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Abstract — This paper presents a collective foraging algo-
rithm designed to simulate natural selection in a group of
swarm robots. The Robotic Darwinian Particle Swarm Optimi-
zation (RDPSO) previoudy proposed is improved using frac-
tional calculus theory and evaluated on real low-cost mobile
robots performing a distributed foraging task. This work aims
at evaluating this novel exploration strategy, by studying the
performance of the algorithm within a population of up to 12
robots, under communication constraints. In order to simulate
the maximum allowed communication distance, robots were
provided with a list of their teammates’ addresses. Experi-
mental results show that only 4 robots are needed to accom-
plish the proposed mission and, independently on the number
of robots, maximum communication distance and fractional
coefficient, the optimal solution is achieved in approximately
90% of the experiments.

1. INTRODUCTION

THE cooperative foraging observed in nature has been
studied for the last decades and used as inspiration in
optimization problems, applied computation, robotics and
many other applications [1]. This collective behavior emerg-
es not only in hunting practices of lions, hyenas or wolves
but also in small colonies of insects such as ants, bees, ter-
mites or wasps [2]. In spite of the potential advantages of
Multi-Robot Systems (MRS) in cooperative foraging tasks,
related with space and time distribution, it is necessary that
each robot maintains a sufficient and consistent level of
awareness about the mission assigned to the team and about
its teammates in order to attain effective cooperation while
avoiding collisions. Furthermore, in most real situations,
robots have to move to complete their tasks while maintain-
ing communication among them using ad-hoc communica-
tion, since communication infrastructure may be damaged or
missing (e.g., hostile environments, search & rescue, disaster
recovery). Just like in MRS wherein groups of robots interact
to accomplish their goals [3], particle optimization algo-
rithms, such as the well-known Particle Swarm Optimization
(PSO) [4] and the Darwinian Particle Swarm Optimization
(DPSO) [5], use groups of interacting virtual agents in order
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to achieve their optimization. In a previous work [6], a mul-
ti-robot exploration algorithm was proposed and denoted as
Robotic Darwinian Particle Swarm Optimization (RDPSO).
This evolutionary algorithm was evaluated in simulation
environment using Darwin’s natural selection to enhance the
ability to escape from sub-optimal solution. Also, an exten-
sion of the algorithm was proposed in [7] to guarantee Mo-
bile Ad-Hoc Network (MANET) connectivity and to estab-
lish the initial deployment of robots based on the Spiral of
Theodorus.

A. Statement of Contributions and Paper Organization

Bearing this idea in mind, a brief review of PSO tech-
niques applied to MRS is presented in section II. This is
followed by two key contributions demonstrated through an
extension of the Robotic Darwinian PSO (RDPSO) previ-
ously presented in [6] and [7]. First, the concept of fractional
calculus (FC) is used to control the convergence rate of the
RDPSO, while considering the robot dynamical characteris-
tics (section III). Secondly, an hierarchical control architec-
ture of the RDPSO is presented where the Low-Level Con-
trol (LLC) handles all the kinematics and dynamics inherent
to the robots (section IV). To assess these new features of
the RDPSO, this novel distributed algorithm is evaluated in a
cooperative foraging task performed by real mobile plat-
forms (section V). The main conclusions are outlined in
Section VI.

II. RELATED WORK

In nature, Darwin’s natural selection selects foraging be-
havior that maximizes lifetime calorie content or minimizes
the probability of starvation. In robotics, engineering design
favors decision-making algorithms that maximize accumu-
lated value or minimize the probability of not reaching per-
formance targets [8]. A behavior-based strategy to maintain
MRS connectivity has been studied in [9]. The authors pre-
sented the extension of the Null-Space-based Behavioral
approach to control a group of marine vehicles to execute
missions such as formation control or cooperative target
visiting with communication constraints. This is a promising
approach since it would be possible to merge the behaviors
of the RDPSO with different priorities in order to define the
motion directives of robots. However, design choices con-
cerning how to organize the behaviors by priority represent a
higher complexity since these choices derive from practical
considerations related to both the mission objective and the
physical characteristics of the robotic system.



