HANDS-ON 6: ADAPTING THE MANIPULATION STACK TO IN-HAND MANIPULATION

Guillaume Walck

guillaume.walck@upmc.fr

IROS 2012

October 7th 2012

Outline

- Object manipulation stack overview Introduction Stack Description Structure Previous session
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulat
- Conclusion

- 1 Object manipulation stack overview
- 2 Integration on your robot
- 3 Towards in-hand manipulation
- 4 Integrated example
- 5 Conclusion

Object manipulation stack overview

- Introduction Stack Description Structure Previous session recap
- Integration on your robot Pre-requirement Wizard
- Towards in-hand manipulation Comparison
- Adapting node:
- Creating node
- Integrated example
- Manipulation
- In-hand manipulation
- Conclusion

1 Object manipulation stack overview

- Introduction
- Stack Description
- Structure
- Previous session recap

Context

- Object manipulation stack overview
- Introduction
- Stack Description Structure Previous session
- Integration on your robot Pre-requirement Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation
- Conclusion

- ROS Electric on Ubuntu Lucid, Natty and Debian Squeeze
- Presentation of the stack from User point of view
- Future version called Move It ! not treated here
- Based on HANDLE project development experience
- Providing feedback on common or specific issues

Object manipulation stack overview Introduction Stack Description Structure Previous session

- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipula

Conclusion

Stack Description

What is it ?

Current version of packages for object manipulation with any robot manipulators to perform object pickup and placing.

Main Stack

- Household_objects_database : mesh & grasps
- Object_manipulator : core application
- Probabilistic_grasp_planner : grasp generator
- Major Dependencies
 - Arm_navigation : dealing with arm movements
 - Motion_planning : access to planning libraries
 - **Kinematics** : computing robot kinematics
 - Sql_database : access to database

Structure

Manipulation Diagram

Structure

Subsets

- Object manipulation stack overview Introduction Stack Description Structure
- Previous session recap
- Integration on your robot Pre-requirements
- Towards in-har manipulation Comparison
- Adapting nodes Creating nodes
- Integrated example Manipulation
- Conclusion

- Environment sensing (vision in Hands-on 1 & sensing in Hands-on 4)
- Environment analysis (transforms in Hands-on 2)
- CollisionMap processing (in Talk 3)
- Arm navigation (in Talk 3)
- Object manipulation (in Talk 3)
- Drivers (in Hands-on 3)

Previous session recap

Hands-on 1 Visual perception system

- Object manipulation stack overview Introduction Stack Description Structure Previous session recan
- Integration on your robot Pre-requirements Wizard
- Towards in-hanc manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipula
- Conclusion

- Kinect: understanding and ROS integration
- System for robotic visual perception
 - Calibrating a Kinect with respect to the robot
 - Reconstruction
 - Object recognition: known objects stored in a database
 - Pose estimation of the object
- Interfacing with an object SQL database

Hands-on 2 Managing coordinate frames

- Object manipulation stack overview Introduction Stack Description Structure Previous session recan
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipul
- Conclusion

- Reference Frames: Visualizing the tree
- Creating static transforms
- Transform broadcast → publishing transforms
- Robot urdf model
- Transform listener → LookupTransform
- Transform Point/Vector/Pose
- \blacksquare Transforms and time-keeping \rightarrow Application in object tracking

Previous session recap

Hands-on 3 Control of the Shadow dexterous hand

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation
- Conclusion

- Ethercat motor hand
- 1KHz realtime loop updates:
- Hand HW drivers
- Controllers
- User interaction with controllers using command topic

Object manipulation stack overview Introduction Stack Description Structure Previous session recap

Integration on your robot

- Pre-requirement Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- example
- Manipulation
- In-hand manipulation
- Conclusion

2 Integration on your robot

- Pre-requirements
- Wizard

Object manipulation stack overview Introduction Stack Description Structure Previous session recap

Integration or your robot

Pre-requirements Wizard

Towards in-hane manipulation Comparison Adapting nodes Creating nodes

Integrated example Manipulation

Conclusion

- URDF : handling several robots
- TF: linking robots and timing issues
- Control: robotstate and controllers
- Sensing: tactile & vision
- Database: objects & grasps

URDF: handling several robots

- Object manipulation stack overview Introduction Stack Descriptio Structure Previous session
- Integration on your robot
- Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes
- Creating nodes
- Integrated example Manipulation
- In-hand manipulation
- Conclusion

