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1. Introduction and framework 

The idea of robots acting as human companions is not a particularly new or original one. 
Since the notion of “robot” was created, the idea of robots replacing humans in dangerous, 
dirty and dull activities has been inseparably tied with the fantasy of human-like robots 
being friends and existing side by side with humans. In 1989, Engelberger (Engelberger,  
1989) introduced the idea of having robots serving humans in everyday environments. Since 
then, a considerable number of mature robotic systems have been implemented which claim 
to be servants, personal assistants (see a survey in Fong et al., 2003). The autonomy of such 
robots is fully oriented towards navigation in human environments and/or human-robot 
interaction.
Interaction is facilitated if the robot behaviour is as natural as possible. Two aspects of this 
are important. The first is to facilitate tasks, which involve direct physical cooperation 
between humans and robots. The second issue is that robot independent movements must 
appear familiar and predictable to humans. Furthermore, in order to be more effective 
towards a seemingly interaction, a similar appearance to humans is an important 
requirement. These considerations initiated probably the design of humanoid robots. One 
can mention here commercial robots like QRIO by Sony as well as prototypes like Alpha 
(Bennewitz et al., 2005), Robox (Siegwart et al., 2003), Minerva (Thrun et al., 2000) or Mobot 
(Nourbakhsh et al., 2003).  
These systems addressed various aspects of human-robot interaction designed by a 
programmer. This includes all or parts of situation understanding, recognition of the human 
partner, understanding his intention, and coordination of motion and action and multi-
modal communication. Such systems are able to communicate with its a non-expert user in a 
human-friendly intuitive way by employing the bandwidth of human communication and 
interaction modalities, typically through H/R interfaces, speech or gestures recognition. It is 
an evident fact that gestures are natural and rich means, which humans employ to 
communicate with each other, especially valuable in environments where the speech-based 
communication may be garbled or drowned out. Communicative gestures can represent 
either acts or symbols. This includes typically gestures recognition for interaction between 
humans and robots e.g. waving hands for good-bye, acting hello, and gestures recognition 
for directions to humanoid e.g. pointing out, stop motion. Unfortunately, a few of the 
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designed robotic systems exhibit elementary capabilities of gesture-based interaction and 
future developments in the robotic community will be undoubtedly devoted to satisfy this 
need.
Besides communication process, another and potentially deeper issue is the flexibility as 
humanoid robots are expected to evolve in dynamic and various environments populated 
with human beings. Most of the designed robotic systems lack learning representations and 
the interaction is often restricted to what the designer has programmed. 
Unfortunately, it seems impossible to create a humanoid robot with built-in knowledge of 
all possible states and actions suited to the encountered situations. To face this problem, a 
promising line of investigation is to conceptualize cognitive robots i.e. permanent learners, 
which are able to evolve and grow their capacities in close interaction with non-expert users 
in an open-ended fashion. Some recent platforms e.g. Biron (Maas et al., 2006) or Cog 
(Fitzpatrick et al., 2003) enjoy these capabilities. 
They have no completion and continue to learn as they face new interaction situations both 
with their environments and the other agents. Basically, they discover a human centred 
environment and build up an understanding of it. Typically, the robot companion follows a 
human master in his/her private home so as to familiarise it with its habitat. This human 
master points out specific locations, objects and artefacts that she/he believes are necessary 
for the robot to remember. Once such a robot has learnt, all this information, it can start 
interacting with its environment autonomously, for instance to share/exchange objects with 
humans. 
The robot must also learn new tasks and actions relatively to humans by observing and try 
to imitate them to execute the same task. Imitation learning (Asfour, 2006), (Shon et al., 2005) 
addresses both issues of human-like motion and easy teaching of new tasks: it facilitates 
teaching a robot new tasks by a human master and at the same time makes the robot move 
like a human. This human instructor must have been logically beforehand identified among 
all the possible robot tutors, and just then granted the right to teach the robot. Activities and 
gestures imitation (Asfour, 2006; Nakazawa et al., 2002) is logically an essential important 
component in these approaches. 
These reminders stress that activities/gestures interpretation and imitation, object exchange 
and person following are essential for a humanoid companion. Recall that two generally 
sequential tasks are involved in the gestures interpretation, namely the tracking and 
recognition stages while gestures imitation learning proceeds also through two stages: 
tracking, and reproduction. All these human-robot interaction modalities require, as 
expected, advanced tracking functionalities and impose constraints on their accuracies, or 
on the focus of interest. Thus, person following task requires coarse tracking of the whole 
human body and image-based trackers is appropriate in such situation. These trackers 
provide coarse tracking granularity but are generally fast and robust. Tracking hands in 
image plane is also sufficient to interpret many symbolic gestures e.g. a “hello” sign. On the 
other side, tracking hands when performing manipulation tasks requires high accuracy and so 
3D-based trackers. More globally, many tasks concerning manipulation but also interaction 
rely on tracking of the whole upper human body limbs, and require inferring 3D information. 
From these considerations, the remainder of the paper reports both on 2D and 3D tracking 
of the upper human body parts or hands from a single camera mounted on mobile robot as 
most of humanoid robots embed such exteroceptive sensor. This set of trackers is expected 
to fulfil the requirements of most of the aforementioned human-robot interaction modalities. 
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Tracking human limbs from a mobile platform has to be able to cope with: (i) automatic 
initialization and re-initialization after target loss or occlusions, (ii) dynamic and cluttered 
environments encountered by the robot during its displacements. 
The paper is organized as follows. Section 2 gives a brief state-of-art related to human body 
parts tracking based on one or multiple cameras. This allows to introduce our approach and 
to highlight particle filters in our context. Our guiding principle to design both 2D and 3D 
trackers devoted to mobile platform is also introduced. Section 3 sums up the well-known 
particle filtering formalism and describes some variants which enable data fusion in this 
framework. The latter involve visual cues which are described in section 4. Sections 5 and 6 
detail our strategies dedicated to the 2D and 3D tracking of human hands and their 
generalization to the whole upper human body parts. Section 7 presents a key-scenario and 
outlines the visual functions depicted in this paper i.e. trackers of human limbs and face 
recognition as trackers are classically launched as soon as the current user is identified as 
human master. These visual functions are expected to endow a universal humanoid robot 
and to enable it to act as a companion. 
Considerations about the overall architecture, implementation and integration in progress 
on two platforms are also presented. This concerns: (i) person recognition and his/her 
coarse tracking from a mobile platform equipped with an arm to exchange objects with 
humans, (ii) fine gestures tracking and imitation by a HRP2 model as a real platform which 
is recently available at LAAS. Last, section 8 summarizes our contribution and opens the 
discussion for future extensions. 

2. Related works on human body parts tracking 

The literature proposes a plethora of approaches dedicated to the tracking of human body 
parts. Related works can be effectively organized into two broad categories, 2D or image-
based tracking, and 3D tracking or motion capture. These categories are outlined in the two 
next subsections with special emphasis on particle filtering based approaches. Recall that 
activities/gestures tracking is currently coupled with recognition. Though a state of art 
related to activities/gestures recognition goes outside the scope of this paper, the interested 
reader is referred to the comprehensive surveys (Pavlovic, et al., 1997; Wu et al., 1999). 