Similarly to the presented work, a multi-search algorithm
inspired by the PSO algorithm is proposed in [10]. However,
the algorithm was only evaluated based on Webots simulator
and the search scenario was very limited, since only one
target was used thus avoiding the effect of sub-optimal solu-
tion in the PSO algorithm. The work of Prasanna and
Saikishan [11] involves path-planning and coordination
between multiple mobile agents in a static-obstacle envi-
ronment based on the PSO and Bacteria Foraging Algorithm
(BFA). As this work uses Darwinian principles in the PSO to
avoid getting trapped in sub-optimal solution, the one pro-
posed by the authors enhances the local search using the
BFA. Experimental results were conducted in a simulation
environment developed in Visual Studio where the pose and
shape of obstacles were previously known. Also, only one
target and two robots were used thus limiting the evaluation
of the proposed algorithm. Hereford and Siebold [12] pre-
sented an embedded version of the PSO in swarm platforms.
As in RDPSO, there is no central agent to coordinate the
robots movements or actions. Despite the potentialities of
the physically-embedded PSO, experimental results were
carried out using a population of only three robots, perform-
ing a distributed search in a scenario without sub-optimal
solutions. Also, collision avoidance and fulfillment of
MANET connectivity was not considered.

Our previous works [6] [7] presented successive im-
provements of the proposed RDPSO to evaluate the conver-
gence of the algorithm under communication constraints
while increasing the robot population. Based on this previ-
ously proposed algorithm, next section extends the conver-
gence rate of the RDPSO using fractional calculus.

III. FRACTIONAL ORDER RDPSO

In this section, a new method to control the convergence
rate of the RDPSO algorithm [6] based on Pires et al. ap-
proach to the traditional PSO [13] is introduced. A previ-
ous work presented a similar approach conducted to the
traditional DPSO in [14].

To model the swarm, each particle denoted by n moves
in a multidimensional space. A particle is represented by
the desired position vector xf,; and velocity vector v{,
which are highly dependent on the current position vector
x7, velocity vector (v'), local best vector (Cf), global best
vector (Sf'), obstacle susceptibility vector (07'), and
MANET connectivity vector (i) information. The vectors
size depends on the dimension of the multidimensional
space.

Vi1 = wog + p1 (6 — x0) + por (57 — x{) +

p37r3(0F — x{*) + para (M — x1),

(1

X{41 = X¢ + Vit )
where the coefficients w, p;, p,, p; and p, assign weights to
the inertial influence, the local best (cognitive component),
the global best (social component), the obstacle avoidance
component and the enforcing communication component
when determining the new velocity, respectively.
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ters 1y, 1y, 13 and 7, are random vectors wherein each com-
ponent is generally a uniform random number between 0 and
1. Considering equations (1) and (2), it is noteworthy that
robots will tend to converge to the optimal solution. Howev-
er, although all robots within a swarm agree with the best
solution, they must also fulfill the other requirements (i.e.,
avoid obstacles and maintain a certain distance between
neighbors).

Fractional calculus (FC) has attracted the attention of
several researchers [15], being applied in various scientific
fields, such as engineering, computational mathematics,
fluid mechanics, among others.

The Griinwald—Letnikov definition based on the concept
of fractional differential with a € C of the signal x(t), is

given by
k
D0 = i [ Bz SR
where I is the gamma function. An important property
revealed by (3) is that while an integer-order derivative just
implies a finite series, the fractional-order derivative re-
quires an infinite number of terms. Therefore, integer de-
rivatives are “local” operators while fractional derivatives
have, implicitly, a “memory” of all past events. However,
the influence of past events decreases over time.
Based on (3), a discrete time implementation expression
can be defined as:

(€))

)

1 ¢ (kT (a+1)x(t-kT)
Ta“k=0 Py Dr(a—k+1)

D[x(1)] = @)
where T is the sampling period and r is the truncation or-
der.

The features inherent to fractional calculus make this
mathematical tool well suited to describe many phenome-
na, such as irreversibility and chaos, because of its inherent
memory property. In this line of thought, the dynamic
phenomena of a robot’s trajectory configure a case where
fractional calculus tools fit adequately.

Considering the inertial influence in (1), w = 1, assum-
ing T =1 and based on [13] work, the following expres-
sion can be defined:

D%y = piri (68 — x0) + oy (87 — x{') +
p313(0F — x{*) + para (M — x{1).

Preliminary experimental tests on the algorithm present-
ed similar results for r > 4. Furthermore, the computation-
al requirements increase linearly with 7, i.e., the fractional
order RDPSO present a O(r) memory complexity. Hence,
considering only the first four terms, r = 4, of differential
derivative given by (4), equation (5) can be rewritten as:

&)

vl =avl+ %av?_l + %a(l —a)vl, +
1 .,
La(l - a)2 - vy + i —x) +

P22 (3¢ — x¢') + par3(07 — x{1) + pary (Y — 7).

