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Abstract—In this work an approach for object shape retrieval 
using 3D data acquired from grasp exploration is proposed. 
The data is acquired from an electromagnetic motion tracking 
device using one sensor on the thumb and another one on the 
index fingertip to track the finger movements around the 
object to obtain its shape. Gaussian Mixture Models (GMM)  
for points clustering and outliers removal is used. Through GMM 
is possible to detect features like eigenvalues to represent each 
shape (e.g. sphere, cylinder and plane) as demonstrated in [11].  
After recovering the shape of the object by a probabilistic 
approach, least square minimization to find the object 
orientation and scale for its representation is adopted. We are 
also introducing a preliminary work with stereo camera that 
aims at acquiring visual information for data fusion (e.g. vision 
and grasp exploration) to obtain 3D object reconstruction.  
Calibration results between stereo camera and electromagnetic 
motion tracking device is presented.

I. INTRODUCTION

Robotics is moving towards the research and development of 
technologies that permit the introduction of the robots in 
our daily lives. On the other side, if a robot is supposed 
to share a human environment, it should be able to cope with 
the presence of humans and interact with them in a very 
friendly way. To create such applications some problems 
need to be solved, including the identification and 
modeling of human intentions, object perception and grasp 
strategies. As robots increasingly become part of our 
everyday lives, they will serve as caretakers for the elderly and 
disabled, assistants in surgery and rehabilitation, and 
educational toys. But for this to happen, programming and 
robot autonomy must become simpler and human–robot 
interaction more natural. This challenge is particularly 
relevant to new generation of robots, which must intervene 
in natural environments, interact with people and operate in 
human environments. Applications of service robots will 
require advanced capabilities of grasping objects and skills that 
allow a robot to recognize the object also through the 
grasp exploration. Humans use the hand for recognizing some 
objects properties such as size, texture and etc. Grasp 
exploration for acquiring object properties is important in 
robotic field to assist other sensors such as vision and laser 
in order to obtain more information of an object. Humans use 
multiple sensory information for recognizing objects. 
Estimation of object properties can be improved combining 
information through different cues.

This research aims at developing methods for grasp 
interpretation and object’s characterization based on the

movements of the fingertips a round t he o bject. W e intend 
to retrieve the object shape by active touch and as future 
work we intend to obtain the 3D object reconstruction by 
fusion of visual cues and grasp exploration. Obtaining the 
3D shape is possible to determine the best place to grasp 
the object through its geometrical properties. Using this 
knowledge (object representation) is possible to endow a robot 
to grasp different types of object including unknown objects.

II. RELATED WORK

Several studies have been carried out to obtain haptic 
information of an object [17], [20]. Some works mention 
geometric methods for grasp determination. The approach 
reported in [4], particularly addressed to polygonal shapes, 
consisting in determining all the regions that guarantee 
antipodal point grasps through of inscribed circumferences 
[13]. This approach is not applicable to a work universe of 
real manufactured objects, without shape restrictions, but the 
idea of taking distances from the centroid to opposite points 
in the outer contour, useful to deal with some kinds of 
symmetry. In [3] the authors have used superquadric functions 
for shape recovery from haptic exploration with multi-fingered 
robot hands using fingertip tactile sensors. They have applied 
a hybrid minimization method utilizing a genetic algorithm 
by considering the contact normal information to recover 
superquadric primitives from synthetic exploration data.

In the context of detection of primitive shapes, it is a com-
mon task in many areas of geometry related computer science. 
Along the last decades, a vast number of algorithms has been 
proposed. Some authors used the well-known Hough’s trans-
form to obtain the shape [2], but it has a high computational 
cost to compute 3D information. Other techniques are based on 
a region growing [19], which use a seed region in the scan data 
and is then grown into neighboring areas. In the recent years, 
some authors have proposed RANSAC-based shape detection 
method [15], which is a robust method for shape retrieval. A  
survey about these methods can be found in [16].

III. GRASPING EXPLORATION

A. Scenario and Devices

In our scenario we are using an electromagnetic tracker 
device, one sensor on the fingertip o f t he i ndex fi nger and 
another one on the thumb. We are acquiring the shape of the 
object performing movements of these two fingers around the 
object. The raw data is used by the shape retrieval algorithm 
(Section IV). Using the two main fingers f or g rasping (e.g. 
thumb and index finger) is enough to acquire the object shape. 
In our experiments we have used a bottle of wine trying 
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Figure 1. Raw data acquired from the magnetic tracker sensors after the
movements of the thumb and index fingers movements around the bottle

Figure 2. Polhemus Liberty tracker device and a glove with sensors attached
on each fingertip.

to recover its shape (cylinder). Fig.1 shows the raw data
acquired from the two sensors on the fingertips after perform
the movements around the bottle.