2.1 2D or image-based tracking 

Many 2D tracking paradigms of the human body parts have been proposed in the literature 
which we shall not attempt to review here exhaustively. The reader is referred to (Gavrila, 
1999; Eachter et al., 1999) for details. One can mention Kalman filtering (Schwerdt et al., 
2000), the mean-shift technique (Comaniciu et al., 2003) or its variant (Chen et al., 2001), tree-
based filtering (Thayanathan et al., 2003) among many others. Beside these approaches, one 
of the most successful paradigms, focused in this paper, undoubtedly concerns sequential 
Monte Carlo simulation methods, also known as particle filters (Doucet et al., 2000). 
Particle filters represent the posterior distribution by a set of samples, or particles, with 
associated importance weights. This weighted particles set is first drawn from the state 
vector initial probability distribution, and is then updated over time taking into account the 
measurements and a prior knowledge on the system dynamics and observation models. 
In the Computer Vision community, the formalism has been pioneered in the seminal paper 
by Isard and Blake (Isard et al., 1998a), which coins the term CONDENSATION for 
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conditional density propagation. In this scheme, the particles are drawn from the dynamics 
and weighted by their likelihood w.r.t. the measurement. CONDENSATION is shown to 
outperform Kalman filter in the presence of background clutter. 
Following the CONDENSATION algorithm, various improvements and extensions have 
been proposed for visual tracking. Isard et al. in (Isard et al., 1998c) introduce a mixed-state 
CONDENSATION tracker in order to perform multiple model tracking. The same authors 
propose in (Isard et al., 1998b) another extension, named ICONDENSATION, which has 
introduced for the first time importance sampling in visual tracking. It constitutes a 
mathematically principled way of directing search, combining the dynamics and 
measurements.  So, the tracker can take advantage of the distinct qualities of the information 
sources and re-initialize automatically when temporary failures occur. Particle filtering with 
history sampling is proposed as a variant in (Torma et al., 2003). Rui and Chen in (Rui et al., 
2001) introduce the Unscented Particle Filter (UPF) into audio and visual tracking.  The UPF 
uses the Unscented Kalman filter to generate proposal distributions that seamlessly 
integrate the current observation.  Partitioned sampling, introduced by MacCormick and 
Isard in (MacCormick et al., 2000a), is another way of applying particle filters to tracking 
problems with high-dimensional configuration spaces. This algorithm is shown to be well 
suited to track articulated objets (MacCormick et al., 2000b). The hierarchical strategy (Pérez 
et al., 2004) constitutes a generalization.  

2.2 3D tracking or motion capture 

In the recent years, special devices such as data glove (Sturman et al. 1994), immersive 
environment (Kehl et al., 2004) and marker-based optical motion capturing system 
(generally Elite or VICON) are commonly used, in the Robotics community, to track the 
motion of human limbs. Let us mention some developments, which aim at analyzing raw 
motion data, acquired from the system VICON and reproduct them on a humanoid robot to 
imitate dance (Nakazawa et al., 2002) or walking gait (Shon et al., 2005). Using such systems 
is not intuitive and questionable in human-robot interaction session. Firstly, captured 
motion cannot be directly imported into a robot, as the raw data must be converted to its 
joint angle trajectories. Secondly, usual motion capture systems are hard to implement while 
using markers is restrictive.
Like many researchers of the Computer Vision community, we aim at investigating marker-
less motion capturing systems, using one or more cameras. Such a system could be run 
using conventional cameras and without the use of special apparel or other equipment. To 
date, most of the existing marker-less approaches take advantage of the a priori knowledge 
about the kinematics and shape properties of the human body to make the problem 
tractable. Tracking is also well supported by the use of 3D articulated models which can be 
either deformable (Heap et al., 1996; Lerasle et al.,1999; Kakadiaris et al., 2000; Metaxas et al., 
2003; Sminchisescu et al., 2003) or rigid (Delamarre et al., 2001; Giebel et al., 2004; Stenger et 
al., 2003). In fact, there is a trade-off between the modelling error, due to rigid structures, the 
number of parameters involved in the model, the required precision, and the expected 
computational cost. In our case, the creation of a simple and light approach that would be 
adequate to for a quasi-real-time application was one of the ideas that guided the 
developments. This motivated our choice of using truncated rigid quadrics to represent the 
limbs' shapes. Quadrics are, indeed, quite popular geometric primitives for use in human 
body tracking (Deutcher et al., 2000; Delamarre et al., 2001; Stenger et al., 2003). This is due 
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to the fact that they are easily handled, and can be combined to create complex shapes, and 
their projections are conic sections that can be obtained in closed form.  Our projection 
method that will be depicted later, although being inspired from (Stenger et al., 2001) has 
the advantage that it requires less computational power than this one.  
Two main classes of 3D model-based trackers can be considered, 3D reconstruction-based 
approaches (Delamarre et al., 2001; Urtasum et al., 2004) and appearance-based approaches, 
being both widely investigated. While the former performs a reconstruction of the largest 
possible number of points of the tracked object or structure and then tries to match them in 
3D space, the latter tries to solve the problem of in which configuration should the target be 
for its representation being the currently observed one. Normally some characteristic 
features of the object are used to in the construction of a model-to-image fitting process.  
Our work that is presented in this paper is focused on the use of this kind of approach 
making no assumptions about clothing and background structure. 
To cope with the lack of discriminant visual features, the presence of clutter, and the frequent 
occurrence of mutual occlusions between limbs, one solution is to base the observation model 
on multiple views (Delamarre et al., 2001; Deutscher et al., 2000; Gavrila et al., 1996; Lerasle et 
al., 1999; Stenger et al., 2001; Urtasun et al., 2004).  Another solution (Gonçalves et al., 1995; 
Park et al. 2993; Sidenbladh et al., 2000; Sminchisescu et al., 2003), which is the one we have 
chosen, is to use a single view and increase the reliability and specificity of the observation 
model. To do so, a robust and probabilistically motivated integration of multiple measurement 
modalities is of great help. There are several examples in the literature of such integration like, 
for example edges and colour cues in (Stenger et al., 2003), edges/silhouette and motion cues 
in (Sminchisescu et al., 2003) or edges, texture and 3D data cues in (Giebel et al., 2004). In our 
case, we propose an observation model that combines edges and motion cues for the quadrics 
limbs, with local colour and texture patches on clothing acting as natural markers.  Finally and 
inspired from (Sminchisescu et al., 2003), we add joints limits and self-body collision removal 
constraints to the overall model. 
Regarding the tracked movements, some approaches rely on simplifications brought in 
either by using sophisticated learnt motion models, such as walking (Urtasun et al., 2004), or 
by restricting movements to those contained roughly in a fronto-parallel plane (Sidenbladh 
et al., 2000). Both simplification choices are well suited to monocular approaches. No 
specific motion models are used in this work, as we want to be able to track general human 
motions. In such unconstrained setup, a monocular estimation process suffers necessarily 
from the inevitable multi-modality of the observation process. 
Each of these solutions produces a local minimum in the observation function, by 
consequence when any single-hypothesis-tracker is started in a position of configuration 
space too far from the good one, it may simply be trapped in one of the false minima, with 
the consequent tracking failure target loss. 
Reliable tracking requires a powerful multiple hypothesis tracker capable of finding and 
following a significant number of minima. Local descent search strategies (Delamarre et al., 
2001; Lerasle et al., 1999; Kakadiaris et al., 2000; Rehg et al., 1995; Urtasum et al., 2004) do 
search a local minimum, but with multi-modality there is no guaranty that the globally most 
representative one is found.  Like others (Deutscher et al., 2000; Poon et al., 2002; Wu et al., 
2001), we address these problems by employing particle-filtering techniques for the 
following reasons. 
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Particle filtering generates random sampling points according to a proposal distribution, 
which may contain multiple modes encoding ``the good places to look at''. Such 
probabilistic framework allows the information from different measurements sources to be 
fused in a principled manner. Although this fact has been acknowledged before, it has not 
been fully exploited for 3D trackers.  Combining a host of cues such as colour, shape, and 
even motion, may increase the reliability of estimators dedicated to track human limbs. 
In what concerns the computational cost, particle filters techniques normally require a 
substantial computation power, especially in high state-space dimensionality cases, which 
make the number of required samples to explode. Consequently, large efforts have been 
devoted to tackle such problem by reducing both the model's dimension through PCA (Wu 
et al., 2001; Uratasum et al., 2004), and the number of samples by testing stochastic sampling 
``variants'' (Deutscher et al., 2000; Sminchisescu et al., 2003). 

