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Abstract ² This paper presents a collective foraging algo-

rithm designed to simulate natural selection in a group of 

swarm robots. The Robotic Darwinian Particle Swarm Optimi-

zation (RDPSO) previously proposed is improved using frac-

tional calculus theory and evaluated on real low-cost mobile 

robots performing a distributed foraging task. This work aims 

at evaluating this novel exploration strategy, by studying the 

performance of the algorithm within a population of up to 12 

robots, under communication constraints. In order to simulate 

the maximum allowed communication distance, robots were 

SURYLGHG� ZLWK� D� OLVW� RI� WKHLU� WHDPPDWHV¶� DGGUHVVHV�� Experi-

mental results show that only 4 robots are needed to accom-

plish the proposed mission and, independently on the number 

of robots, maximum communication distance and fractional 

coefficient, the optimal solution is achieved in approximately 

90% of the experiments.  

I. INTRODUCTION 

HE cooperative foraging observed in nature has been 

studied for the last decades and used as inspiration in 

optimization problems, applied computation, robotics and 

many other applications [1]. This collective behavior emerg-

es not only in hunting practices of lions, hyenas or wolves 

but also in small colonies of insects such as ants, bees, ter-

mites or wasps [2]. In spite of the potential advantages of 

Multi-Robot Systems (MRS) in cooperative foraging tasks, 

related with space and time distribution, it is necessary that 

each robot maintains a sufficient and consistent level of 

awareness about the mission assigned to the team and about 

its teammates in order to attain effective cooperation while 

avoiding collisions. Furthermore, in most real situations, 

robots have to move to complete their tasks while maintain-

ing communication among them using ad-hoc communica-

tion, since communication infrastructure may be damaged or 

missing (e.g., hostile environments, search & rescue, disaster 

recovery). Just like in MRS wherein groups of robots interact 

to accomplish their goals [3], particle optimization algo-

rithms, such as the well-known Particle Swarm Optimization 

(PSO) [4] and the Darwinian Particle Swarm Optimization 

(DPSO) [5], use groups of interacting virtual agents in order 
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to achieve their optimization. In a previous work [6], a mul-

ti-robot exploration algorithm was proposed and denoted as 

Robotic Darwinian Particle Swarm Optimization (RDPSO). 

This evolutionary algorithm was evaluated in simulation 

environment using 'DUZLQ¶V�QDWXUDO�VHOHFWLRQ�to enhance the 

ability to escape from sub-optimal solution. Also, an exten-

sion of the algorithm was proposed in [7] to guarantee Mo-

bile Ad-Hoc Network (MANET) connectivity and to estab-

lish the initial deployment of robots based on the Spiral of 

Theodorus. 

A. Statement of Contributions and Paper Organization 

Bearing this idea in mind, a brief review of PSO tech-

niques applied to MRS is presented in section II. This is 

followed by two key contributions demonstrated through an 

extension of the Robotic Darwinian PSO (RDPSO) previ-

ously presented in [6] and [7]. First, the concept of fractional 

calculus (FC) is used to control the convergence rate of the 

RDPSO, while considering the robot dynamical characteris-

tics (section III). Secondly, an hierarchical control architec-

ture of the RDPSO is presented where the Low-Level Con-

trol (LLC) handles all the kinematics and dynamics inherent 

to the robots (section IV). To assess these new features of 

the RDPSO, this novel distributed algorithm is evaluated in a 

cooperative foraging task performed by real mobile plat-

forms (section V). The main conclusions are outlined in 

Section VI.  

II. RELATED WORK 

In nature, 'DUZLQ¶V�natural selection selects foraging be-

havior that maximizes lifetime calorie content or minimizes 

the probability of starvation. In robotics, engineering design 

favors decision-making algorithms that maximize accumu-

lated value or minimize the probability of not reaching per-

formance targets [8]. A behavior-based strategy to maintain 

MRS connectivity has been studied in [9]. The authors pre-

sented the extension of the Null-Space-based Behavioral 

approach to control a group of marine vehicles to execute 

missions such as formation control or cooperative target 

visiting with communication constraints. This is a promising 

approach since it would be possible to merge the behaviors 

of the RDPSO with different priorities in order to define the 

motion directives of robots. However, design choices con-

cerning how to organize the behaviors by priority represent a 

higher complexity since these choices derive from practical 

considerations related to both the mission objective and the 

physical characteristics of the robotic system.  

