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Highlights

• aPOMDP controls an agent’s actions to maintain the user
in maximum value states.

• Three reward functions based on state value and entropy
are proposed and compared.

• Online learning of the transition matrix T is done through
a knowledge update step.

• User stays in most valuable states up to 71% of the time,
lowering T entropy to 0.7.

• User tests show that the technique is transferable to real
scenarios with robots.
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ABSTRACT

In this work we present αPOMDP: a User-Adaptive Decision-Making technique for social robots. This
technique is based on the classical POMDP formulation which we extend with novel aspects inspired
by Reward Shaping and Model-Based Reinforcement Learning. Our technique innovates in two main
ways: by applying a novel set of rewarding schemes based on the state of the user and by employing
a novel execution loop that enables the system to learn the impact of its actions on the user on-the-fly.
Our technique has been tested with multiple POMDP solvers and reward formulations in simulations
and with real users through the GrowMu social robot. Results show that our technique is able to
correctly decide which actions to take, maintaining the user in positive states which interacting with
the robot and methodically exploring and learning their characteristics, activities and behaviours.
Keywords: Social Robots, POMDPs, Automated Planning, Decision Making, Machine Learning

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Social and domestic robots aim to assist and accompany
the user in their daily life, aiding them in tasks such as keep-
ing track of their medication, suggesting activities and alerting
their relatives when emergency situations occur (Martins et al.
(2015)). Being a constant presence in the user’s life, these sys-
tems need to be able to cooperate with them and be accepted.
The ability to automatically adapt and adjust to the characteris-
tics of a user can be an important factor in the user’s acceptance
of the system. This ability is called user-adaptiveness.

As a result, user-adaptive systems, as depicted in Fig. 1, have
become a trend in recent research and commercial systems.
When fully autonomous, are able to learn or infer the charac-
teristics of their users, building a user model, and make use of
that information to inform their following decisions.

In this work we present αPOMDP, a POMDP-based
decision-making mechanism able to learn and adapt to a user,
as a complement to a pre-existing user model (Martins et al.
(2017)). The technique was designed on two main principles:
the system should be able to learn all of the information it needs
to interact properly, and its actions should take into account the
impact that they produce on the user.

∗∗Corresponding author: Tel.: +351 239 796 389
e-mail: luis@isr.uc.pt (Luís Santos)

Fig. 1. A general architecture of user-adaptive systems. In this work we
focus on the block highlighted in green, decision making.

1.1. Application of POMDPs in Social Robotics

POMDPs are able to model a number of different scenarios,
many of which applicable in user-adaptive robots. Their abil-
ity to deal with stochastic observations, costs and rewards make
them especially suited for decision-making in the uncertain en-
vironment of human-robot interaction.
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This formulation has seen some use in user-adaptive robots,
for instance for task allocation in cooperative scenarios (Curran
et al. (2016)) or cooperative surveillance (Egorov et al. (2016)).

POMDPs have been used in assistive robots (Taha et al.
(2011)), and in the adaptation of a domestic robot to its user’s
preferences (Karami et al. (2016)). In the latter, the history of
interactions is used as basis for the adaptation of future actions.

Beyond the usage of MDPs and POMDPs, user-adaptive
robots have been used, for instance, as tutors that can adapt to
the pupil’s level of skill (Lim et al. (2013)), as learning guides
that ultimately become completely autonomous (Sekmen and
Challa (2013)), or as therapy companions able to deliver as-
sistance adapted to the user’s personality traits (Tapus and Aly
(2011); Tapus et al. (2008); Sajid (2016)). Most of these works
demonstrate their performance against non-adaptive systems,
and establish the need for, and the usefulness of, user-adaptive
human-robot-interaction systems.

1.2. Goals and Contributions

The main goal of this work is to present and demonstrate
a novel POMDP-based decision-making technique for social
robots. This work introduces the following innovative factors:
F1: A novel state-based reward formulation;
F2: A novel learning mechanism and execution loop.
In this work we present experimental results obtained with the
proposed system, showing that:

1. The system is able to make decisions that correlate pos-
itively with the value functions enconding the impact on
the user, keeping them in the most valuable states for sig-
nificant portions of the experiment;

2. The system is able to learn the impact (Eq.(7)) of its ac-
tions on the user, exploring the user’s state space to gain
information that leads it to improve its performance;

3. The system can achieve these goals in realistic simula-
tions and is transferable to experiments with real users, as
shown in the experimental section.

These claims will later be discussed in Section 5.