(6)

The RDPSO is therefore a particular case of the fractional
order RDPSO for a = 1.0 (without “memory”). Neverthe-
less, the value of a greatly affects the inertial of a robot.
With a small value of a the robot will ignore its previous
activities, thus ignoring the system dynamics (i.e., exploita-



tion behavior). On the other hand, with a large value of a the
robot may be unable to prevent collisions and maintain the
connectivity with its teammates (i.e., exploration behavior).

One way to analyze the convergence of the algorithm
consists on adjusting the fractional coefficient based on
physical mobile robots constraints inherent to their dynam-
ical characteristics. Usually, this is not addressed in the
literature concerning the classical PSO methods, since virtu-
al agents (i.e., particles) are not constrained by such behav-
iors. Hence, let us then suppose that a robot is traveling at a
constant velocity such that v[*, = v with k € N and it is
able to find its equilibrium point in such a way that x[*
¢l = §I' = 6 = mt. In other words, the robot converges to
the best position such that the local, global, obstacle and
MANET vectors are coincident. As a result, the robot needs
to decelerate until it stops, ie., v > v, = 2 v}, =
-+ 2> 0. Consequently, equation (6) can be rewritten as:

1 1 1
0Sv<a+5a+ga(1—a)+£a(1—a)(2—

a)) <, @

thus resulting in

0<a=<0.632. (8)

Therefore, one can conclude that « = 0.632 is the bound-
ary of the attraction domain: The RDPSO is stable for
0 < a £ 0.632 and unstable for 0.632 < a < 1. As a result
of the above analysis, the fractional coefficient can be pa-
rameterized in such a way that the system’s convergence can
be controlled by taking into account obstacle avoidance and
MANET connectivity, without resorting to the definition of
any arbitrary or problem-specific parameters.

Next section presents the control architecture of the
RDPSO considering real heterogeneous mobile robots.

IV. CONTROL ARCHITECTURE OF SWARM ROBOTS

This section presents how the RDPSO algorithm can be
used on real robotic platforms. The RDPSO performs all the
computation by considering the robots as particles, thus
ignoring any kinematic or dynamic inherent to the real plat-
form. In other words, the output is a position vector for each
robot (cf. equations 2 and 6). Depending on the robot kine-
matical and dynamical characteristics, this new position may
be achieved from different ways. For instance, a holonomic
robot (e.g., omnidirectional drive system), which has the
kinematic advantage of allowing continuous translation and
rotation in any direction, can move to a desired position
regardless of its orientation. However, a non-holonomic
robot (e.g., differential drive system) needs to first change its
orientation to be aligned with the target and then move for-
ward to the desired position.

In order to achieve a higher level of hardware abstraction,
a Low-Level Control (LLC) was introduced in the control
architecture (Fig. 1). In this work, and since all robots are
non-holonomic, the LLC was designed for the specific struc-
ture of the differential-drive robot to make it turn and then
follow the desired position vector received by the RDPSO.
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Fig. 1. Control architecture of the RDPSO with LLC of a robot n.

As shown in Fig. 1, the output of the RDPSO is given as a
reference value to the LLC that considers the kinematical
and dynamical characteristics of the robot thus defining the
commands to the actuators, e.g., number of pulses for DC
motors equipped with encoders.

This two-level control loop organization allows using the
RDPSO with different types of robotic systems, neglecting
their kinematical and dynamical characteristics. These as-
pects are considered by the LLC that needs to be properly
designed for a specific robotic system.

To our specific situation, i.e., differential-drive robots, the
LLC receives the desired position xp} ,, which corresponds

to a cartesian position [Xp1y,; Xp2y,,]7, and computes the
inverse kinematic model based on the following equations:

2 2
i = () + ()" ©)
ofty = atan2(v,”, v, 7 ), (10)
041 = 0(41 — 0f, (11

wherein vyj, , and v,}, | are obtained using (6). The func-
tion atan2 in (10) is a variant of the trigonometric arctangent
function, but accounts for the quadrant in which o/, lies.
Note that, g{* corresponds to the previous computation of (9)
and may be considered zero in the first iteration (i.e., initial
orientation of zero degrees). The output of the inverse kine-
matic model is represented by the rotation 67, that the
robot needs to perform to be aligned with the desired posi-
tion and the distance hf, ; it needs to travel to reach it.