2.3 Problem statement and guiding principle 

2D or 3D human tracking from a mobile platform is a very challenging task, which imposes 
several requirements. First, the sensor's setup, is naturally embedded on the autonomous 
robot. By consequence from the camera point of view all scene objects move, this precludes 
the use of some useful techniques like background subtracting for isolating the target 
objects. As the robot is expected to evolve in environments that are highly dynamic, 
cluttered, and frequently subjected to illumination changes, several hypotheses must be 
handled simultaneously by the trackers. This is due to the multi-modality that appears in 
the statistical distributions of the measured parameters, as a consequence of the clutter or 
the changes in the appearance of the target.  Consequently, several hypotheses must be 
handled simultaneously in the developed trackers, and a robust integration of multiple 
visual cues is required to efficiently localize the good likelihood peaks. Finally, on-board 
computational power is limited so that only a small percentage of these resources can be 
allocated to tracking, the remaining part being required to enable the concurrent execution 
of other functions as well as decisional routines within the robot's architecture. Thus, care 
must be taken to design efficient algorithms. 
The particle-filtering framework is well suited to the above requirements and is widely used 
in the literature both for 2D or 3D tracking purpose. The popularity of this framework is due 
to its simplicity, ease of implementation, and modelling flexibility. This framework makes 
no restrictive assumptions about the probability distributions and enables the fusion of 
diverse measurements in a simple way. Clearly, combining a host of cues may increase our 
trackers versatility and reliability. Finally, from the numerous particle-filtering strategies 
proposed in the literature, one is expected to fit to the requirements of each tracker 
modality. These considerations lead us to investigate on particle filtering strategies for data 
fusion. The creation of simple and light monocular-based trackers that would adequate to 
for a quasi-real time application was another motivation that guided our developments. 

3. Particle filtering algorithms for data fusion 

3.1 Generic algorithm 

Particle filters are sequential Monte Carlo simulation methods for the state vector estimation 
of any Markovian dynamic system subject to possibly non-Gaussian random inputs 
(Arulampalam et al., 2002). The aim is to recursively approximate the posterior density 
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function (pdf) of the state vector  at time k conditioned on the set of measurements 
 through the linear point-mass combination  

(1)

which expresses the selection of a value -or ``particle''-  with probability -or ``weight''- 
.

A generic particle filter or SIR is shown on Table 1. The particles  evolve stochastically 
over the time, being sampled from an importance density , which aims at adaptively 

exploring ``relevant'' areas of the state space. Their weights 
)(i

kω  are updated thanks to 

 and , respectively the state dynamics and measurement functions, so as 
to guarantee the consistency of the approximation (1). In order to limit the degeneracy 
phenomenon, which says that after few instants the weights of all but one particle tend to 
zero, step 8 inserts a resampling process. Another solution to limit this effect in addition to 
re-sampling is the choice of a good importance density. 

Table 1. Generic particle filtering algorithm (SIR) 

3.2 Importance sampling from either dynamics or measurements:  basic strategies 

The CONDENSATION algorithm is instanced from the SIR algorithm as 
. A difference relative to the SIR algorithm is that the re-sampling 

step 8 is applied on every cycle. Resampling by itself cannot efficiently limit the degeneracy 
phenomenon as the state-space is blindly explored without any knowledge of the 
observations. On the other side, the ICONDENSATION algorithm (Isard et al., 1998), 
considers an importance density , which classically relates to the importance function 

 defined from the current image. However, if a particle drawn exclusively from the 
image is inconsistent with its predecessor in terms of state dynamics, the update formula 
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leads to a small weight. An alternative consists in sampling the particles according the 
measurements, dynamics and the prior, so that, with 

.

3.3 Towards the “optimal” case: the Auxiliary Particle Filter  

The Auxiliary Particle Filter (Pitt et al., 1999) noted APF depicted by the algorithm of Table 2 
is another variant that aims to overcome some limitations of the ``blind exploration''. This 
algorithm considers an auxiliary density , where  characterise the density of 
conditioned on  (step 4). Compared to the CONDENSATION scheme, the advantage of 
this filter is that it naturally generates points from the sample at k-1 which, conditioned on 
the current measure, are most likely to be close to the true state and so improve the estimate 
accuracy. In practice, it runs slightly slower than the CONDENSATION as we need to 
evaluate the auxiliary weights  (step 4) and to perform two weighted bootstraps (steps 4 
and 9) rather than one. However, the improvement in sampling will usually dominate these 
small effects. By making proposals that have high conditional likelihoods, we reduce the 
cost of sampling many times from particles, which have very low likelihoods and so will not 
be re-sampled at the second process stage.  This improves the statistical efficiency of the 
sampling procedure and it means that we can reduce substantially the number N of 
particles. 

Table 2. Auxiliary Particle Filter (APF) 

4. Importance and measurement functions 

Importance functions  involve generally discriminant but possibly intermittent visual 
cues while measurement functions  involve cues which must be persistent but are 
however more prone to ambiguity for cluttered scene (Pérez et al., 2004). 
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Combining or fusing multiple cues enables the tracker to better benefit from distinct 
information, and confers robustness w.r.t temporary failures. Measurement and importance 
functions are depicted hereafter as well as some considerations regarding data fusion. 

4.1 Measurement functions 

4.1.1 Shape cue 

The use of shape cues requires indeed that the class of targets to be tracked is known a priori 
and that contour models can be learnt beforehand, i.e. that coarse 2D ou 3D models of the 
targeted limbs can be used. For simple view-based shape representation, human limbs are 
therefore represented by coarse silhouette contours (Figure 1). For 3D tracking, a 
preliminary 3D model projection and hidden parts removal is required (Delamarre et al, 
2001; Deutscher et al., 2001; Menezes et al 2005a, Sminchisescu et al., 2003). 

Figure 1. Examples of silhouette templates 

The shape-based likelihood is classically computed using the sum of the squared distances 
between model points  and the nearest closest edges , which lie on the normals that 
pass through the points . These measurement points are chosen uniformly distributed 
along the model.  

. (2)

where  is a weight dedicated to further 3D tracking purpose (see section 6.2), j indexes the 
 model points, and  a standard deviation being determined a priori. 