1.3. Manuscript Structure

Section 2 presents related work, specific goals and claims;
Section 3 presents the αPOMDP technique, including the
several rewarding schemes we have devised and our transi-
tion learning technique. Section 4 presents our experimental
methodology, which results are discussed in Section 5. Lastly,
Section 6 presents our concluding remarks and future work.

2. Related Work

2.1. POMDPs and Decision Making

The goal of decision making (or automated planning) algo-
rithms is to select an agent’s actions such that it achieves a given
goal. Generally, the agent receives a set of percepts, such as
processed sensory input, and outputs commands to an underly-
ing actuation mechanism (Ghallab et al. (2016)).

POMDPs (Smallwood and Sondik (1973)) are an automated
planning technique which differs from its counterparts by tak-
ing a probabilistic approach as to the state that the agent is in,

i.e. does not assume that the agent knows its current state, ex-
pressing its knowledge as probability distributions which are
refined as the agent gains information. To compensate for this,
the system assumes that the world is static, i.e. the world is
only assumed to change as a result of the agent’s actions. It is
assumed that taking an action is an atomic procedure.

Decision-making techniques are domain-independent, in the
sense that, given the correct assumptions, they can be applied
to artificial agents in different domains with small changes. The
key to the successful application of these techniques to differ-
ent domains lies in the variable grounding problem, i.e. in
the relationship that is established between the problem that
the technique is tackling and the real problem at hand. Vari-
able grounding can be achieved by languages such as Planning
Domain Description Language (PDDL) (Ghallab et al. (1997)),
which bridge the real-world problem and the abstract problem
that a decision-making technique solves. Languages such as
PDDL aims to model the application domain of a decision-
making technique, thus allowing for the grounding of abstract
decision making into realistic domains. POMDPs, like other
decision-making techniques, are domain-independent.

Alternatively, the problem at hand can be grounded manually,
specifying the real-world problem in a way that can be directly
tackled by a decision-making technique. We have opted for this
approach, since our simplification of the user model allowed for
such a direct grounding, as will be seen in Section 3.

2.2. POMDP Definitions

Markov Decision Processes (MDPs) model fully-observable,
sequential stochastic decision processes. Within this frame-
work, at each iteration, an agent selects an action to perform
based on its policy, which maps its current state to the action it
should take. Depending on the current state and action taken, a
reward is attributed to the agent, which is used as a basis for op-
timizing the agent’s policy. The overall objective of the agent is
to maximize the cumulative reward over the problem horizon.

An MDP is defined as a 4-tuple < S , A,T,R >, where S is
a finite set of states, A is a finite set of actions, T (S ′, S , A) =

P(S ′|S , A) is the probability that a certain action a leads from
state s to state s′ and R(S , A) is the reward obtained from tak-
ing action a in state s. Partially Observable Markov Deci-
sion Processes (POMDPs) are an extension to MDPs in which
the current s is unknown. They are represented as a 6-tuple
< S , A,T,R, γ,Ω,O > (Sondik (1978); Kaelbling et al. (1998))
where S , A , T and R are defined as previously, Ω is a finite
set of observations, O(s′, a, o) = P(o|s′, a) is the observation
function, and γ is the discount factor (γ ∈ [0, 1] per time step).

Not being able to observe its state, the agent maintains a be-
lief state b ∈ B, defining the probability of being in state s. b is
updated after taking action a and receiving observation o:

ba,o(s′) =
O(s′, a, o)

∑
s∈s T (s, a, s′)b(s)

P(o|a, b)
, (1)

2.3. POMDP Solving Methods

At each time step, the agent updates its belief b(s). The value
function for a single-objective POMDP, Vb, is defined in terms
of this belief and can be represented by a set A of α-vectors.
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Each vector α (of length |S |) gives a value for each state s. The
value of a belief b givenA is:

Vb = maxα∈Ab · α (2)

If an action associated with an alpha vector maximizes the inner
product α · b, then that action is optimal. Since each α-vector
is associated with an action. Therefore, a set of α-vectors A
also provides a policy π that for each belief takes the maximiz-
ing action. The optimal value function for a POMDP can be
approximated by a piecewise-linear convex function.

Dynamic Programming (DP) is used to solve sequential de-
cision making processes such as POMDP problems (Cassan-
dra et al. (1997)). In POMDP an agent takes the sequen-
cial decisions in a way that maximizes its utility given the
actions and the current states. Algorithms to solve POMDP
uses various methodologies such as: value iteration (Sawaki
and Ichikawa (1978); Cassandra et al. (1994)), policy itera-
tion (Sondik (1978)), accelerated value iteration (White III and
Scherer (1989)), structured representation (Boutilier and Poole
(1996)), and approximation (Zhang and Liu (1996)). Under
each of these methods there are different techniques. For in-
stance, Point-Based methods, such as Point-Based Value Itera-
tion (Pineau et al. (2003)) and Heuristic Search Value Iteration
(Smith and Simmons (2012)), have received recent attention for
their ability to solve relatively large problems. QMDP, A sim-
ple approximation method, uses the state-action value function
Q(s, a) to approximate the alpha vectors (Cassandra and Kael-
bling (2016)).