The motion tracking device Polhemus Liberty [1] has 6 
DoF for each sensor, x,y,z coordinates and yaw, pitch and 
roll information based on sensor’s frame of reference. The 
frame rate of each sensor was defined to work in this 
scenario with 15Hz. Performing a linear movement of 
10cm per second the sensor leads to 0.0221 cm of error. It 
is roughly a linear scaling so that 100cm per second is 
about 2mm of error. The resolution position at 30cm range 
is 0.0004cm and the resolution orientation is 0.0012°. Fig. 2 
shows the Polhemus Liberty 240/8 magnetic tracker device 
and a glove used to attach the sensors on the fingertips.

B. 3D Points Clustering for Outliers Removal
After acquiring the 3D points by grasping exploration the 

clustering of points facilitates to recover the shape and 
remove the outliers that are not part of the object. One 
solution to remove outliers is using the mixture of Gaussian 
function, or Gaussian Mixture Models (GMM).

A GMM is a probability density function described by a
convex linear combination of Gaussian density functions [12].
Therefore, a function is a mixture of Gaussian functions if it
has the form:

f(x,Θ) =
K∑

k=1

pkg(x;µk,Σk)
(
x ∈ RN

)
(1)

where the functions g are Gaussian densities which are defined
by µk ∈ RN and Σk, means and the covariance matrices,
respectively, and the coefficients pk, known as the mixing
probabilities, which satisfy:

pk ≥ 0 and
K∑

k=1

pk = 1. (2)

In this paper, Θ denotes the K(1 + N + N2) dimensional
vector containing all the parameters of the given Gaussian
mixture:

Θ = ((θ1, p1), . . . , (θK , pK)) (3)

where
θk = (µk,Σk) (4)

is a vector containing all the coordinates of the means µk

and all the entries of the covariance matrix Σk. The conditions
in Eq. (2) guarantee that f is indeed a density function.

Mixtures of Gaussian functions provide good models of
clusters of points: each cluster corresponding to a Gaussian
density with mean somewhere in the centroid of the cluster,
and with a covariance matrix somehow measuring the spread
of that cluster. Conversely, given a set of points in RN , one
can try to find the mixture of Gaussian functions Θ that
best fits those points, using a method known as Expectation
Maximization (see section 2.3 in [12]). This algorithm together
with an agglomerative clustering strategy estimate the number
of clusters. This estimation is based on the Rissenen order
identification criteria known as minimum description length
(MDL) [14]. This is equivalent to maximum-likelihood (ML)
estimation when the number of clusters is fixed, but in addition
it allows the number of clusters to be accurately estimated.

The result of this method is the Gaussian functions and the
probability of each point belong to this Gaussian. It allows the
outliers removal as well as facilities the shape retrieval.

IV. RETRIEVALOF BASIC SHAPES 

A. Learning and Classification of Basic Shapes

The shape retrieval is acquired by a probabilistic classi-
fication using a Bayesian model. The raw data acquired by 
grasp exploration is used to find out if the data matches 
with some basic shapes like sphere, cylinder or a plane. For 
that, GMM for clustering and outliers removal is used. 
Using a probabilistic approach we are able to learn and 
classify the shapes. Given the clustering of the points we 
compute the features of each known shape. The features 
extracted are the eigenvalues. From the covariance matrix 
of each shape we extract three eigenvalues and we 
normalize these values as follows:

ei =
λi

λmax

(5)

where e represents the normalized eigenvalue; i represents an 
index for all eigenvalues found for each shape and λmax is the 
maximum eigenvalue from the three eigenvalues found for 
each shape. After this normalization step, we keep the 
maximum and minimum eigenvalues of each shape for the 
learning phase. We have generated randomly 20.000 
synthetic shapes representing sphere, cylinder and plane, all 
with Gaussian noise. The learning phase is based on 
histogram techniques, computing a histogram for each shape 
accumulating all maximum and minimum eigenvalues 
correspondent to each shape (Fig. 3, 4, 5). To compute 
a histogram we create a matrix of dimension 100x100. 
For each observation (a given shape) we extract the 
normalized eigenvalues and these eigenvalues correspond to 
the x and y index of the matrix (histogram).
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 After analyzing all observation for each shape we have 3  
histograms. We normalize each histogram and each one 
represents the taining set for classification of shapes. Given a 
set of observation to represent a type of shape S we have the 
probability of each feature, Emax and Emin so that we have     
P(Emax,Emin|S). To understand the general classification 
model some definitions are done as follows:

1. s is a known shape from all possible S (e.g. cylinder,
sphere and plane);

2. emax is a certain value of feature, representing maximum
normalized eigenvalue;

3. emin is a certain value of feature, representing minimum
normalized eigenvalue;

Learning the probability distribution P (Emax, Emin|S) for 
each known shape and knowing the priors (uniform distribu-
tion) we can apply Bayes rule for the classification: 

P (s|emax, emin) =       P (emax, emin|s) P(s)
   Σj P (emax,emin|sj)P(s)

  
(6)

After 3000 trials (i.e., 1000 randomly for each shape), the 
classification model obtained satisfactory results: 97.53%.  
The problem found during the classification was some 
confusion with the cylinder and sphere when the diameter of 
a cylinder was similar to its height so that it was 
classified as sphere. Sometimes the sphere was classified as 
cylinder due to noise, it makes the radius varying more than 
the tolerable. Another case was the cylinder classified as 
plane, it happens when the cylinder height is close to zero, i.e., 
when the radius is bigger than the height. These results showed 
us that even using simulated shapes generated randomly with 
noise for the learning phase, we obtained good 
classification with real and synthetic data.

Figure 3. Learned histogram: sphere.

B. Shape Orientation and Scale Matching

After the classification of each shape, to find the disposition 
of this shape concerning rotation and scale is necessary. For 
that, we use the algorithm proposed by Núñez et al [11] that is 
used to retrieve the shape in robotic maps. It finds the shape 
that better approximate to an ideal basic shape from Ψshape. 
They use the mathematical space of the Gaussian mixture 
model which is described by the covariance

Figure 4. Learned histogram: cylinder

Figure 5. Learned histogram: plane

and mean of the Gaussian functions. The Gaussian mixture
associated to the 3D points is denoted as Π. The shape retrieval
algorithm is based on the covariance matrices matching. The
best model of the shape and the rigid transformation T with
respect to an ideal shape is the main idea this algorithm.
Gaussian functions are matched with each basic shape which
is measured the similarity between their covariance matrices,
dΨ = {dsphere, dcylinder, dplane}. The minimum value of dΨ

determines the shape that best approximates to the cloud of
points, just as the rigid transformation.

Covariance matching is a basic task in measurement design
[8]. The goal is to obtain a distance measurement of two
covariance matrices. The space of covariance matrices is not
a vector space and therefore a standard arithmetic difference
does not measure the difference between them. But covariance
matrices are symmetric and positive semi-definite and then can
be formulated a distance based on Riemannian metric. They
use the distance metric described by Foerstner and Moonen
[8] which is defined as follows:

d(Σ1,Σ2) =

√√√√ N∑
i=1

ln2λi(Σ1,Σ2) (7)

where Σ1 and Σ2 are the two input covariance matrices, λ
represents the generalized eigenvalues of Σ1 and Σ2, and N
is the dimensionality of the matrices. Considering Σ1 as the
covariance of the Gaussian function which identify a shape to
be recognized and Σ2 as the covariance of a basic shape, i.e.
sphere, cylinder or plane. To consider possibles rotations and
scaling changes of the model, it must be noted that

Σi = TΣjT
T = (R · L)Σj(R · L)T (8)

where T represents the Rigid Transformation applied to the
ideal geometric shape (neither scaling nor rotation), which
is composed of scaling and rotation matrices, R and L.
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Figure 6. Left image: Raw Data acquired from the finger movements arounf
the bottle. Right image: data with Gaussian noise.

In this approach, the translation is directly known with the
mean information of each Gaussian and rotation is the known
rotation matrix with three degree of freedom using Euler
angles. The matrix L represents the diagonal matrix with scale
for each axis. It is possible to minimize Eq. (7) using a least
squares minimization method based on Levenberg-Marquardt
algorithm, which modifies the rotation and scaling matrices in
each iteration. A starting guess of the parameters is required
to reduce the number of iterations needed to converge and
remove local minima situations. The algorithm uses a good
approximation to the rigid transformation T according to the
eigenvectors values of the two covariance matrices.