A variant (Giebel et al., 2004) consists in converting the edge image into a Distance 
Transform image, noted  which is used to peek the distance values. The advantage of 
matching our model contours against a DT image rather than using directly the edges image 
is twofold. Firstly, the similarity measure D is a smoother function of the model pose 
parameters. Secondly, this reduces the involved computations as the DT image can be 
generated only once, independently of the number N of particles used in the filter. The 
distance D becomes 

(3)

where  is the associated value in the DT image. Figure 1 (a) and (b) shows two plots 
of these two likelihoods for an image-based tracker where the target is a 2D elliptical 
template corresponding coarsely to the head of the right subject in the input image. As 
expected, the distance (3) appears to be less discriminant to clutter but is shown to enjoy 
least time consumption for .
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(a) (b) (c) (d) 

Figure 2. Likelihoods for 2D tracker for shape (a)-(b), shape and optical flow (c), shape and 
colour (d) 

4.1.2 Shape and motion cues combination 

In our context, and contrary to the background, which is assumed to remain static, the 
human limbs are expected to be moving, possibly intermittently. To cope with cluttered 
scenes and reject false background attractors, we favour the moving edges, if they exist, as 
they are expected to correspond to the moving target. As the target can be temporarily 
stopped, the static edges are not completely rejected, but only made less attractive than the 
moving ones. The points  in (2) receive the additional constraint that the corresponding 
optical flow vectors  must have nonzero norm. The new likelihood  involves 
the following similarity measure 

(4)

where  (resp. 1) if  (resp. if ) and  terms a penalty. 
Figure 2-(c) plots this more discriminant likelihood function for the example seen above. The 
target is still the subject on the right, but is assumed to be moving.  
Regarding the similarity measure (3), shape and motion cues are combined by using two DT 

images, where the second one )(' jIDT  is obtained by filtering out the static edges, based on 
the local optical flow vector.  The distance D becomes 

. (5)

where weight values  make moving edges more attractive.  

4.1.3 Colour cue 

Clothes colours create a clear distinction between the observed persons but also the limbs 
(head, hands and feet, trunk of sleeves) for a given person. Consequently, using clothing 
patches of characteristic colour distributions, i.e. natural markers, seems very promising. 
Reference colour models are associated with these targeted ROIs. For a given ROI, we 
denote  and  two -bin normalized histograms in channel c corresponding 
respectively to the target and a region  related to any state x. The colour likelihood model 
must be defined so as to favour candidate histograms  close to the reference histogram 

. The likelihood has a form similar to (2), provided that D terms the Bhattacharyya 
distance (Pérez et al., 2004) between the two histograms. The latter can also depict the 
similarity of several colour patches related to faces but also clothes, each with its own 
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reference histogram. Let the union  be associated with the set of  reference 
histograms .  By assuming conditional independence of the 
colour measurements, the likelihood  becomes 

(6)

where  are weighting factors dedicated to further 3D tracking purpose (see section 6.2). 
This multi-part extension is more accurate thus avoiding the drift, and possible subsequent 
loss, experienced sometimes by the single-part version (Pérez et al., 2002). Figure 2-(d) plots 
this likelihood function  for the above example. Let us note that, from (6), we can 
also decline a likelihood value  relative to textured patches based on the intensity 
component. 

4.1.4 Multiple cues fusion 

Assuming the measurement models to be mutually independent given the state. Given M 
measurement sources , the global measurement function can be factorized as 

. (7)

As mentioned before, data fusion is also required for 3D tracking in order to efficiently 
localize the good likelihood peak in the state space. Figure 3-left shows the plot of the 
likelihood  involving the distance (3) and obtained by sweeping a subspace of the 
configuration space formed by two parameters of a human arm 3D model.  Figure 3-middle 
plots an approximation of the coloured multi-patches likelihood  entailed in our 
tracker. The reference colour ROI corresponds to the marked hand. Fusing shape, motion 
and colour, as plotted in Figure 3-right, is shown to be more discriminant as expected.  

Figure 3. Likelihood plots for 3D tracking: shape cue, colour cue, both shape and colour cues 
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Clearly, mixing all these cues into the measurement function of the underlying estimation 
scheme helps our 2D or 3D trackers to work under a wide range of conditions encountered 
by our robot during its displacements.  

4.2 Importance function 

4.2.1 Shape cue 

This importance function  considers the outputs from face or hand detectors. Our face 
detection system is based on the AdaBoost algorithm and uses a boosted cascade of Haar-
like features. Each feature is computed by the sum of all pixels in rectangular regions, which 
can be computed very efficiently using integral images. The idea is to detect the relative 
darkness between different regions like the region of the eyes and the cheeks (Figure 4-left).  

Figure 4. First Haar features for faces (Viola et al., 2001) and for hands 

Originally, this idea was developed by Viola et al. in (Viola et al., 2001) to reliably detect 
faces, in the range of [-45,45] degrees of out-of-plane rotation, without requiring a skin 
colour model. This widely used detector works quickly and yields high detection rates. 
This idea was extended for detecting hands. Our classifier was trained with 2000 images 
containing upright hands, and 6000 images without hands and used as negative samples. 
This hand detector exhibits a detection rate slightly smaller than the previous, mainly due to 
the lack of discriminant contrasts in the hand. Figure 4-right shows example of Haar-like 
feature used in this context. A video relative to hand detection can be downloaded from the 
following URL http://www.isr.uc.pt/~paulo/HRI.
Let us characterize the associated importance functions. Given  detected faces or hands, 
and  the centroid coordinates of each such region. The associated 
importance function  at location  follows, as the Gaussian mixture proposal  

. (8)

where  denotes the Gaussian distribution with mean  and covariance .

4.2.2 Colour cue 

Human skin colours have a specific distribution in colour space. Training images from the 
Compaq database (Jones et al., 1998) enables to construct the associated distributions. The 
detection of skin-colored blobs is performed by subsampling the input image prior to 
grouping the classified skin-like pixels. Parts of the segmented regions are filtered regarding 
their aspect ratio. Then, the importance function  is defined from the resulting blobs 
by a Gaussian mixture similar to (8).  
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4.2.3 Multi-cues mixture 

In a mobile robotic context, the efficiency of the above detection modules is influenced by 
the variability of the environment clutters and the change of viewing conditions. Therefore, 
the importance function  can be extended to consider the outputs from any of the M 
detectors, i.e.  

. (9)

5. Image-based tracking dedicated to upper human body parts  

5.1 Preliminary works for hands tracking 

Preliminary investigations (Menezes et al., 2004c) deal with an image-based tracker suitable 
to estimate fronto-parallel motions of the hand e.g. when performing a ``hello'' or a ``halt'' 
sign. The aim is to fit the view-based template relative to the targeted hand all along the 
video stream, through the estimation of its image coordinates (u,v), its scale factor s, and its 
orientation . All these parameters are accounted for in the state vector  related to the k-
th frame. With regard to the dynamics model  , the image motions of observed 
people are difficult to characterize over time.  This weak knowledge is thus formalized by 
defining the state vector as and assuming that its entries evolve according to 
mutually independent random walk models, viz. , where  terms 
the Gaussian distribution with mean  and covariance 
Complex filtering strategies are not necessary in this tracker and we opt logically for the 
CONDENSATION algorithm as it enjoys the least time consumption. The tracker is 
launched automatically when detecting hands after agreement between both the Haar-like 
features based detector and the skin blobs detector outcomes. The particle-weighting step 
entails the likelihood  based on the similarity measure (4) and a hand silhouette 
template (Figure 1). Characteristics and parameter values reported in Table 3 are used in the 
likelihoods, proposal and state dynamics involved in our hand tracker.  

