Architecture in Search and Rescue Scenarios", SAC2013 -
28th Symposium on Applied Computing, pp. 64-69, March 18-22,

Coimbra, Portugal, 2013.

[9] M. Quigley, et al. “ROS: an open-source Robot Operating System” in
Proc. Open-Source Software workshop of the International Conference

on Robotics and Automation (ICRA 2009), Kobe, Japan, May, 2009.

[10] H. Aliakbarpour, L. Almeida, P. Menezes, J. Dias, Multi-sensor 3D
Volumetric Reconstruction Using CUDA, Publisher 3D Display Re-

search Center, December 2011.

[11] X. Zhao, Q. Luo, B. Han , Survey on robot multi-sensor information
fusion technology, Intelligent Control and Automation, 2008. WCICA

2008. 7th World Congress on 25-27 June 2008.

[12] N. Xiong, P. Svensson, Multi-sensor management for information
fusion: issues and approaches, FOI, S-172 90 Stockholm, Sweden 18

October 2001.

[13] C. Burges, A Tutorial on Support Vector Machines for Pattern Recog-
nition, Data Mining and Knowledge Discovery June 1998, Volume 2.

[14] R.Araújo, U. Nunes, L. Oliveira, P. Sousa, P. Peixoto , Support Vector

Machines and Features for Environment Perception in Mobile Robot-
ics,Coimbra,Portugal, 2008.

[15] De-Kun Hu ; Hui Peng ; Ju-Hong Tie ,Software Dept., Chengdu Univ.

of Inf. Technol., Chengdu , A Multi-Sensor Information Fusion Algo-
rithm based on SVM,Apperceiving Computing and Intelligence Analy-

sis, 2008. ICACIA 2008, 13-15 Dec. 2008.

[16] R. Bravo, O. Christian, A. Salazar, Spastic hemiplegia gait characteri-
zation using support vector machines: Contralateral lower limb, Rev.

Fac. Ing. UCV v.21 n.2 Caracas 2006.

[17] A.SHARMA , R. KUMAR , P.VARADWAJ, A. AHMAD , G. ASH-
RAF, A Comparative Study of Support Vector Machine, Artificial

Neural Network and Bayesian Classifierer for Mutagenicity Predic-

tion,Jhalwa, Allahabad, 211012, ttar Pradesh, India,2011 Jun 14.
[18] J. Miguel A. Luz , M. Couceiro, D. Portugal, Rui Rocha, 5 H. Araujo,

G.Dias, Comparison of Classification Methods for Golf 3 Putting Per-

formance Analysis, Coimbra,Portugal.
[19] Bishop, C. M. (2006). Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New York, Inc.

Secaucus, NJ, USA.
[20] S. Zaman, W. Slany and G. Steinbauer, "ROS-based Mapping, Locali-

zation and Autonomous Navigation using a Pioneer 3-DX Robot and

their Relevant Issues", In Proc. of the IEEE Saudi International Elec-
tronics, Communications and Photonics Conference, Riad, Saudi-

Arabia, 2011.

[21] A. Araújo, D. Portugal, M. Couceiro, C. Figueiredo and R. Rocha,
"TraxBot: Assembling and Programming of a Mobile Robotic Plat-

form". In Proc. of the 4th International Conference on Agents and Arti-

ficial Intelligence (ICAART 2012), Vilamoura, Portugal, Feb 6-8,
2012.

[22] A. Araújo, D. Portugal, M. S. Couceiro and R. P. Rocha, “Integrating

Arduino-based Educational Mobile Robots in ROS”, In Proc, 13th In-
ternational Conference on Autonomous Robot Systems and Competi-

tions, Lisbon, April 2013.

a) b)

a) b)

http://www2.isr.uc.pt/~nunoferreira/videos/SSRR2013/

	Agradecimentos
	Abstract
	Resumo
	Declaration
	Contents
	List of Figures
	List of Tables
	Notation
	Introduction
	Context and motivation
	Objectives
	Organization

	Multi-Sensor Information Fusion
	Sensors
	Multi-Sensor Information Fusion
	Summary

	Classification Methods
	Neural Network
	Types of Artificial Neural Networks
	Networks based on Feedback and Feedforward connections
	Methodology: Training, Testing and Validation Datasets and Classification

	Fuzzy Logic
	Bayesian Models
	Bayesian Probability
	Sensor Models and Multisensor Bayesian Inference
	Sensor Models and Multisensor Bayesian Inference
	Naive Bayes classifier

	Support Vector Machines
	SVM
	SVM kernel

	Comparison of Classification Methods
	Discussion and Decision

	Summary

	Multi-Sensor Embedded System
	Dust sensor
	Thermopile array
	Alcohol sensor
	Sensors Assembling in a Mobile Robot
	Summary

	SVM-based Classification and Context Recognition
	Training database
	Training database - Creation

	Summary

	Experimental Results and Discussion
	Experiments with a single mobile robot
	Offline classification
	Online classification

	Experiments with cooperative mobile robots
	Summary

	Conclusion and future work
	References and Bibliography
	I. INTRODUCTION
	II. Multi-Sensor System Architectures
	III. Classification Methods
	A. Support Vector Machine (SVM)
	B. Comparison of Classification Methods
	C. Discussion and Decision

	IV. Proposed Multi-Sensor Fusion System
	A. Experimental Setup for Training Database
	B. SVM Classification and Results

	V. Experimental Results
	A. Experiments with Mobile Robots

	VI. Conclusion and future work
	References