Multi-5RERW�)RUDJLQJ�EDVHG�RQ�'DUZLQ¶V�6XUYLYDO�RI�WKH�)LWWHVW 

Micael S. Couceiro, IEEE Student Member, Rui P. Rocha,  

Carlos M. Figueiredo, J. Miguel A. Luz, N. M. Fonseca Ferreira 

T 

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 801



  

 

 

Similarly to the presented work, a multi-search algorithm 

inspired by the PSO algorithm is proposed in [10]. However, 

the algorithm was only evaluated based on Webots simulator 

and the search scenario was very limited, since only one 

target was used thus avoiding the effect of sub-optimal solu-

tion in the PSO algorithm. The work of Prasanna and 

Saikishan [11] involves path-planning and coordination 

between multiple mobile agents in a static-obstacle envi-

ronment based on the PSO and Bacteria Foraging Algorithm 

(BFA). As this work uses Darwinian principles in the PSO to 

avoid getting trapped in sub-optimal solution, the one pro-

posed by the authors enhances the local search using the 

BFA. Experimental results were conducted in a simulation 

environment developed in Visual Studio where the pose and 

shape of obstacles were previously known. Also, only one 

target and two robots were used thus limiting the evaluation 

of the proposed algorithm. Hereford and Siebold [12] pre-

sented an embedded version of the PSO in swarm platforms. 

As in RDPSO, there is no central agent to coordinate the 

robots movements or actions. Despite the potentialities of 

the physically-embedded PSO, experimental results were 

carried out using a population of only three robots, perform-

ing a distributed search in a scenario without sub-optimal 

solutions. Also, collision avoidance and fulfillment of 

MANET connectivity was not considered.  

Our previous works [6] [7] presented successive im-

provements of the proposed RDPSO to evaluate the conver-

gence of the algorithm under communication constraints 

while increasing the robot population. Based on this previ-

ously proposed algorithm, next section extends the conver-

gence rate of the RDPSO using fractional calculus. 

III. FRACTIONAL ORDER RDPSO 

In this section, a new method to control the convergence 

rate of the RDPSO algorithm [6] based on Pires et al. ap-

proach to the traditional PSO [13] is introduced. A previ-

ous work presented a similar approach conducted to the 

traditional DPSO in [14].  

To model the swarm, each particle denoted by J moves 

in a multidimensional space. A particle is represented by 

the desired position vector Tç>5
á  and velocity vector Rç>5

á  

which are highly dependent on the current position vector 

Tç
á, velocity vector (Rç

á), local best vector (?Íç
á), global best 

vector (OÍç
á), obstacle susceptibility vector (Kìçá), and 

MANET connectivity vector (Iíçá) information. The vectors 

size depends on the dimension of the multidimensional 

space. 
 

Rç>5
á L SRç

á E é5N5:?Íçá F Tçá;E é6N6:OÍçá F Tçá;E
é7N7:Kìçá F Tçá;E é8N8:Iíçá F Tçá;, 

 

(1) 

Tç>5
á L Tç

á E Rç>5á , (2) 

 

where the coefficients S, é5, é6, é7 and é8 assign weights to 

the inertial influence, the local best (cognitive component), 

the global best (social component), the obstacle avoidance 

component and the enforcing communication component 

when determining the new velocity, respectively. 

ters�N5, N6, N7 and N8 are random vectors wherein each com-

ponent is generally a uniform random number between 0 and 

1. Considering equations (1) and (2), it is noteworthy that 

robots will tend to converge to the optimal solution. Howev-

er, although all robots within a swarm agree with the best 

solution, they must also fulfill the other requirements (i.e., 

avoid obstacles and maintain a certain distance between 

neighbors). 

Fractional calculus (FC) has attracted the attention of 

several researchers [15], being applied in various scientific 

fields, such as engineering, computational mathematics, 

fluid mechanics, among others. 