Symbol Meaning Value 

- Particle filtering strategy CONDENSATION 
N Number of particles 100 
(nbL, nbC) Image resolution (320,240) 

sσ standard deviation in )/( k
MS xzp 36

Number of model points in similarity measure 30 
Penalty in similarity distance 0.12 

Table 3. Characteristics and parameter values for our image-based hand tracker 

The running time of this tracker is about 50fps on a PentiumIV-3GHz. Figure 5 shows some 
image-based tracking snapshots from a sequence involving heavy cluttered background. 
The entire video can be found at the URL http://www.isr.uc.pt/paulo/HRI. This 
elementary and specific tracker has not been integrated in the Jido's software architecture 
(detailed in section 7.1). 
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Figure 5. Image-based tracking of hand in heavy cluttered background 

5.2 Extension to the upper human body limbs 

Same guiding principles, namely data fusion in an appropriate particle filtering strategy, 
were used to develop an image-based tracker dedicated to the upper human body parts. 
This tracker can typically be launched for: (i) person following i.e. coordinating the robot's 
displacements, even if only coarsely, with those of the tracked robot user, (2) people 
perception in the robot vicinity, for instance to heckle them. This coarse human tracking is 
used to plan how to position the robot with respect to human beings in a socially acceptable 
way.
Unfortunately, more than one authorised person can be in robot vicinity, what could make 
the tracker continuously switch from the targeted person to another. Therefore, for re-
identifying individuals information based on face recognition and clothing colour are 
logically entailed in the characterization of the tracker. These permit to distinguish 
individuals but also to recover the targeted person after temporary occlusions or out-of-
sight. Moreover, any person must be, normally recognized among the potential human 
masters database before receiving the grant to learn the robot. 

5.2.1 Face recognition 

This function aims to classify bounding boxes  of detected faces (see section 4.2) into 
either one class  out of the set  -- corresponding to M users faces presumably 
learnt offline -- or into the void class . Our approach, clearly inspired by (Turk et al., 
1991), consists in performing PCA, and keeps as eigenface bases the first eigenvectors 
accounting on a certain average of the total class variance.  Our evaluations are performed 
on a face database that is composed of 6000 examples of M=10 individuals acquired by the 
robot in a wide range of typical conditions: illumination changes, variations in facial 
orientation and expression, etc. The database is separated into two disjoint sets: (i) the 
training set (dedicated to PCA) containing 100 images per class, (ii) the test set containing 
500 images per class. Each image is cropped to a size of 30x30 pixels. To improve the 
method, two lines of investigations have been pursued. 
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Figure 6. Example of face recognition 

Firstly, evaluations highlight that the Distance-From-Face Space (DFFS) error norm leads to 
the best performances in term of classification rate. For a given face { }}3030,...1{),( ×∈jj ,
the DFFS criteria is written as follows  

. (10)

where  is the reconstructed image after projection of  onto a PCA basis. For a set of M 
learnt tutors (classes) noted  and a detected face , we can define for each class 

, the distance  and an a priori probability  of labelling to 

(11)

where  is a threshold predefined automatically, refers the void class and h terms the 
Heaviside – or ``step'' -- function: h(x)=1 if x>0, 0 otherwise.  
Secondly, from the Heseltine et al. investigations in (Heseltine et al., 2002), we evaluate and 
select the most meaningful image pre-processing in terms of false positives and false 
negatives. We plot ROC curves based on different image pre-processing techniques for our 
error norm . These ROC curves are shown as the sensitivity (the ratio of true positives 
over total true positives and false negatives) versus the false positive rate. Histogram 
equalization is shown to outperform the other techniques for our database (Figure 7).

Figure 7. ROC curves image for different pre-processing techniques  

3030×
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Figure 6 shows a snapshot of detected (red)/recognized (green) faces with associated 
probabilities for a targeted person named Sylvain. More details on the face recognition 
process can be found in (Germa et al. 2007) and at the URL http://www.laas.fr/~tgerma. 
This face classifier relates to the module HumRec in the Jido's software architecture (see 
section 7.1). 

5.2.2 Image-based tracking 

This tracker is inspired from previously developed ones detailed in (Brèthes et al., 2005). It 
involves the state vector  - the orientation  being set to a known constant. 
Regarding the filtering strategy, we opt for the ICONDENSATION scheme, which allows 
automatic initialization, and aid recovery from transient tracking failures thanks to detection 
modules. Let us characterize both importance and measurement functions involved in the 
tracker. The importance function mixes, thanks to (9) the outputs from the colour blobs and 
face detectors. The importance function (7) becomes  

. (12)

Figure 8. A two-colour patch template template 

Two colour models  and  are considered in the colour-based likelihood ,
respectively for the head and the torso of the guided person (Figure 19 and 10). Their 
initializations are achieved according to frames, which lead to  probabilities egal to 
one. In the tracking loop, the colour model  is re-initialized with the initial values when 
the user verification is highly confident, typically . When the appearance of these 
two ROIs is supposed to change in the video stream, the target reference model is updated 
from the computed estimates through a first-order filtering process i.e. 

, (13)

where  weights the contribution of the mean state histogram  to the target model 
, and index p has been omitted for compactness reasons. The models updating can 

lead to drifts with the consequent loss of the target. To avoid such tracker failures, the global 
measurement model fuses, thanks to (7), colour but also shape cues. The shape-based 
likelihood  entails the similarity distance (3) and the head silhouette template 
(Figure 1). Characteristics and parameter values describing the likelihoods, state dynamics 
are listed in Table 4. 
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Due to the efficiency of the face recognition proposal (12), good tracking results are achieved 
with a reasonably small number of particles i.e. N=150 particles. A PentiumIV-3GHz 
requires about 40 fps to process the tracking.   
Figure 9 and 10 show snapshots of two typical sequences in our context. All regions -- 
centred on the yellow dots -- close to detected faces with high recognition probabilities 
corresponding to the person on the background are continually explored. Those – in blue 
colour -- that do not comply with the targeted person are discarded during the importance-
sampling step. Recall that, for large range out-of-plane face rotations ( ), the proposal 
continues to generate pertinent hypotheses from the dynamic and the skin blobs detector. 
The green (resp. red) rectangles represent the MMSE estimate in step 7 of Table 1 with high 
(resp. low) confidence in the face recognition process. The proposal generates hypotheses 
(yellow dots) in regions of significant face recognition probabilities.  