DP consists of number steps yet the most important one is
the updating. The update is when new value function V ′ is de-
fined when value function V is given. The value function is the
mapping of information states Ra

o(s′) to expected accumulative
discounted reward.

Ra
o(s′) =

Pr(o|s′, a)
∑

s∈S Pr(s′|s, a)x(s)
Pr(o|x, a)

(3)

V ′(x) = maxa∈A(
∑

s∈S
ra

o(s)x(s) + γ
∑

o∈O
Pr(o|x, a)V(xa

o)) (4)

There are different ways to do the update; one pass (Smallwood
and Sondik (1973)), exhaustive (Monahan (1982)), linear sup-
port (Cheng (1988)), witness (Littman et al. (1995)), and incre-
mental prunning (Zhang and Liu (1996)).

2.4. POMDP Solvers

Several software packages have been developed that imple-
ment POMDP solvers, such as QMDP and SARSOP, which
are employed in our experiments. QMDP1 is an approach to
find Q functions for POMDPs by making use of Q values of
the underlying MDP Q(s, a) = R(s, a) +γ

∑
s′∈S T (s, a, s′)V(s′),

and linearizing across Q−values to obtain the value at a be-
lief: V(b) = maxa∈A

∑
s∈S b(s)Q(s, a) (Cassandra and Kaelbling

(2016)). The Q function for action a, Qa(b) is the expected
reward for a policy that starts in belief state b, takes action a

1https://github.com/JuliaPOMDP/QMDP.jl

and then behaves optimally. By choosing the action that has
the largest Q value for a given belief state, an agent can behave
optimally.

Successive Approximations of the Reachable Space under
Optimal Policies (SARSOP)2 (Kurniawati et al. (2008)) is a
point-based algorithm. It samples a set of points from the
belief space. The sampled points form a tree where the root
is the initial belief b0 which leads to actions and each action
leads to observations. The belief tree is refered here as TR.
Each node of the TR represents a sampled point b. To sam-
ple new point b′, a node b is selected from the TR as well an
action a ∈ A and an observation o ∈ O according to suitable
probability distributions or heuristics. The b′ then computed
b′(s′) = τ(b, a, o) = ηO(s′, a, o)

∑
s T (s, a, s′)b(s) where η is

a normalization constant. If all possible sequences of actions
and observations are applied than the set of nodes in TR will
be exactly the reachable space R. SARSOP avoids this by fo-
cusing on finding the approximate cover, maintaining both a
lower bound and upper bound on the optimal value function
V∗. It gradually reduces the gap between the upper and the
lower bounds on the value function at b0, until it reaches either
a pre-specified gap size or the time limit.

2.5. POMDP Rewarding Schemes

There are different schemes that has been proposed by re-
searchers to enhance the POMDP for various purposes. The
classical scheme consists of defining a function r(s, a) : Rn →
R that maps each combination of state and possible actions with
a scalar reward. This rewarding scheme allows for the mod-
elling of single-objective systems operating under uncertainty.

However, it is possible that a system has to simultaneously
optimize multiple objectives, e.g. fulfilling its main task while
not moving into a certain area of the workspace. In this case,
a multi-objective reward function R(s, a) : Rn → Rn (Soh and
Demiris (2011)) can be used. Multi-objective rewards encode
each objective as a discrete function, which can be optimized
separately or through a scalarization scheme:

r(s, a) =
∑

k

wkR(s, a)k (5)

thus obtaining a single reward function that is the sum of
the multiple rewards, weighted by the wk weights. Multi-
objective rewards can also be solved by prioritizing reward
functions (Wray and Zilberstein (2015)). In this case, priorities
as a set of objectives were proposed using the goal program-
ming lexicographic method for selecting reward preferences.

The POMDP formulation takes into account the belief term
b, a probability distribution over the state space encoding the
system’s belief as to what could be the current state. Previ-
ous approaches have attempted to encourage agents to improve
their knowledge of the current state via a belief-based reward
function (Araya et al. (2010)), reducing the uncertainty in the
agent’s belief through the use of the entropy Shannon (1948) of
the belief state distribution b as a measure of uncertainty.