- Robot description
 - Required by many nodes:
 - TF, IK, planning, visualization
 - Keep it modular: robot separated from platform
 - Dealing with 2 linked robots: hand & arm
 - Simplify collision models
- Simulation world
 - Platform: model attached to world link
 - Objects: realistic but should remain lightweight models
 - Scenarios: launch files spawning several objects

Ladle model

Platform

TF: linking robots

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot
- Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipul
- Conclusion

Problem: 2 robots creating a complete manipulator

- Single robot
 - 1 complete joint_states from end-to-end
 - 1 state-publisher with a full URDF
- Multiple robots
 - 1 joint_states / state-publisher per robot
 - 1 joint_states merger (full js needed)
 - 1 static_transform to link the robots together
 - Full URDF still loaded as robot_description
- $\implies \text{Coherent TF linking equivalent to full URDF} \\ \implies \text{Check for no duplicate TF state-publishing}$

TC

TF: timing issues

Object manipulation stack overvie Introduction Stack Descript Structure

Previous sessior recap

Integration on your robot

Pre-requirements Wizard

Towards in-hand manipulation Comparison Adapting nodes Creating nodes

Integrated example Manipulation In-hand manipula

Conclusion

Context

- 4 computers (hand, arm, vision, manip)
- TF published by 3 of 4 computers (arm, hand, vision)
- TF used by all the computers
- Requirements
 - Coherent URDF / State Publishers (non overlapping)
 - Synchronization of time

⇒ NTP deamon is **MANDATORY**

Object manipulation stack overview Introduction Stack Description Structure Previous session

Integration on your robot

Pre-requirements Wizard

Towards in-hand manipulation Comparison Adapting nodes Creating nodes Integrated

example Manipulation In-hand manipulati

Conclusion

Pre-requirements

Control: robotstate (1)

Robotstate with 2 robots on 2 different buses linked together ?

- YES: robots based on torque commands
 - Ethercat drivers & non-ethercat drivers in realtime loop
 - One pr2_controller_manager handles all the controllers
 - Robotstate containing joints/actuators from end-to-end
 - All controllers in robot_mechanism_controllers can work
- NO: robots based on mixed type commands
 - Robotstate is only dealing with torque demands
 - ► No controller in robot_mechanism_controllers can work

Control: robotstate (2)

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot
- Pre-requirements Wizard
- Towards in-hand manipulation Comparison
- Adapting nodes
- Integrated example
- In-hand manipulation
- Conclusion

- Solution: use velocity/position commands
 - Drivers fill own robotstate in separate realtime loops
 - ► Multiple CM + service (listcontrollers, ...) dispatching node
 - ► No generic robotstate ⇒ create a getJointState service
 - Custom designed controllers (ex: muscle pressure commands)

Control: controllers

- Object manipulation stack overview Introduction Stack Descriptio Structure Previous session recon
- Integration on your robot
- Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipula
- Conclusion

- Types required by move_arm execution
 - Joint trajectory action controller
 - Cartesian space controller
- High-level control loop for non-torque controlled multi-robots
 - Manages the joint_trajectory or cartesian controllers
 - Connects velocity/position commands output to low-level controllers input topics
 - Running at 100-500Hz

Sensing: vision & tactile

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot
- Pre-requirements Wizard
- Towards in-han manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation
- in-nano manipula
- Conclusion

- Vision device
 - Pointcloud acquisition
 - Calibration mean
 - Self-filtering
- Tactile device
 - Force and contact measuring
 - Gripper/hand grasp quality
 - Reactive actions

Kinect

Database: objects & grasps

- Object manipulation stack overvie Introduction Stack Descripti Structure
- Previous sessi recap
- Integration on your robot
- Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes
- Creating nodes
- Integrated example Manipulation
- In-hand manipulation
- Conclusion

- Objects
 - Properties
 - Mesh model
- Grasps
 - Related to objects
 - Pre-grasp posture
 - Grasp pose
 - Grasp posture + quality

Grasp poses

- Object with symmetries with non-360 end-effectors
 - Bad object frame setup after recognition
 - Planning does not consider symmetry

 \implies Generate poses around symmetry axis on-the-fly

Wizard

Hints

- Object manipulati stack over
- Stack Description
- Structure
- Previous sessior recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulat
- Conclusion

Setting-up

- Add all the possible chains even if you don't use them
- Adapt URDF files pointers (in case you use on-the-fly URDF generation from xacro)
- Edit constraint_aware_kinematics.launch to add your own IK services (must be plugins)