Symbol Meaning Value 
- Particle filtering strategy ICONDENSATION 
N Number of particles 150 
(nbL, nbC) Image resolution (320, 240) 

Coeff. in importance function (0.3, 0.6) 
Standard deviation in random walk models 
Standard deviation in importance function (6, 6) 
Standard deviation in importance function (6, 6) 
Number of model points in similarity measure 15 

sσ Standard deviation in shape-based likelihood  1.5 

Number of patches in 2
Standard deviation in color based likelihood 0.03
Number of colour bins per channel involved in 32

Coeff. For reference histograms  update (0.1, 0.05) 

Table 4. Characteristics and parameter values for our image-based upper human body parts 
tracker

Figure 9. Tracking scenario including two persons with target out-of-sight. Target loss 
detection and automatic re-initialization 



Humanoid Robots, Human-like Machines 384

The first scenario (Figure 9), involving sporadic target disappearance, shows that our 
probabilistic tracker is correctly positioned on the desired person (on the background) 
throughout the sequence. Although the later disappears, the tracker doesn't lock onto the 
undesired person thanks to low recognition likelihood. The tracker re-initializes 
automatically as soon as the target re-appears. 
The second scenario (Figure 10) involves occlusion of the target by another person 
traversing the field of view. The combination of multiple cues based likelihood and face 
recognition allows keeping track of the region of interest even after the complete occlusion. 
These videos as well as other sequences are available at the URL 
http://www.laas.fr/tgerma/videos demonstrate the tracker's performances on a number of 
challenging scenarios. This tracker relates to the module ICU in the Jido's software 
architecture (see section 7.1). 

Figure 10. Tracking scenario involving full occlusions between persons 

6. 3D tracking dedicated to upper human body parts  

6.1 Preliminary works for hands tracking 

6.1.1 Basis on quadrics projection 

Manipulation tasks, e.g. exchanging object, rely on 3D tracking of the human hands. 
Therefore, preliminary developments deals with an appearance and 3D model based tracker 
of hands from a mobile platform. This involves the perspective projection of the associated 
3D model. Hands are modelled by deformable quadrics as quadrics and truncated ones can 
represent approximatively most of the upper human body parts (arm, forearm, torso,...). Let 
us recall some basis relative to the projection of quadrics. The projection matrix of a quadric 
in a normalised camera is . Considering a pinhole camera model, the camera 
centre and an image point  define a projective ray, which contains the points given by 

. The depth of a 3D point, situated on this ray, is determined by the scalar. The 
expression of the quadric  can be written as 

. (14)

This expression can be considered as an equation of second degree in s. Then, when the ray 
represented by  is tangent to , there is a single solution for equation (14) i.e. its 
discriminant is zero, so:  
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. (15)

This expression corresponds to a conic  in the image plane, with , which 
therefore corresponds to the projection of the quadric . For any  belonging to , the 
corresponding 3D point  is fully defined by finding  which is given by .
This formula can be extended to arbitrary projective camera with . Defining a 4x4 
matrix  such that , and then . Only three types of quadrics are of 
interest for the next: ellipsoid, cone and cylinder. Hands are here modelled by ellipsoids 
which image projection for a pinhole camera is an ellipse.  

6.1.2 Implementation and results 

Our quadric model is deformable to deal with the shape appearance variations depending 
on the configuration in space. For a targeted hand, the state vector entries relate to the 
position , orientation , and axis lengths . As was the case for the 
above trackers, the state vector entries are assumed to evolve according to mutually 
independent Gaussian random walk models. From these considerations, the state vector to 
estimate at time k is  

. (16) 

We adopt ICONDENSATION as this strategy permits to sample some particles on the target 
after sporadic disappearances from the field of view. This situation is frequently 
encountered during manipulation tasks as short human-robot distances ([0.5;1.5] m) are 
involved. Using the video stream issued from the binocular system embedded on the robot 
here enlarges the environment perception at such close-range distances. Let us characterize 
the importance and measurement functions. 
A pre-processing step consists in determining correspondences based on heuristics (Schmidt 
1996) for skin colour blobs (see 4.2) in the image pair and calculate the 3D position for each 
match explicitly by triangulation.  The face blob is beforehand filtered thanks to the face 
detector.  Given M extracted image blobs at time k, the j-th blob is represented by its 
centroid  (resp.  ) and inertia matrix  (resp. ) in the left and right image.  For 
each triangulated position , the covariance matrix is estimated as follows 

, (17) 

where  and  are the appropriate Jacobian matrices relatively to g(.). Finally, SVD 
decomposition of matrix  allows defining a new importance function , which 
related to 3D constraint. Thus, the hands can be understood as three natural markers aiming 
at positioning the particles during the importance sampling. Note that most blob 
correspondences between the image planes are correct during this pre-processing step, but 
that there are also a few outliers (typically the non-targeted hand) that are filtered 
afterwards in the tracking loop.  
Regarding the measurement function, the 3D ellipsoids (corresponding to hypothesis after 
importance sampling) are projected into a single image plane thanks to (15). The global 
measurement function fuses shape and colour cues, and can then be formulated as: 

. The shape-based likelihood involves the similarity measure (2) 
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while the colour-based likelihood involves histogram updating thanks to (13). Characteristics 
and parameter values describing the likelihoods state dynamics are listed in Table 5.  

Symbol Meaning Value 
- Particle filtering strategy ICONDENSATION 
N Number of particles 100 
(nbL, nbC) Image resolution (320, 240) 

Coeff. In importance function (0.3, 0.6) 
Standard deviation in random walk models (1, 1, 1) cm 
Standard deviation in random walk models (1, 1, 1) degrees 

( )γβα σσσ ,, Standard deviation in random walk models 
Number of model points in similarity measure 20 
Standard deviation in shape-based likelihood 1.5

Number of patches in 1
Standard deviation in colour-based likelihood 0.03 
Number of colour bins per channel involved in 32

Coeff. For reference histograms  update 0.1

Table 5. Characteristics and parameter values for our 3D tracker of human hand 

The particle filter is run with a set of N=100 particles. The computational time, processed on 
a 3GHz Pentium IV, is approximatively 25fps. Although tracking a single hand is 
meaningful when exchanging objects, our approach can be easily extended to track both the 
two hands.  

Figure 11. 3D tracking of a hand in heavy clutter. The blue (resp. red) ellipses depict the 
particles (resp. the MMSE estimate). Automatic re-initialization after target loss 

Figure 11 shows the ellipsoid projections on snapshots of a video sequence involving heavy 
clutter. As one can see, the ellipsoids are deformed, but their positions are still correct. Moreover, 
the tracker initializes itself automatically and recovers the target after transient failure. This 3D 
tracker relates to the module GEST in the Jido's software architecture (see section 7.1). 
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6.2 Extension to the upper human body limbs 

This appearance-based tracker is devoted to tasks that rely on understanding/imitation of 
gestures or activities. We have extended the previous tracker to the whole upper human 
body parts. The upper human body parts are here modelled by rigid truncated conics. The 
method to handle model projection and hidden parts removal is inspired from section 6.1.1. 
Details can be found in (Menezes et al., 2005a). Our emphasis in the paper concerns the 
characterization of a new measurement model that combines edges and motion cues, with also 
local color and texture patches on clothing or relative to the hands acting as natural markers. 
One important point is that our approach could be easily scalable from one single to multiple 
views as well as to higher number of degrees of freedom (DOF), although it will introduce the 
consequent increase in computational cost. The following subsections detail some geometric 
properties the model entailed in the measurement model and the tracker implementation. 