2https://github.com/JuliaPOMDP/SARSOP.jl
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Hybrid schemes can be obtained by combining these ap-
proaches, as in Eck and Soh (2012). The reward is weighted
by both the system’s belief and its entropy, allowing it to gain
information on its current state while completing its task.

2.6. Reinforcement Learning and Reward Shaping

Two techniques in the field of automated planning are the
closes to αPOMDPin terms of goals and theoretical formula-
tion: reward shaping (Ng et al. (1999)), the basis for factor F1,
and model-based reinforcement learning (Szita and Szepesvári
(2010)), the basis for innovative factor F2.

Model-based reinforcement learning (MBRL) consists of ap-
plying reinforcement learning (Barber (2012)) to a previously-
built model. MBRL allows for the fitting of a previous model,
such as the transition model P(s′|s, a), to the characteristics of
the specific problem at hand. We employ a simplified version
of MBRL based on Bayesian Learning in order to adjust our
system’s transistion model as it executes.

Reward shaping consists of manipulating the reward given
to reward-based systems, such as POMDPs, to aid the learning
system to achieve the goal. It generally constitutes an informed
deviation from the parameters of the problem at hand, heuristi-
cally providing a reward that better steers the system towards its
goal. We employ an entropy-based reward shaping mechanism
that encourages the system to explore potentially rewarding ac-
tions in uncertain states, as seen in Section 3.

3. αPOMDP

3.1. Overview

Given that each action of the robot produces an impact on the
user, we have designed a system with two basic goals:
• The robot should be rewarded according to the potential

impact it produces on the user (F1);
• The robot should be able to autonomously learn the impact

of its actions on the user (F2).
In order to achieve these goals, we propose the αPOMDP sys-
tem (Fig. 2). It extends the regular operation loop of POMDP-
based systems with a knowledge integration and policy recalcu-
lation steps, which allow the system to gradually learn its im-
pact on the user. Coupled with our novel reward formulations,
this system is able to achieve our goals, gaining information as
it interacts and steers the user towards valuable states.

3.2. Reward Function

The user’s state is modelled as a combination of discrete vari-
ables, s ∈ Nn, where n is the number of user characteristics
under analysis, with each variable encoding one of the user’s
characteristics. A better insight on these characteristics can be
found in (Martins et al. (2017)), or inferred through the system’s
observations as in the original POMDP formulation.

Whenever the system takes an action, it produces an impact
on the user under the form of a state transition:

s′ = Γ(s, a), (6)

where s′ is the user’s final state after action a, s is the initial
state and Γ is the hidden function through which the user tran-
sitions from state to state.

From the user’s perspective, s′ may be more valuable, less
valuable or equally valuable when compared to s. This state
value can be represented as a state value function V(s) : s→ R,
mapping each possible state to a scalar. This function can en-
code the semantic value of each state, such as the user’s health
in each state, or their immediate happiness. Thus, it allows us
to linearly quantify the importance of each state.

This function allows us to define the impact on the user pro-
duced by a robot’s action as they transition from s to s′:

I = V(s′) − V(s) = V(Γ(s, a)) − V(s) (7)

thus quantifying the value of each state transition and, by ex-
tension, each possible action.

However, the Γ(s, a) function is not known a priori, and may
even depend on hidden variables. The POMDP formulation
already contains a solution to this problem in the form of the
T (s′, s, a) = P(s′|s, a) function, which encodes state transitions
as probability distributions. Thus, in order to make its decisions
while taking into account the likely impact on the user, the sys-
tem can employ T : if an action is unlikely to produce positive
impact, then it should be penalized, and vice-versa. As such,
the basic reward function (the State Value Reward - SVR) is
formulated as follows:

R(a, s) =
∑

s′∈S
T (s, s′, a) ∗ I

=
∑

s′∈S
P(s′|s, a) ∗ (V(s′) − V(s))

(8)

resulting in a scalar reward for each possible action in a given
state, according to its probable impact on the user. This dif-
fers from the classical POMDP formulation, in the fundamen-
tal sense that, through the V(s) function, the value of the robot’s
action is now dependent on the user’s states, and not on actions
in a given state. Actions are, thus, valued only by their influence
on the user, and by their likelihood of transitioning the user to
a state that is considered more valuable than the one they are
currently in.