The rotation 7p,}, ; and the forward movement 7p,}, | of
the differential-drive robot are defined by:

n
9t+1 Trobot

n  _
T = Trep- . 12
D1ty rev: 5o rwheel’ ( )
hi 1
[ t+1
T = Trep- . 13
D2¢41 rev: 5o Twheel, ( )

wherein 7., is the total number of steps or pulses per revo-
lution. The radius of the robot and the wheels are defined by
Trobot aNd Tyypeer, Tespectively. In order to improve the time
response of the robot and the smoothness of its movement, a
rotational threshold 8, was introduced. Rotations 87, ; infe-
rior to @7 are then ignored and only the forward distance
h}.; is considered. Bearing in mind this assumption, and
since a possible loss of steps or pulses may occur while
executing the commands, i.e., Ti,, # Tpip,, OF Tt #
Tpayy,» @ New real position is then recalculated and consid-



ered as the current position x[,; of the robot. This new posi-
tion and the corresponding value of the objective function
f(xl 1) defined in this position (i.e., sensed by the sensory
system) needs to be shared between robots (¢f., Communica-
tion System in Fig. 1) so that cooperation can emerge. To
that end, this information is sent directly to the robots in the
neighborhood defined by d,,4, and relayed to other robots
based on ad-hoc networking paradigm.

V. EXPERIMENTAL RESULTS

In this section, it is explored the effectiveness of using the
RDPSO on swarms of real robots, while performing a collec-
tive foraging task with local and global information under
communication constraints. Multiple test groups of 20 trials
of 3 minutes each were considered. A minimum, initial and
maximum number of 1, 2 and 3 swarms were used inde-
pendently of the population of robots.

The eSwarBot (Educational Swarm Robot) was the plat-
form used to evaluate the algorithm (Fig. 2). It consists on a
differential ground platform recently developed and present-
ed in [16] for applications in swarm robotics. Although the
platform presents a limited kinematic resolution of 3.6 de-
grees while rotating and 2.76 mm when moving forward, its
low cost and high autonomy allowed to perform experiments
with up to 12 robots, with N = {4, 8,12}. RGB-LEDs on top
of the eSwarBots are used to identify its swarm. RGB-LEDs
allow the representation of a wide range of different colors
matching different swarms. All of the experiments were
carried out in a 2.55 meters to 2.45 meters scenario.

- t:'K Light Sensor

ZigBee Module

RGB-LEDs

Ultrassound sensor

Fig. 2. The eSwarBot differential ground platform.

The experimental environment (Fig. 3a) was an enclosed
arena that contained two sites represented by illuminated
spots uniquely identifiable by controlling the brightness of
the light. Despite being an obstacle free scenario, the robots
themselves act as dynamic obstacles —a maximum number of
12 robots correspond to a population density of approxi-
mately 2 robots.m™. Each robot possessed overhead light
sensors (LDR) that allowed it to find candidate sites and
measure their quality. The brighter site (optimal solution)
was considered better than the dimmer one (sub-optimal
solution), and so the goal of the robots was to collectively
choose the brighter site. The intensity values F(x,y) repre-
sented in Fig. 3b were obtained sweeping the whole scenario
with a single robot in which the light sensor was connected
to a 10-bit analog input. To improve the interpretation of the
algorithm performance, results were normalized in a way
that the objective of robotic teams is to find the optimal
solution of f(x,y) = 1.
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Fig. 3. Experimental setup. a) Enclosed arena with 2 swarms (different
colors): b) Virtual representation of the target distribution.

Inter-robot communication to share positions and local so-
lutions were carried out using ZigBee 802.15.4 wireless
protocol. Since robots were equipped with XBee modules
that allow a maximum communication range larger than the
whole scenario, robots were provided with a list of their
teammates’ address in order to simulate the ad-hoc multi-
hop network communication with limited range. The maxi-
mum communication distance between robots d,,,, was
varied between 0.50 meters and 1.50 meters. At each trial,
robots were manually deployed on the scenario in a spiral
manner while preserving the maximum communication
distance d,,q, (as previously presented in [7]).

In order to evaluate the impact of fractional calculus in the
convergence of the algorithm, the original RDPSO (a = 1.0)
was compared to the fractional order RDPSO with a =
0.632 (cf., Section III).