The Grünwald±Letnikov definition based on the concept 

of fractional differential with . Ð C of the signal T:P;, is 

given by 
 

&�>T:P;? L ���Û\4 B 5
Û�Ã

:?5;Ö+:�>5;ë:ç?ÞÛ;
+:Þ>5;+:�?Þ>5;

>�

Þ@4 C, (3) 

 

where + is the gamma function. An important property 

revealed by (3) is that while an integer-order derivative just 

implies a finite series, the fractional-order derivative re-

quires an infinite number of terms. Therefore, integer de-

rivatives are ³local´ operators while fractional derivatives 

have, implicitly, a ³memory´ of all past events. However, 

the influence of past events decreases over time.  

Based on (3), a discrete time implementation expression 

can be defined as: 
 

&�>T:P;? L 5

Í�Ã
:?5;Ö+:�>5;ë:ç?ÞÍ;
+:Þ>5;+:�?Þ>5;

å

Þ@4 , (4) 

 

where 6 is the sampling period and N is the truncation or-

der. 

The features inherent to fractional calculus make this 

mathematical tool well suited to describe many phenome-

na, such as irreversibility and chaos, because of its inherent 

memory property. In this line of thought, the dynamic 

phenomena of a robot¶V� WUDMHFWRU\� FRQILJXUH� D� FDVH�ZKHUH�

fractional calculus tools fit adequately. 

Considering the inertial influence in (1), S L s, assum-

ing 6 L s and based on [13] work, the following expres-

sion can be defined: 
 

&�Rç>5
á L é5N5:?Íçá F Tçá;E é6N6:OÍçá F Tçá;E
é7N7:Kìçá F Tçá;E é8N8:Iíçá F Tçá;. (5) 

 

Preliminary experimental tests on the algorithm present-

ed similar results for N R v. Furthermore, the computation-

al requirements increase linearly with N, i.e., the fractional 

order RDPSO present a é:N; memory complexity. Hence, 

considering only the first four terms, N L v, of differential 

derivative given by (4), equation (5) can be rewritten as: 
 

Rç>5
á L ÙRç

á E 5

6
ÙRç?5

á E 5

:
Ù:sF Ù;Rç?6á E

5

68
Ù:sF Ù;:tF Ù;Rç?7á E é5N5:?Íçá F Tçá;E

é6N6:OÍçá F Tçá;E é7N7:Kìçá F Tçá;E é8N8:Iíçá F Tçá;. 
(6) 

 

The RDPSO is therefore a particular case of the fractional 

order RDPSO for Ù L sär (without ³memory´). Neverthe-

less, the value of Ù greatly affects the inertial of a robot. 

With a small value of Ù the robot will ignore its previous 

activities, thus ignoring the system dynamics (i.e., exploita-
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tion behavior). On the other hand, with a large value of Ù the 

robot may be unable to prevent collisions and maintain the 

connectivity with its teammates (i.e., exploration behavior). 

One way to analyze the convergence of the algorithm 

consists on adjusting the fractional coefficient based on 

physical mobile robots constraints inherent to their dynam-

ical characteristics. Usually, this is not addressed in the 

literature concerning the classical PSO methods, since virtu-

al agents (i.e., particles) are not constrained by such behav-

iors. Hence, let us then suppose that a robot is traveling at a 

constant velocity such that Rç?Þ
á L R with � Ð 34 and it is 

able to find its equilibrium point in such a way that Tç
á L

?Íç
á L OÍç

á L Kìçá L Iíçá. In other words, the robot converges to 

the best position such that the local, global, obstacle and 

MANET vectors are coincident. As a result, the robot needs 

to decelerate until it stops, i.e., R P Rç?5
á R ® R Rç>Þ

á R
® R r. Consequently, equation (6) can be rewritten as:  

 

r Q R lÙ E 5

6
Ù E 5

:
Ù:s F Ù;E 5

68
Ù:sF Ù;:tF

Ù;p O R, 
(7) 

thus resulting in 

 

r O Ù Q räxut. (8) 

 

Therefore, one can conclude that Ù L räxut is the bound-

ary of the attraction domain: The RDPSO is stable for 

r O Ù Q räxut and unstable for räxut O Ù Q s. As a result 

of the above analysis, the fractional coefficient can be pa-

rameterized iQ�VXFK�D�ZD\�WKDW�WKH�V\VWHP¶V�FRQYHUJHQFH�FDQ�

be controlled by taking into account obstacle avoidance and 

MANET connectivity, without resorting to the definition of 

any arbitrary or problem-specific parameters.  