6.2.1 Non-observable part stabilisation 

Despite the visual cues depicted in section 4, ambiguities arise when certain model 
parameters cannot be inferred from the current image observations, especially for a 
monocular system. They include, but are not limited to, kinematical ambiguities. For 
instance, when one arm is straight and the shape-based likelihood (2) is used, rotation of the 
upper arm around its axial axis is unobservable, because the model’s projected contours 
remain static under this DOF.  Leaving these parameters unconstrained is questionable. 
Consequently, and like in (Sminchisescu et al, 2003), we control these parameters with a 
stabiliser cost function that reaches its minimum on a predefined rest configuration .
This enables the saving of computing efforts that would explore the unobservable regions of 
the configuration space. In the absence of strong observations, the parameters are 
constrained to lie near their default values, whereas strong observations unstick the 
parameters values from these default configurations. The likelihood function for a state x is 
defined as . This prior depends on the structure parameters and the 
factor  will be chosen so that the stabilising effect will be negligible for the whole 
configuration space with the exception of the regions where the other cost terms are 
constant.   

6.2.2 Collision detection 

Physical consistency imposes that the different body parts do not interpenetrate. As the 
estimation is based on a search on the configuration space it would be desirable to a priori 
remove those regions that correspond to collisions between parts. Unfortunately it is in 
general not possible to define these forbidden regions in closed form so they could be 
rejected immediately during the sample phase. The result is that in the particle filter 
framework, it is possible that configurations proposed by some particles correspond to such 
impossible configurations, thus exploring regions in the configuration space that are of no 
interest. To avoid these situations, we use a binary cost function that is not related to 
observations but only based on a collision detection mechanism. The likelihood function for 
a state x is  with:  

. (18)

This function, although being discontinuous for some points of the configuration space and 
constant for all the remaining, is still usable in a Dirac particle filter context. The advantage 
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of its use is twofold. First it avoids the derivation of the filter to zones of no interest, and 
second it avoids wasting time in performing the measuring step for unacceptable hypothesis 
as they can be immediately rejected. 

6.3 Observation likelihoods and model priors fusion 

Fusing multiple visual cues enables the tracker to better benefit from M distinct 
measurements . Assuming that these are mutually independent conditioned on 
the state, and given L model priors , the unified measurement function thus 
factorizes as 

(19)

6.3.1 Implementation and experiments 

In its actual form, our 3D tracker deals two-arms gestures under an 8-DOF model, i.e. four 
per arm. We assume therefore that the torso is coarsely fronto-parallel with respect to the 
camera while the position of the shoulders are deduced from the position of the face given 
by dedicated tracker (Menezes et al., 2004b). All the DOFs are accounted for in the state 
vector  related to the k-th frame. Kinematical constraints require that the values of these 
joint angles evolve within anatomically consistent intervals. Samples (issued from the 
proposal) falling outside the admissible joint parameter range are enforced to the hard limits 
and not rejected as this could lead to cascades of rejected moves that slow down the 
sampler. 
Recall that pdf  encodes information about the dynamics of the targeted human 
limbs. These are described by an Auto-Regressive model with the following form 

 where , and  defines the process noise. In the current 
implementation, these dynamics correspond to a constant velocity model. We find this AR 
model gives empirically better results than usual random walk model, although a more 
rigorous evaluation would be here desirable. The patches are distributed on the surface 
model and their possible occlusions are managed during the tracking process. Our approach 
is different from the traditional marker-based ones because we do not use artificial but 
natural colour or texture-based markers e.g. the two hands and ROIs on the clothes. We 
adopt the APF scheme  (Table 2), which allows to use some low cost measure or a priori 
knowledge to guide the particle placement, therefore concentrating them on the regions of 
interest of the state space. The measurement strategy is as follows: (1) particles are firstly 
located in good places of the configuration space according to rough correspondences 
between virtual patches related to the two hands projection and skin-like image ROIs 
involving likelihood  in step 6, (2) particles' weights are fine-tuned by combining 
shape and motion cues (  entailing similarity distance (5), three color patches per 
arm (likelihood (6)) as well as model priors thanks to (19) in step 9. A second and important 
line of investigation concerns the incorporation of appropriate degrees of adaptability into 
these multiple cues based likelihoods depending on the target appearance and 
environmental conditions. Therefore, some heuristics allows weighting the strength of each 
visual cue in the unified likelihood (7). An a priori confidence criterion of a given coloured 
or textured patch relative to clothes can be easily derived from the associated likelihood 
functions where the p-th colour reference histogram  (  for texture one) is uniform 
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and so given by  where index p has been omitted for compactness reasons. 
Typically, uniform coloured patches produce low likelihood values, whereas higher 
likelihood values characterise confident patches because their associated colour 
distributions are discriminant and ensure non-ambiguous matching. As stated before, 
parameters  and  weight the strength of the p-th marker in the likelihood (19). In the 
same way, the parameter weights the edges density contribution and is fixed from the 
first DT image of the sequence.  

Symbol Meaning Value 
- Particle filtering strategy APF 
N Number of particles 400 
(nbL, nbC) Image resolution (320, 240) 

Factor in model prior  0.5 
Factor in model prior 0.5

K Penalty in similarity distance 0.5 
Standard deviation in similarity distance 1 
Number of patches in color-based likelihood 6

Standard deviation in 0.3

Number of color bins per channel involved in 32

Table 6. Characteristics and parameter values of our upper human body 3D tracker 

Figure 12. From top-left to bottom right: snapshots of tracking sequence involving deictic 
gestures 
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Due to the efficiency of the importance density and the relatively low dimensionality of the 
state-space, tracking results are achieved with a reasonably small number of particles i.e. 
N=400 particles. In our non-optimised implementation, a PentiumIV-3GHz requires about 
1fps to process the two arm tracking, most of the time being spent in evaluating the 
observation function. To compare, classic systems take a few seconds per frame to process a 
single arm tracking. Characteristics and parameter values involved in the likelihoods, 
proposal and state dynamics of our upper human body 3D tracker are reported in Table 6.  
The above-described approach has been implemented and evaluated over monocular images 
sequences. To illustrate our approach, we show and comment snapshots from two typical 
sequences acquired from the Jido robot (see section 7) in different situations to highlight our 
adaptative data fusion strategy. The full images as well as other sequences can be found at the 
URL http://www.isr.uc.pt/~paulo/HRI . The first sequence (Figure 12) was shot against a 
white and unevenly illuminated background, but involves loose fitting closing and near 
fronto-parallel motions. The second sequence (Figure 13) involves coarse fronto-parallel 
motions over a heavy cluttered background. For each snapshot, the right sub-figures overlay 
the model projections on to the original images for the MMSE estimate, while the left ones 
show its corresponding estimated configuration corresponding to the posterior pdf .

Figure 13. From top-left to bottom-right: snapshots of tracking sequence involving heavy 
clutter

The first tracking scenario (Figure 12) involves pointing gestures. The target contours are 
prominent and are weakly disturbed by the background clutter. The high confident 
contours cue ensures the tracking success. The patches on the uniform sweet are here of 
little help, as their enclosed colour or texture distributions are quite uniform. The adaptative 
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system allows giving them a weak strength in the unified likelihood cost (  against 
). They do not introduce any improvement with respect to their position on the 

arm, but their benefit comes in the form of inside/outside information, which complements 
the contours especially when they failed. This permitted the tracking of the arms even when 
they got out of the fronto-parallel plane thanks to all the patches (Figure 12). 
For the second scenario (Figure 13), the tracker deals with significantly more complex scene 
but tracks also the full sequence without failure. This scenario takes clearly benefit from the 
introduction of discriminant patches as their colour distributions are far from uniform ones. 
This leads to higher values of confidence dedicated to the likelihood )/( k

c
k xzp , namely 

. In these challenging operating conditions, two heuristics allow jointly to release 
from distracting clutter that might partly resemble human body parts (for instance the 
cupboard pillar1). On the one hand, estimating the edges density in the first frame highlights 
that shape cue is not a confident one in this context, so its confidence level in the global cost 
(19) is reduced accordingly during the tracking process i.e. . On the other hand, 
optical flow weights the importance relative to the foreground and background contours 
thanks to the likelihood . If considering only contour cues in the likelihood, the 
tracker would attach itself to cluttered zones and consequently lose the target. This tracker 
relates to the module TPB in the Jido’s software architecture (see section 7.1).  