Testing

- Launch the create_launch_files.py from move_arm_warehouse
- Try the result in the generated warehouse_viewer application

- Object manipulation stack overview Introduction Stack Descriptio Structure Previous session recon
- Integration on your robot Pre-requirements Wizard

Towards in-hand manipulation

Comparison Adapting nodes Creating nodes

Integrated example

Manipulation

In-hand manipulation

Conclusion

3 Towards in-hand manipulation

- Comparison
- Adapting nodes
- Creating nodes

Comparison Similarities

Object manipulation stack overv Introduction

- Stack Description
- Structure
- Previous sessior recap
- Integration on your robot Pre-requirements
- Towards in-hand manipulation

Comparison

Adapting nodes Creating nodes

Integrated example Manipulation In-hand manipula

Conclusion

Pick & Place

- Is an in-hand manipulation requirement
- Approach/lift phases similar

Planning

- Fingers are mini serial manipulators
- Object is added as an obstacle for the fingers
- High-level control
 - Joint trajectory controller works on fingers

Comparison

Differences

Object manipulatio stack overvi Introduction Stack Descrip Structure Previous sess

- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation
- Comparison
- Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipula
- Conclusion

Object on table vs in hand

- Tracking in-hand
- Planning very close to objects
- Context only vs task & context oriented grasps
 - Task pre-conditions final grasp
 - Context pre-conditions initial grasp
 - In-hand transition planning
- Gripper vs fingers grasps
 - N-fingers
 - Grasp synergies
 - Force closure
 - Contact & slip detection

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation
- Comparison
- Adapting nodes Creating nodes
- Integrated example Manipulation
- Canalusian

To cope with the similarities and differences:

Existing nodes need to be adapted

New nodes must be created

Adapting nodes

IK

- Object manipulation stack overvit Introduction Stack Descrip Structure
- Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation
- Comparison
- Adapting nodes
- Integrated example Manipulation
- In-hand manipulation
- Conclusion

- Manipulator: arm + wrist
 - Multi-robot but single URDF
 - Arm_kinematics_constraint_aware package
 - 6D IK generated automatically by KDL
- Hand: 5 fingers (<6 DoF)</p>
 - Modify generic arm_kinematics node to solve 3D IK
 - Adapt KDL library to support coupling
 - ▶ Kinematics_base to derive a plugin usable in OMPL

Adapting nodes

Grasps

Object manipulation stack overvio Introduction Stack Descrip Structure

Previous sessio recap

Integration on your robot Pre-requirements Wizard

Towards in-hand manipulation

Comparison

Adapting nodes

Integrated example

In-hand manipulati

Conclusion

Access & description

- Access node household_objects_database totally re-used
- Grasp format configured through hand_description parameter

 \Longrightarrow Never use "hand_description" word for an URDF describing a hand !

Structure

- Double precision vector in radians for joint angles
- Pose given with translation and quaternions

 \implies quaternion values are (**qw**,qx,qy,qz) in DB but (qx,qy,qz,**qw**) in ROS message

Execution

- Basic interpolation between pre-grasp posture and grasp-posture
- Rewritting gripper_action into hand_posture_execution

Adapting nodes

Adapting nodes

Finger movement planning

- Finger gaiting
 - To reconfigure the grasp
 - ► To avoid object parts with in-hand movements ⇒ Re-use OMPL node with custom IK
- Example: Moving the thumb in a power grasp
 - Plan the thumb movement to avoid object collision
 - Small padding needed

Guillaume Walck

IK

- Object manipulation stack overvie Introduction Stack Descript Structure Previous sessi recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulatio
- Conclusion

- KDL creates iterative slow solutions
 - ⇒Analytic solution is better for faster planning
- Openrave IKFast
 - Convert robot description from URDF to DAE
 - Generate cpp code
 - ▶ Integrate the code in a kinematic_base inherited plugin

Creating nodes

Reactive Grasping

- Replaced by synergy grasping
 - Works on known & unknown objects
 - Stops each finger independently at contact
- Indirectly ensure force-closure
 - Impedance control on each fingertip in contact
 - Self-adjusts to stable grasp

Synergies for a tripod grasp

Impedance force control

Guillaume Walck

lands-on 6: Adapting the manipulation stack to in-hand manipulation

30 / 42

In-hand planning

- Object manipulation stack overvie Introduction Stack Description Structure
- Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulatio
- Conclusion