Next section presents the control architecture of the 

RDPSO considering real heterogeneous mobile robots. 

IV. CONTROL ARCHITECTURE OF SWARM ROBOTS 

This section presents how the RDPSO algorithm can be 

used on real robotic platforms. The RDPSO performs all the 

computation by considering the robots as particles, thus 

ignoring any kinematic or dynamic inherent to the real plat-

form. In other words, the output is a position vector for each 

robot (cf. equations 2 and 6). Depending on the robot kine-

matical and dynamical characteristics, this new position may 

be achieved from different ways. For instance, a holonomic 

robot (e.g., omnidirectional drive system), which has the 

kinematic advantage of allowing continuous translation and 

rotation in any direction, can move to a desired position 

regardless of its orientation. However, a non-holonomic 

robot (e.g., differential drive system) needs to first change its 

orientation to be aligned with the target and then move for-

ward to the desired position. 

In order to achieve a higher level of hardware abstraction, 

a Low-Level Control (LLC) was introduced in the control 

architecture (Fig. 1). In this work, and since all robots are 

non-holonomic, the LLC was designed for the specific struc-

ture of the differential-drive robot to make it turn and then 

follow the desired position vector received by the RDPSO. 

 
Fig. 1. Control architecture of the RDPSO with LLC of a robot n. 

 

As shown in Fig. 1, the output of the RDPSO is given as a 

reference value to the LLC that considers the kinematical 

and dynamical characteristics of the robot thus defining the 

commands to the actuators, e.g., number of pulses for DC 

motors equipped with encoders.  

This two-level control loop organization allows using the 

RDPSO with different types of robotic systems, neglecting 

their kinematical and dynamical characteristics. These as-

pects are considered by the LLC that needs to be properly 

designed for a specific robotic system. 

To our specific situation, i.e., differential-drive robots, the 

LLC receives the desired position T½ç>5
á , which corresponds 

to a cartesian position >T½5ç>5á T½6ç>5
á ?Í, and computes the 

inverse kinematic model based on the following equations: 
 

Dç>5
á L §kR5ç>5á o6 E kR6ç>5á o6, (9) 

 

êç>5
á L =P=JtkR6ç>5á áR5ç>5

á o, (10) 
 

àç>5
á L êç>5

á F êçá, (11) 
 

wherein R5ç>5
á  and R6ç>5

á  are obtained using (6). The func-

tion atan2 in (10) is a variant of the trigonometric arctangent 

function, but accounts for the quadrant in which êç>5
á  lies. 

Note that, êç
á corresponds to the previous computation of (9) 

and may be considered zero in the first iteration (i.e., initial 

orientation of zero degrees). The output of the inverse kine-

matic model is represented by the rotation àç>5
á  that the 

robot needs to perform to be aligned with the desired posi-

tion and the distance Dç>5
á  it needs to travel to reach it.  

The rotation ì½5ç>5
á  and the forward movement ì½6ç>5

á  of 

the differential-drive robot are defined by: 
 

ì½5ç>5
á L ìåØéä

�ß6-
Ù

6�
ä
åÝÚÍÚß

åâÓÐÐ×

, (12) 

 

ì½6ç>5
á L ìåØéä

Ûß6-
Ù

6�
ä

5

åâÓÐÐ×

, (13) 

 

wherein ìåØé is the total number of steps or pulses per revo-

lution. The radius of the robot and the wheels are defined by 

NåâÕâç and NêÛØØß, respectively. In order to improve the time 

response of the robot and the smoothness of its movement, a 

rotational threshold àÍ was introduced. Rotations àç>5
á  infe-

rior to àÍ are then ignored and only the forward distance 

Dç>5
á  is considered. Bearing in mind this assumption, and 

since a possible loss of steps or pulses may occur while 

executing the commands, i.e., ì5ç>5
á M ì½5ç>5

á  or ì6ç>5
á M

ì½6ç>5
á , a new real position is then recalculated and consid-
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