This mentioned method could be used to match the shape 
beyond of only rotation and scale. However, we are using this 
method just to match the rotation and scale of each classified 
shape, since our probabilistic classification using the 
Bayesian model obtained better results.

V. RESULTS AND FUTURE DIRECTIONS

The movements of the thumb and index finger around the
object were performed in 60 seconds. The frame rate of the
sensors used on the fingertips for grasp exploration was 15 Hz
per second.

Fig.6 shows the raw data and the data with Gaussian noise
that were used to test the efficiency of the clustering algorithm.

Fig. 7 shows the result of the GMM. The input of the 
the first GMM was the raw data and for the second one was 
the data with Gaussian noise. We can see a small variation in 
the disposition of the GMM, but the clustering still remains 
the same. Two cluster were generated for the bottle object 
for afterwards each cluster represent a shape primitive. Our 
approach has classified a suitalbe shape to represent the object 
and the algorithm used for rotation and scale recovered the 
shape disposition. It demonstrates that our shape recovering 
approach works well even with noisy data.

Fig. 8 shows the raw data acquired through the contour 
following exploratory procedure, the GMM generated from 
the 3D points  and the recovered shape. From each 
Gaussian we could recovery the shape by classification.  
By using the least square minimization method we could 
find the orientation and scale for each shape primitive among 
the known basic shapes (cylinder, plane and sphere). For this 
object (bottle of wine) the algorithm easily recovered the 
cylinder shape for each one of the two Gaussians, as well as 
the scale in x, y, z axes and the rotation in  Euler angles. 

Figure 7. Top-left: superior view of the GMM generated from raw data; 
Top-right: Lateral view of The GMM generated from the raw data; Down-
Left: Superior view of the GMM generated with Gaussian noise; Down-right: 
Lateral view of the GMM generated from the data with Gaussian noise. The 
red circles in the lateral views show the region that presents different 
dispositions in the GMM (due to noise data).

Figure 8. GMM generated from the 3D points obtained by grasp 
exploration and the recovered shape for the botle.

Given the scale and rotation parameters and the means of 
each Gaussian (centroid), the cylinder shape was genrated as 
shown in the figure 8.

As future work we intend to study and develop methods 
for 3D reconstruction using multimodality (data fusion). The 
main idea is to acquire visual cues from and data from grasp 
exploration to fuse them in a probabilistic volumetric map 
where each voxel has a probability of being occupied or 
not. One map for each sensor will be built and they will 
be updated on a global map by Bayesian filtering. To 
achieve this goal some preliminary steps are necessary, 
such as sensor calibration. We are starting this approach 
with preliminar results as presented in the next 
subsections. In the next subsections we describe
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some works regarding dynamic background segmentation 
to assist removing the background of the image to 
facilitate the segmentation of the object, as well as method 
for sensors calibration to be possible reproject a set of 3D 
points from a frame of reference to another one. After these 
steps we intend adopt a probabilistic method for 3D 
reconstruction of the object for its characterization.

A. Dynamic Background Segmentation

We use the horopter concept in order to dynamically 
remove the background of the image. For that,  the stereo 
camera has be calibrated. We used Bouguet toolbox [5] to 
acquire the homografic matrix between the cameras. This 
means that only objects inside the area are possible of 
being detected and when applying color to the 3D recon-
struction we just need to consider a small amount of pixels 
instead of the whole image. Our approach is based on the 
Geometric Horopter and in order to calculate the horopter, 
first we obtainb the stereo diparity map. Disparity map 
represents the difference of distances between points of a 
pair of images; meanwhile depth maps represents the expected 
depth/distance that an area is considered to be away from the 
camera.

We have used the Intel Open Cource Computer Vision 
library [9] and an adaptation of the SVS [18] library in 
order to get the depth map. The SVS library first construct 
a disparity space image from stereo image pair, and then 
calculate temporary disparity maps using the SAD method 
[7]. Later stage of the algorithm will reduces both the blurred 
errors at depth discontinuities and the mismatched errors at 
half occluded areas. The final step was to use a median filter 
to interpolate the dense disparity map. Once one has 
calibrated the cameras and the disparity map calculated,  to 
obtain thecdepth map is trivial.

The Vieth-Muller Circle defines the region where the dis-
parity is equal to zero, while the disparity grows for inside 
with positive values and grows (shrink if considering the raw 
value) to out-side with negative values. Pixels that present 
negative values for disparity, will be assigned zero value (black 
color pixels). The result is a segmented image where the pixels 
calculated to be inside the Vieth-Muller circle define the 
’visible’ objects within the circle. The segmented image (Fig.9) 
results in a region of interest and this region will define the true 
input pixels for the reprojection phase.