In order to encourage the system to gain information on the
user, avoiding being stuck in the same state-loop indefinitely,
we have devised an information-based term:

H = h(T (s, s′, a)) = −
n∑

i=1

P(xi) logb P(xi), (9)

where h is the entropy function (Shannon (1948)). The informa-
tion term H will increase with the uncertainty in the P(s′|s, a)
distribution, reading its maximum when the distribution is uni-
form, i.e. when no information on the respective potential tran-
sition is known. Thus we formulate the State Value Reward
with Information Term (ISVR):

R(a, s) =
∑

s′∈S
T (s, s′, a) · I + H (10)

By using the information term H, we increase the reward given
to an action that leads to unknown transitions, thus encouraging
the system to investigate the impact on the user of new actions.
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Fig. 2. An expanded view of the “Decision Making” block of Fig. 1, providing an overview of the execution loop of our system. The transition and reward
functions can be re-calculated each time new information is obtained by the system, resulting in a new policy which is better suited to the user.

Several V(s) functions can be used to encode multiple re-
wards, such as when the robot needs to maximize several se-
mantic dimensions of the user, e.g. health and happiness. This
results in multiple formulations of the SVR of Eq. (8). By
scalarizing these multiple objectives we obtain the Multiple
State Value Reward (MSVR):

R(a, s) =
∑

k

∑

s′
wk · P(s′|s, a) · (Vk(s′) − Vk(s)) + H (11)

which allows for the encoding of different semantic informa-
tion, such as health status vs immediate happiness, into the
weighted reward function through the wk weights.

3.3. Transition and Reward Learning

In order to predict the impact of its actions on the user, the
robot must approximate the Γ function (Eq. (6)). Through the
application of the POMDP formulation, Γ can be approximated
by P(s′|s, a), which must be learned as the system executes.

Each interaction with the user, as seen in Fig. 2, yields tran-
sition information in the form of a sample:

L = {s′, s, a}, (12)

a tuple encoding the initial and final states, as well as the ac-
tion employed by the robot. This information is used to learn
P(s′|s, a) by constructing a histogram, as usually seen in the
Naïve Bayes Classifier formalism (Ferreira and Dias (2014)):

P(s′|s, a) =
1
N

N(s′, s, a) (13)

where N is the number of available samples, and N(s′, s, a) is
the number of samples where S ′ = s′, S = s, A = a. A practical
example of this mechanism in action is illustrated in Fig. 2.

These tuples are added to the distribution on every inter-
action, thus enriching the system’s knowledge of Γ. By re-
calculating the reward functions that depend on this function,
the system’s information is fully updated. This updated infor-
mation can then be used to re-calculate the policy, resulting in
a policy that is potentially better adapted to the user.

4. Experimental Design

To validate αPOMDP, we applied it in the context of a real-
ist use-case scenario, aiming to demonstrate the claims of Sec-
tion 1.2 The scenario consists on a user interaction with a social
robot, which models the user’s state and performs actions to in-
fluence it. The robot’s actions are assumed to be the only influ-
ence on the user’s state, and are guided by the αPOMDP tech-
nique. We have performed both simulated and tests with real
users,with types of experiments being set in the same general
scenario. We have released our code as an open-source pack-
age containing the code used for these experiments3.

4.1. Use Case Scenario

Interaction takes place iteratively, following the loop of
Fig. 1. Every iteration, the robot should decide about the ac-
tion to execute, which is dependent on the current state of the
user, which is expected to be influenced by the action. For
instance, giving the user chocolate could make them happier
but potentially harm their health, and performing exercise will
lessen their happiness but contribute to better health.

We define the state space as S : s ∈ {S 1, ..., S 5}, S i ∈ {1, 2, 3}
where:
S 1: (User) satisfaction, S 1 = 1 means the user is unsatisfied,

and S 1 = 3 means they are fully satisfied;
S 2: (Robot) robot’s current speaking volume, with S 2 = 3

meaning that the robot is at full volume;
S 3: (Robot) the robot’s current distance to the user, with S 3 =

3 meaning that the robot is as close as possible.
S 4: (User) health, with higher levels indicating better health.;
S 5: (World) Time of Day.
With respect to the robot’s action space, we define it as A : a ∈
{A1, ..., A8} with each action corresponding to:
A1: Ask the user a question;
A2: Move the robot 15cm forward;
A3: Move the robot 15cm back;
A4: Increase speaking volume by one interval;

3https://github.com/gondsm/apomdp
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A5: Decrease speaking volume by one interval;
A6: Give the user food;
A7: Give the user candy;
A8: Do nothing.

4.1.1. Simulation Scenario Variant
Each simulated trial consists on the execution of the loop

described in Fig. 2 for a set number of iterations (n). For each
trial, a number of parameters are variable:

1. The POMDP solver in use by the system;
2. The number of iterations that the system will run (n);
3. The reward function to use;
4. The V(s) function(s);
5. The simulated user’s profile;
6. The policy calculation period tc;
7. The state and action spaces.