- Core application of the project
 - Learning transitions and grasps from Humans
 - Planning grasp transitions and action steps
 - Benefit from fingers dexterity
 - Synergy and geometric movement planners

Integration

- Services mostly triggered by manipulation stack messages
- Using actionlib to easily cancel actions (object slippage)

Pick, Manipulate & Place

- Object manipulation stack overvie Introduction Stack Description Structure
- Previous session recap
- Integration on your robot Pre-requirements
- Towards in-han manipulation Comparison Adapting nodes
- Creating nodes
- Integrated example Manipulation In-hand manipulati
- Conclusion

- Initial node
 - Object_manipulator_node is very complex
 - Too many cases hardcoded
 - Over protection difficult to remove
- Rewritting
 - Python application
 - Separate planning from execution
 - Redo basic pick and place
 - Add intermediate steps (grasp transitions)
 - Do something useful (action)

- Object manipulation stack overview Introduction Stack Descriptio Structure Previous sessior recap
- Integration on your robot Pre-requirement: Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes

Integrated example

Manipulation In-hand manipulation

Conclusion

4 Integrated example

- Manipulation
- In-hand manipulation

Context

- Object manipulati stack over
- Introduction
- Stack Descripti
- Structure
- recap
- Integration on your robot
- Pre-requirement Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating podes

Integrated example

- Manipulation In-hand manipulation
- Conclusion

HANDLE Platform

- Shadow biomorphic arm
- Shadow EDC motor hand
- Kinect
- ATI Nano17 F/T sensors
- Processing power
 - Far from PR2 power
 - 2 PC for robot/sensor drivers
 - 1 PC for image processing
 - 1 PC for manipulation stack

Hand

Platform

Manipulation

Pick

Manipulation

- Detect the can
 - Extract a grasp, generate a symmetry
 - Plan the approach with OMPL
- Perform the reactive grasp (interpolation)
- Lift (Place not working yet)

Manipulation

Object handling (1)

Object manipulation stack overview Introduction Stack Description Structure Previous session recap

Integration on your robot Pre-requirements Wizard

Towards in-hand manipulation Comparison Adapting nodes Creating nodes

Integrated example

Manipulation In-hand manipulation

Conclusion

Warehouse_viewer with object attached to the hand

Insert a book in a slot (SIM)

Insert a book in a slot (REAL)

Manipulation

Object handling (2)

Object manipulation stack overview Introduction Stack Description Structure Previous session recap

Integration on your robot Pre-requirements Wizard

Towards in-hand manipulation Comparison Adapting nodes

Integrated example

Manipulation In-hand manipulation

Conclusion

Warehouse_viewer with object attached to the hand

Insert a book in a slot (SIM)

Insert a book in a slot (REAL)

In-hand manipulation

Finger motion planning

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulation
- Conclusion

Warehouse_viewer with object as obstacle

Thumb gaiting

Summary of tips & tricks

- Manipulation stack overview Introduction Stack Description Structure Previous session
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulat
- Conclusion

- Whenever possible, use existing messages/services
- Describe your robot (URDF , robotstate ,controllers,IK)
- Use provided wizards and re-use generic nodes (KDL, OMPL)
- Fill up the database for your application/hand
- Whenever possible store data in existing tables
- Complete the pipeline with missing nodes for your application

Manipulation stack

Object

- manipulation stack overvie
- Introduction
- Stack Descriptio
- Structure
- Previous session recap
- Integration on your robot Pre-requirement
- Towards in-han manipulation Comparison
- Adapting nodes
- Integrated example
- Manipulation

Conclusion

Pros

- Complete pipeline
- Quite configurable (wizards)
- Various useful standalone external apps
- Very re-usable
- Cons
 - Complex, not documented enough
 - Still PR2 oriented, not generic enough

ROS

- Object manipulation stack overview Introduction Stack Description Structure Previous session recap
- Integration on your robot Pre-requirements Wizard
- Towards in-hand manipulation Comparison Adapting nodes Creating nodes
- Integrated example Manipulation In-hand manipulati

Conclusion

- Our developments always behind due to high pace of the main packages
- Complete with a lot of solutions ported to ROS
 - Great sharing community
 - \implies definitely time saver

Questions ?

Introduction Stack overview Introduction Stack Description Structure Previous session recap

your robot Pre-requirement Wizard

Towards in-hand manipulation Comparison

Integrated example

In-hand manipulation

Conclusion

Any questions ?

Guillaume Walck

Hands-on 6: Adapting the manipulation stack to in-hand manipulation

= *