Notice that we still have some noise at the segmented 
images, these noisy areas usually exist due to homogeneous 
areas in the original image. Homogeneous areas and also very 
similar neighbor features of the image can add noise to our 
depth map and consequently to the final horopter segmented 
image.

B. Sensors Calibration

We performed a calibration between the Polhemus Liberty 
240/8 tracking device and stereo camera to acquire a trans-
formation to reproject the 3D points of the tracker device 
frame of reference in the image plane. 

Figure 9. Horopter technique (left: original image; right: segmented image).

The stereo camera is mounted in a robotic head (Fig.10) 
and comprises two Guppy monocular cameras capable of 
vergence. The distance between the two cameras is 10cm. 
The first step of this calibration is to acquire the intrinsic 
and extrinsic parameters of the stereo camera. The 
Polhemus device give us the 3D points related to its reference 
frame, thus we can use the strategy of using a white tape on 
the sensor (Fig.11) to recognize this "mark" in the left and 
right images to compute the 3D point. At least a set of 25 
images are necessary. The 3D point from the tracker device 
sensor is acquired in the same instant of the images. The 
stereo camera and the tracker reference frames, {C} and {P } 
respectively, are rigid to each other. Initially the calibration 
is done keeping the cameras parallel and then the 
homographic matrix is updated at each time we move the 
vergence. Collecting two sets of 3D corresponding points in 
two coordinate references, cp = {cpi|i = 1, ..., N} and pp = 
{ppi|i = 1, ..., N} we can find the transformation of a 3D 
point in {P },pp to {C}, cp. To compute pRc and ptc 
(rotation and translation matrices of the homogeneous 
transformation) Arun’s method described in [10] has been 
used which is based on an algorithm to find the least-squares 
solution of R and t (rotation and translations) using singular 
value decomposition (SVD). Fig. 12 shows that increasing 
the number of collected points from Polhemus and Camera 
reduce reprojection errors and increase the precision of the 
result. Its horizontal axis is for number of points used in the 
calibration, and the vertical axis indicates value of 
reprojection errors in the scale of pixel. Fore more details of 
the calibration method see [6].

Figure 10. Stereo vision consistent of two Guppy monocular cameras
mounted in a robotic head .

Fig. 13 shows the reprojected points of the tracker device
(acquired by the sensors on the fingertips) in the segmented
image of the bottle.

VI. CONCLUSION

In this work a novel way of object shape retrieval by grasp
exploration is presented. Using two electromagnetic tracker
sensors, one on the index fingertip and another on the thumb
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Figure 11. Right image acquired from stereo camera. The tracker sensor
(with a white tape on it) is attached on a tripod for 3D point acquisition for
calibration.

Figure 12. Number of used points in the calibration and the value of
reprojection errors in the scale of pixel.

fingertip w e  c o uld m a ke m o vements a r ound t o  t h e o b ject to 
acquire raw data of its shape. GMM was used for clustering 
of the raw data to detect features (eigenvalues) to represent 
each shape (e.g. sphere, cylinder and plane). A 
probabilisitic classification of the shapes primitives by 
using Bayesian techiniques was proposed. Acquiring the 
features of each shape we computed histograms of 
possible shapes in a learning phase. Using the algorithm 
presented in [11] we could match the shape dispositions 
(cylinder, sphere and plane orientations and scale). As future 
work, we intend to use visual cues such as texture to 
characterize the object, as weel as to obtain 3D 
reconstruction by using the 3D point cloud from 
different modalities (vision and grasp exploration). To 
achieve this goal sensors calibration is needed. We also 
presented the results of the calibration between the tracker 
device and stereo camera showing the reprojected points 
of the grasp exploration (Fig.13) on the segmented image 
acquired from horopter technique. The calibration step has 
shown satisfactory results and we can assume that will be 
possible to reconstruct the object shape using the 3D points 
acquired from stereo camera and grasp exploration. For the 
object (bottle of wine) used in our experiment the algorithm 
of shape retrieval easily recovered the cylinder shape for each 
one of the two Gaussians generated, as well as the scale in x, y, 
z axes and the rotation in  Euler angles.
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Figure 13. Reproject 3D Points of the tracker device in the image plane.
Red color points represent were acquired from the thumb and the blue color
points were acquired from the index finger.
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