In order to determine if different solvers have an impact in
the system’s performance, we have used two different POMDP
solvers, QMDP and SARSOP, discussed in Section 2. The
remaining parameters are described in detail in the following
paragraphs. Each experimental condition was repeated 1000
times for statistical significance.

The system interacted with a simulated user characterized by
a V(s) function and a user profile composed of a deterministic
Γ function (Eq. (6)) that maps each a and s pair to the resulting
s′. Both of these functions were randomized between each trial,
effectively exposing the system to a new user at each new trial.

The V(s) function was re-generated randomly for each trial,
attributing a random discrete value to each state. Similarly,
the user profile was re-defined between trials, with each state-
action pair being attributed a random destination state. This
stochastic generation of the user profile can lead to a number
of pitfalls, for instance when the profile is generated in a way
that high-value states are unreachable, or that all states receive
extremely low values, hindering the system’s efforts.

The policy calculation period tc is the periodicity in which the
system is allowed to recalculate its policy, with a tc = 1 mean-
ing that the system re-calculates the policy every iteration. This
parameter also varied, deterministically, between tests, namely
to determine the system’s robustness to the integration of more
data, and to allow determining whether the policy needs to be
re-calculated at each step for the system to execute successfully.

We have tested all of our three proposals (SVR, ISVR and
MSVR). For the MSVR reward, the function was randomized
at each trial, with new weights being generated and three simul-
taneous V(s) functions being used.

Simulation results were obtained using both the full and a re-
duced version of the scenario of Section 4.1, which limited it to
S = {S 1, S 2} and three actions. The reduced tests allowed us
to select the optimal experimental parameters, which were then
applied to the full problem. Interested readers are strongly en-
couraged to analyze our code and replicate these experiments.

4.1.2. Real Scenario Variant
The real scenario variant is a transposition of the scenario

described in Section 4.1 to a real setting, implemented on the
GrowMu social robot (Martins et al. (2015)). The state and

action spaces were trimmed to variables S 1 through S 3 and A1

through A5, limiting our tests to a duration of about 10 minutes.
The user’s state was estimated at the end of each iteration via
verbal interaction. The Human-Robot Interaction occurred as
described in Section 4.1, where each iteration consists of the
robot performing an action and estimating the resulting user
status. Based on the result analysis from the simulated scenario
variant trials, we have used the QMDP solver, the ISVR reward,
a tc of 1 and formulated V(s) = 10 ∗ s1, reinforcing only the
user’s satisfaction.

4.2. Evaluation Metrics

We employ the following evaluation metrics:
Rc: Cumulative Reward;
t3: Iterations that the system spent in top 3 states;

H̄(T ): Average entropy on the T (s′, s, a) function;
t: Execution Time.

Rc is defined as
Rc =

∑

k

Rk (14)

where Rk is the reward received by the system up to iteration k.
The metric represented by t3 is defined as

t3 =

3∑

i=1

Ni (15)

where Ni is the number of iterations spent in the i-th most valu-
able states, as defined by the V(s) function. The average entropy
of the T function, H̄(T ) is defined as

H̄(T ) =
1
N

∑

s′∈S

∑

s∈S

∑

a∈A

H(T (s′, s, a)) (16)

with H(T (s′, s, a)) defined as in Eq. (9), and N as the number
of combinations of s′, s and a. Execution time is measured in
seconds per trial, and is treated statistically in Section 5.

5. Experimental Results and Discussion

Figures 3, 4, 5 and 6 represent the evolution of the cumula-
tive reward, average T entropy, as well as the count of iterations
spent in each state according to its rank, for our simulated trials.
The top graph of each figure represents the evolution of cumu-
lative reward for the number of iterations used. The dark blue
line represents the average value, while the cyan background
represents the µ±2σ area. The middle graph represents the evo-
lution of the average T entropy, H̄(T ), metric, with the lighter
background representing the µ±2σ area. The bottom graph rep-
resents the average number of iterations that the simulated user
spent on each state, according to the rank of the state. States are
ranked according to their value (as specified by the V(s) func-
tion), with state 1 corresponding to the highest-value state, 2
to the second-highest, and so on. This allows us to visualize
the system’s ability to keep the user in a valuable state since, as
mentioned before, each trial uses a different V(s) function and
user profile. Fig. 8 presents the results of seven trials that took
place in the human scenario, using the same measurements.
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Table 1. n stands for the number of iterations per trial, tc stands for the policy re-calculation period, tV(s) stands for the V(s) change period, Rc stands for
cumulative reward, t stands for execution time, t3 stands for the number of iterations spent in the three most valuable states, H(T ) is the entropy of the
P(s′ |s, a) distribution. Each condition (row) was repeated 1000 times.