7. Integration on robotic platforms dedicated to human-robot interaction 

7.1 Integration on a robot companion 

7.1.1 Outline of the overall software architecture 

The above visual functions were embedded on a robot companion called Jido. Jido is 
equipped with: (i) a 6-DOF arm, (ii) a pan-tilt stereo system at the top of a mast (dedicated to 
human-robot interaction mechanisms), (iii) a second video system fixed on the arm wrist for 
object grasping, (iv) two laser scanners, (v) one panelPC with tactile screen for interaction 
purpose, (vi) one screen to provide feedback to the robot user. Jido has been endowed with 
functions enabling to act as robot companion and especially to exchange objects with human 
beings. So, it embeds robust and efficient basic navigation and object recognition abilities.  
Besides, our efforts focuses in this article concern the design of visual functions in order to 
recognize individuals and track his/her human body parts during object exchange tasks. 
To this aim, Jido is fitted with the “LAAS” layered software architecture thoroughly 
presented in (Alami et al., 1998). On the top of the hardware (sensors and effectors), the 
functional level listed in Figure 14, encapsulates all the robot's action and perception 
capabilities into controllable communicating modules, operating at very strong temporal 
constraints.  The executive level activates these modules, controls the embedded functions, 
and coordinates the services depending on the task high-level requirements.  Finally, the 
upper decision level copes with task planning and supervision, while remaining reactive to 
events from the execution control level. The integration of our visual modalities (green 
boxes) is currently carried out in the architecture, which resides on the Jido robot. 
The modules GEST, HumRec, and ICU have been fully integrated in the Jido's software 
architecture. The module TBP has been devoted preliminary to the HRP2 model (see section 

                                                                
1 with also skin-like color... 
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7.2). Before integration in Jido, we aim beforehand at extending this tracker to cope with 
stereoscopic data (Fontmarty et al., 2007). 

Figure 14. Jido robot and its layered software architecture 

7.1.2 Considerations about the visual modalities software architecture 

The C++ implementation of the modules are integrated in the ``LAAS’’ architecture using a 
C/C++ interfacing scheme.  They enjoy a high modularity thanks to C++ abstract classes 
and template implementations.  This way, virtually any tracker can be implemented by 
selecting its components from   predefined libraries related to particle filtering strategies, 
state evolution models, and measurement / importance functions.  For more   flexibility, 
specific components can be defined and integrated directly.   A finite-state automaton can be 
designed from the vision-based services outlined in section 1. As illustrated in Figure 15, its 
states are respectively associated   to the INIT mode and to the aforementioned vision-based 
modules while   the arrows relate to the transitions between them. Another   complementary 



Towards an Interactive Humanoid Companion with Visual Tracking Modalities 393

modalities (blue ellipses), not yet integrated into the robot   architecture, have been also 
added. Heuristics relying on the   current human-robot distance, face recognition status, and 
current   executed task (red rectangles) allow to characterize the transitions   in the graph. 
Note that the module ICU can be invoked from all the   mentioned human-robot distances 
([1;5]m.). 

Figure 15. Transitions between vision-based modules 

7.2 Integration on a HRP2 model dedicated to gestures imitation 

Figure 16. From top-left to bottom-right: snapshots of tracking sequence and animation of 
HRP2 using the estimated parameters

As mentioned before, a last envisaged application concerns gestures imitation by a 
humanoid robot (Menezes et al., 2005a). This involves 3D tracking of the upper human body 
limbs and mapping the joints of our 3D kinematical 3D model to those of the robot. In 
addition to the previous commented sequences, this scenario (Figure 16) with moderate 
clutter explores 3D estimation behaviour with respect to problematic motions i.e. non-
fronto-parallel ones, elbow end-stops and observation ambiguities. The left column 
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represents the input images and the projection of the model contours superimposed while 
the right column represents the animation of the HRP2 using the estimated parameters2. The 
first frames involve both elbow end-stops and observation ambiguities. These particular 
configurations are easily dealt with in our particle-filtering framework. When elbow end-
stop occurs, the sampler is able to maintain the elbow angle within its predefined hard 
limits. Observation ambiguity arises when the arm is straight. The twist parameter is 
temporary unobservable but remains stable thanks to the likelihood . As highlighted 
in (Deutscher et al., 1999), Kalman filtering is quite unable to track through end-stop 
configurations. Some frames later in Figure 16, the left arm bends slightly towards the 
camera. Thanks to the patches on the hands, the tracker manages to follow this temporary 
unobservable motion, although it significantly misestimates the rotation during this motion. 
The entire video is available at http://www.isr.uc.pt/~paulo/HRI. 

8. Conclusion 

This article presents the developments of a set of visual trackers dedicated to the upper 
human body parts. We have outlined visual trackers a universal humanoid companion 
should deal with in the future. A brief state-of-art related to tracking highlight that particle 
filtering is widely used in the literature. The popularity of this framework stems, probably, 
from its simplicity, ease of implementation, and modelling flexibility, for a wide variety of 
applications. 
From these considerations, a first contribution relates to visual data fusion and particle 
filtering strategies associations with respect to considered interaction modalities. This 
guiding principle frames all the designed and developed trackers. Practically, the multi-cues 
associations proved to be more robust than any of the cues individually. All the trackers are 
applied in quasi-real-time process and have the ability to (re)-initialize automatically. 
A second contribution concerns especially the 3D tracker dedicated to the upper human 
body parts. An efficient method (not detailed here, see (Menezes et al., 2005b) has been 
proposed in order to handle the projection and hidden removal efficiently. In the vein of the 
depicted 2D trackers, we propose a new model-image matching cost metric combining 
visual cues but also geometric constraints. We integrate degrees of adaptability into this 
likelihood function depending on the human limbs appearance and the environmental 
conditions. Finally, integration, even if in progress, of the developed trackers on two 
platforms highlights their relevance and complementarity. To our knowledge, quite few 
mature robotic systems enjoy such advanced capabilities of human perception. 
Several directions are studied regarding our trackers. Firstly, to achieve gestures/activities 
interpretation, Hidden Markov Models (Fox et al., 2006) and Dynamic Bayesian Network 
(Pavlovic et al., 1999) are currently under evaluation and preliminary results are actually 
available. Secondly, we currently study how to extend our monocular-based approaches to 
account for stereoscopic data as most humanoid robot embed such exteroceptive sensor. 
Finally, we will integrate all these visual trackers on our new humanoid companion HRP2. 
The tracking functionalities will be made much more active; zooming will be used to 
actively adapt the focal lenght with respect to the H/R distance and the current robot status. 

                                                                
2 This animation was performed using the   KineoWorks platform and the HRP2 model by courtesy of   
AIST (GeneralRobotix). 
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