The previously described conditions give a total of 240
experiments, thus leading to a runtime of 12 hours. The next
sequence of frames (Fig. 4) presents a trial of the team’s
performance using N =12, d,,qr = 1.50 meters and
a = 0.632. Since these experiments represent a foraging
task, it is necessary to evaluate both the completeness of the
mission and the time needed to complete it. Therefore, Fig. 5
depicts the convergence of the RDPSO for the several pro-
posed conditions. The median of the best solution in the 20
experiments was taken as the final output in the set N
{4,8,12} for each d,,, and a.

Analyzing Fig. 5, it is clear that the proposed mission can
be accomplished by any number of robots between 4 and 12.
In fact, independently on the number of robots, teams con-
verge to the solution in approximately 90% of the experi-
ments. The charts also show that increasing the number of
robots slightly increases the convergence rate. A population
of 4, 8 and 12 robots takes, in average, 77, 106 and 112
seconds to converge to the optimal solution, respectively.
This is a consequence of having more robots inside the same
arena — the number of dynamic obstacles is higher.



a) t= 0 seconds b) t = 31 seconds

¢) t = 54 seconds

d) 1 = 69 seconds

f) t = 143 seconds

Fig. 4. Frame sequence showing the RDPSO performance on a population of 12 robots (some robots may be outside camera’s range). a) The population is mitially
divided into two swarms — green and red — deployed in a spiral manner; b) The swarms independently search for the brighter site taking into account a maximum
communication distance of 1.5 meters between robots of the same swarm; ¢) One robot from the red and green swarm finds the sub-optimal and optimal solution,
respectively; d) As the red swarm does not improve, some robots are excluded, thus being added to the socially excluded group (white swarm); e) Since the green
swarm has improved, it is able to call new members from the socially excluded group: f) Finally, the green swarm proliferates calling all the previously excluded
robats that were unable to improve their solution. Note that robots do not all converge the optimal solution as they try to maintain a distance of d . between them.

As expected, increasing the maximum communication
distance generally results in a faster convergence to the
optimal solution. On the other hand, the decrease of a from
1 to 0.632 improves the convergence rate of the algorithm in
some situations also marginally improving the median value
of the solution. However, this relationship is not linear and
varies depending on the maximum communication distance
and the number of robots in the population. For instance, for
a communication distance of 0.5 meters and regardless on
the number of robots, the fractional order RDPSO depicts an
improved convergence when compared to the integer order.
Another important factor is that some robots of a given
swarm are unable to converge to the final solution when one
robot of the same swarm finds it. This issue is related with
odometry limitations of the platforms which results in the
accumulation of positioning errors. The use of encoders,
such as the ones used in these robots, is a classical method,
being of low-cost and simple use. However, it is verified the
existence of errors inherent to their use are cumulative,
which makes it difficult for the robots to complete the pro-
posed odometry objectives accurately.

V1. CONCLUSION

This paper presents the evaluation of a foraging sociobiolog-
ical-inspired algorithm, denoted as RDPSO - Robotic Darwini-
an Particle Swarm Optimization, on real platforms. Further-
more, fractional calculus is introduced to control the conver-
gence rate of the algorithm taking into account robot dynamics.
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Experimental results show that the performance of the robotic
population in the proposed scenario, with a biologically in-
spired behaviour based on natural selection and social exclu-
sion, is not significantly affected by the number of robots in the
population, the maximum communication distance between
robots and the fractional coefficient «. Yet, the fractional
extension of the RDPSO allows taking into account the dy-
namic phenomena of robots’ trajectory. Nevertheless, one of
the main limitations of the algorithm resides in having several
parameters influencing the performance of the robotic team.
Therefore, one of the future approaches will be the analytical
analysis of the RDPSO in order to find a relationship between
parameters, thus optimizing the algorithm with regard to the
main objective, robot dynamics, obstacles susceptibility and
MANET connectivity. Also, eSwarBot platforms should be
enhanced in order to avoid mislocalization errors. The robots
odometry could be improved by replacing the current encoders
with more precise and with better resolution ones, keeping the
low-cost goal. Nevertheless, this exchange may not be enough
by itself. There are other methods that can be used with the
current odometry in order to overcome these problems by
correcting the errors in robot location based on reference points
in the scenario. For instance, analysing the strength of the
received signal (RSST) [17] (taking advantage of this XBee
modules’ capability) would allow determining the location
of mobile module through triangulation methods.
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Fig. 5. Performance of the algorithms changing the number of robots N in the population: a) d,,q, = 0.5 meters; a = 1.0; b) d;pq, = 1.5 meter; a = 1.0;

¢} dpmax = 0.5 meters; a = 0.632;d) d,pq, = 1.5 meter; a = 0.632.
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