Solver Reward n tc Final Rc t t3 Final H(T )
QMDP SVR 100 1 15.164 ± 71.247 1160.456 ± 585.176 58.814% ± 32.752 2.4 ± 0.459
QMDP SVR 100 20 18.016 ± 73.132 105.912 ± 29.719 51.438% ± 31.714 2.403 ± 0.445
QMDP ISVR 100 1 96.448 ± 127.955 1477.554 ± 410.262 71.069% ± 19.727 0.697 ± 0.477
QMDP ISVR 100 20 56.281 ± 111.467 145.815 ± 9.093 35.009% ± 17.185 1.301 ± 0.377
QMDP MSVR 100 1 92.642 ± 70.935 1579.666 ± 364.688 56.858% ± 24.222 0.439 ± 0.444
QMDP MSVR 100 20 53.172 ± 55.49 180.573 ± 29.628 35.034% ± 16.29 1.282 ± 0.379

SARSOP SVR 100 1 17.054 ± 72.459 929.113 ± 181.598 59.318% ± 32.256 2.419 ± 0.459
SARSOP SVR 100 20 14.797 ± 69.72 86.376 ± 12.59 49.324% ± 30.746 2.379 ± 0.448
SARSOP ISVR 100 1 100.709 ± 126.883 2246.031 ± 35082.49 70.589% ± 19.313 0.669 ± 0.467
SARSOP ISVR 100 20 67.367 ± 109.899 88.36 ± 7.483 34.561% ± 16.506 1.283 ± 0.366
SARSOP MSVR 100 1 91.859 ± 66.424 1183.665 ± 84.448 55.056% ± 25.558 0.425 ± 0.422
SARSOP MSVR 100 20 55.047 ± 55.485 113.89 ± 47.13 33.687% ± 16.248 1.288 ± 0.372

(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 3. Results obtained using the QMDP solver and the SVR reward for
1000 trials of 100 iterations, re-calculating the policy every iteration. The
top graph represents the cumulative reward, with the colored background
representing ±2σ. Similarly for the middle graph, representing the aver-
age entropy in the P(s′ |s, a) distributions. The bottom graph represents
the average number of iterations spent in each state, from the most (left)
to least (right) valuable.

Table 1 presents the aggregate results of our simulated trials
for varying conditions. Each row represents a single condition,
i.e. one combination of the possible input parameters, which

(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 4. Results obtained using the QMDP solver and the ISVR reward for
1000 trials of 100 iterations, re-calculating the policy every iteration. The
top graph represents the cumulative reward, with the colored background
representing ±2σ. Similarly for the middle graph, representing the aver-
age entropy in the P(s′ |s, a) distributions. The bottom graph represents
the average number of iterations spent in each state, from the most (left)
to least (right) valuable.

was run 1000 times. After the double line, results are presented
in the µ ± σ format, indicating the average and standard devia-
tion for the 1000 trials that took place for each condition.
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(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 5. Results obtained using the SARSOP solver and the ISVR reward
for 1000 trials of 100 iterations, re-calculating the policy every 20 itera-
tions. The top graph represents the cumulative reward, with the colored
background representing ±2σ. Similarly for the middle graph, represent-
ing the average entropy in the P(s′ |s, a) distributions. The bottom graph
represents the average number of iterations spent in each state, from the
most (left) to least (right) valuable.

Table 1 illustrates the results obtained in the simulated trials.
We can observe that, in general, the system is able to achieve
high cumulative rewards with all rewards. Furthermore, the
system is able to maintain the user in the most valuable states,
achieving t3 values of 70% in the best cases. We can also ob-
serve that the system is able to obtain low values for the final
average entropy of the transition function, reaching values as
low as 0.42 bits in the best cases. Thus, in general terms, we
can conclude that claim 1 is validated.

Figs 3 and 4 illustrate the performance of the SVR and ISVR
rewards, respectively. We can observe that the ISVR reward ob-
tains, on average, better performance than SVR for all metrics,
achieving increases of as much as a 6.3x increase on cumu-
lative reward, 13% increase in t3 and a 71% decrease in final
entropy of the transition function, according to Table 1. This
indicates that the ISVR formulation results in a system that is
much more capable of maintaining the user in valuable states,
and also in gaining information about them. In fact, the ISVR
formulation leads the agent to properly explore the user’s tran-

(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 6. Results obtained using the SARSOP solver and the MSVR reward
for 1000 trials of 100 iterations, re-calculating the policy every iteration.
The top graph represents the cumulative reward, with the colored back-
ground representing ±2σ. Similarly for the middle graph, representing
the average entropy in the P(s′ |s, a) distributions. The bottom graph rep-
resents the average number of iterations spent in each state, from the most
(left) to least (right) valuable.

sitions, thus gaining information that the SVR-enabled agent
most likely did not gain. The MSVR formulation, illustrated in
Fig 6, performs similarly to ISVR, since it also incorporates the
information term that exists in ISVR. Thus, in using the ISVR
formulation, our results support claim 2.

Regarding the performance of the solver used, QMDP and
SARSOP, we could not find a significant difference. For the Rc,
t3 and entropy metrics, both solvers score similarly to within
a 1% difference, meaning that their performance is extremely
similar. In terms of average execution time t, however, some
larger deviations can be observed, with no solver coming def-
initely ahead; for instance, QMDP is faster when using SVR,
and SARSOP is faster when using ISVR.

The tc parameter controls how often the policy is re-
calculated. We can observe, in both Table 1 and by compar-
ing Fig 5 to any of the others, that this re-calculation period
has a strong impact on all metrics. Firstly, the execution time
drops very significantly, to roughly 10% of its original value.
However, the remaining performance metrics are mostly im-
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(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 7. Results obtained for the complete scenario using the QMDP solver
and the ISVR reward for 100 trials of 1000 iterations, re-calculating the
policy at every 200 iterations. The top graph represents the cumulative
reward, with the colored background representing ±2σ. Similarly for the
middle graph, representing the average entropy in the P(s′ |s, a) distribu-
tions. The bottom graph represents the average number of iterations spent
in each state, from the most (left) to least (right) valuable.

pacted negatively, as seen in Table 1: cumulative reward gener-
ally drops to 60% of its original value, as does t3, with entropy
roughly doubling. This can be attributed to the fact that by lim-
iting the re-calculation of the policy, we are effectively limiting
the system’s ability to integrate new information. However, see-
ing as the execution time drops very significantly with increases
in policy re-calculation, an advantageous tradeoff may be found
for different device configurations.

Using this information, we performed the trial of Fig. 7,
where the complete scenario of Section 4.1 was tested. We can
observe that, while testing with a larger scenario, the techniques
performance is largely maintained: its ability to incorporate
data is maintained, as observed in Fig. 7(b), as is its ability to
converge to a high reward. The system’s performance in the t3
metric suffers with the larger state space, which is explained by
the fact that the system was only run for 1000 iterations, which
did not allow for a complete convergence to the user profile.

We can observe in Fig. 8 that, similarly to the results obtained
in simulation, the system is able to systematically gain informa-

(a) Evolution of cumulative reward.

(b) Evolution of T entropy.
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(c) Average iterations spent in each state according to rank.

Fig. 8. Results obtained using the QMDP solver and the ISVR reward for
trials with human users. The top graph represents the cumulative reward,
with the colored background representing ±2σ. Similarly for the middle
graph, representing the average entropy in the P(s′ |s, a) distributions. The
bottom graph represents the average number of iterations spent in each
state, from the most (left) to least (right) valuable.

tion on the user, and gradually increase its cumulative reward.
We can also observe that the system was unable to fully main-
tain the user in the most beneficial states, due to the larger state
space used in these experiments, combined with the lower num-
ber of iterations allowed. The number of iterations allowed was
not enough to achieve full convergence of the learning mech-
anism and thus the results do not fully correlate with the V(s)
function. However, these trials demonstrate that the technique
is transferable to real scenarios, thus supporting claim 3, and
demonstrate its potential usefulness in long-term scenarios.

6. Conclusion

In this work we have presented and experimentally demon-
strated αPOMDP, a User-Adaptive Decision-Making frame-
work based on the POMDP formulation. We have performed
tests in a simulated bechmark, demonstrating our technique’s
abilities while operating on several POMDP solvers, and also
with human users, demonstrating its ability to produce impact
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on the user. Our results demonstrate the claims from Sec-
tion 1.2, showing that the system is able to make positive de-
cisions, maintaining the user in valuable states, and also to ex-
plore and learn from the user, both in simulated and real trials.

In the future, it would be interesting to extend our testing
benchmark, both by applying this system to more complex
tasks, but also to combine it with our previous work on User
Modelling (Martins et al. (2017)) to achieve a unified user-
adaptiveness solution for Social Robots. It would also be in-
teresting to apply our rewarding schemes to non-HRI robotic
tasks, such as grasping, wherein our state-value mechanism
could be used for reinforcement training of autonomous agents.
In the latter case, a domain description language such as PDDL
could be used to adapt our technique to the domain in question.
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