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Abstract

Inertial sensors attached to a camera can provide
valuable data about camera pose and movement. In
biological vision systems, inertial cues provided by the
vestibular system, are fused with vision at an early
processing stage. Vision systems in autonomous ve-
hicles can also benefit by taking inertial cues into ac-
count.

In order to use off-the-shelf inertial sensors at-
tached to a camera, appropriate modelling and calibra-
tion techniques are required. Camera calibration has
been extensively studied, and standard techniques es-
tablished. Inertial navigation systems, relying on high-
end sensors, also have established techniques. This
paper presents a technique for modelling and calibrat-
ing the camera integrated with low-cost inertial sen-
sors, three gyros and three accelerometers for full 3D
sensing. Using a pendulum with an encoded shaft,
inertial sensor alignment, bias and scale factor can
be estimated. Having both the camera and the iner-
tial sensors observing the vertical direction at differ-
ent poses, the rigid rotation between the two frames
of reference can be estimated. Preliminary simulation
and real data results are presented.

1 Introduction

Internal sensing using inertial sensors is very useful
in mobile robotic systems and autonomous vehicles
since it is not dependent on any external references,
except for the gravity field which does provide an ex-
ternal reference. Artificial vision systems can provide
better perception of the vehicle’s environment by us-
ing the inertial sensor measurement of camera pose
(rotation and translation). As in human vision, low
level image processing should take into account the
ego motion of the observer.

This paper presents a technique for modelling and
calibrating the camera integrated with inertial sen-
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Fig. 1: Observing gravity with the camera and the
inertial sensors, the unknown rotation can be deter-
mined.

sors. Having both the camera and the inertial sen-
sors observing the vertical direction at different poses,
the rigid rotation between the two frames of reference
shown in figure 1 can be estimated.

This work is part of ongoing research into the fu-
sion of inertial sensor data in artificial vision systems
for applications on autonomous vehicles such as Cy-
berCars [1]. In [2] and [3] the inertial sensors and sys-
tem prototype are described and results presented for
ground plane segmentation, in [4] a method is pro-
posed for camera focal distance calibration using a
vanishing point and the vertical reference, in [5] a
vertical line segmentation method is described that
performs the 3D reconstruction and mapping of the
detected vertical line segments.

This paper is organized as follows: in section 2 the
data from the inertial sensors is considered. A cali-
bration method using a pendulum with an encoded
shaft is presented to estimate inertial sensor align-
ment, bias and scale factor. Section 3 introduces the
camera model and the properties of vanishing points.

1693

Proceedings of ICAR 2003 
The 11th International Conference on Advanced Robotics 
Coimbra, Portugal, June 30 - July 3, 2003 



The following section presents the estimation of the
rigid rotation between the inertial sensors and camera
frames of reference. In section 5 results are presented
for both inertial sensor calibration and frame rotation
estimation.

2 Data from Inertial Sensors

Inertial sensors measure linear acceleration and an-
gular velocity. An inertial measurement unit (IMU)
has three orthogonal accelerometers and three orthog-
onal rate gyros. To estimate velocity and position in-
tegration over time has to be performed, leading to un-
bounded error. The gyros keep track of rotations, so
that linear velocity and position are computed in the
correct frame of reference. Appropriate calibration
has to be performed to minimise the error buildup.

When using inertial sensors, scale factor, bias and
axis-alignment need to be known. For low cost iner-
tial sensors these parameters are not always provided
by the manufacturer, and when using discrete compo-
nents their alignment has to be measured.

2.1 Intrinsic Calibration

Some of the inertial sensors parameters can be de-
termined by performing simple operations and mea-
suring the sensors outputs, others can not be so easily
determined.

Equation (1), represents a simple model for each
set of three non-coplanar accelerometers or rate gy-
ros, which accounts for the three main errors in these
sensors.

zo = M · zi + b
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The quantities to be measured are represented by
the vector zi, while zo represents the actual output
from the sensors. Vector b represents the bias for each
individual sensor, while skk is the sensitivity (or scale
factor) for the sensor oriented along axis k, and skl the
cross sensitivity, resulting from axis misalignments,
relating axis k and l.

2.2 Calibration with a Pendulum

In this work, a pendulum is used in order to deter-
mine the inertial sensors’ parameters. The pendulum
was chosen since it is relatively straightforward to de-
termine the real quantities the sensors are measuring.

To get an indication of the quantities the iner-
tial sensors should be measuring, the pendulum, illus-
trated in figure 2, is equipped with a high-resolution,
absolute encoder attached to its axis, so that the an-
gular position of the pendulum is known and conse-
quently, the pose of the inertial measuring unit.

Fig. 2: Pendulum used to calibrate the inertial sen-
sors (on the left), schematic of the forces acting on a
moving pendulum (on the right)

On the right side of figure 2 the forces acting on the
moving pendulum are represented. A friction force,
Ff , is represented with its direction opposite to the
direction of the pendulum’s instantaneous velocity, ac-
counting for all kinds of friction inherent to the pen-
dulum’s motion.

The sum of all forces acting on the pendulum in-
duces an acceleration which characterises the pendu-
lum’s motion equation. From this motion equation,
the acceleration components along the x and z axis,
as illustrated in figure 2, can be written as

ax = −‖g‖ sin θ −
‖Ff‖

M
sgn(v) (2)

az =
‖T ‖

M
− ‖g‖ cos θ =

v2

R
(3)

In these equations, sgn() is the signal function,
given by

sgn(v) =

{

+1, v ≥ 0
−1, v < 0

(4)

The accelerometers measure the acceleration
sensed by a proof mass internal to the measuring unit
which in turn is attached to the pendulum. This
means that the measured accelerations are the ones
caused by forces acting on the measuring unit’s case,
but not on the proof mass. In this particular scenario,
since the gravity force acts both on the proof mass and
on the case, the accelerometers only measure the ac-
celerations caused by the other forces: the tension, T ,
and the friction force, Ff . The measured accelerations
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along the x and z axis, ãx and ãz, are given by

ãx = −
‖Ff‖

M
sgn(v) = ax + ‖g‖ sin θ

= αR + ‖g‖ sin θ (5)

ãz =
‖T ‖

M
=

v2

R
+ ‖g‖ cos θ

= ω2R + ‖g‖ cos θ (6)

where ω and α represent the angular velocity and an-
gular acceleration of the pendulum.

The variables θ, ω and α are obtained by the en-
coder readings, and its derivatives. The measure-
ments of the rate gyros, are the components of the
angular velocity of the pendulum, meaning that the
only rate gyro with a non-zero measurement should be
the one oriented perpendicularly to the plane of mo-
tion. Using figure 2 as a reference, only the rate gyro
along the y axis should measure a non-zero quantity,
i.e.

ω̃ =





0
ω̃y

0



 =


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0
−dθ

dt

0



 (7)

By attaching the measuring unit to the pendulum
in three orthogonal poses, sufficient data can be col-
lected to calibrate the three accelerometers and the
three rate gyros of the inertial measuring unit. The
procedure consists in determining the nine scale fac-
tors, skl, and the three bias, bk, of the sensor model
described in (1). In order to do so, let us rewrite
the system of equations (1) as a function of these un-
knowns. The resulting system of equations is given
by

zo = A · M ′
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where M ′ is the vector with the twelve parameters to
be determined.

Each measurement provides three equations as can
be seen in (8). The sensor inputs, zi, are known by
feeding the encoder readings, and its derivatives, into
equations (5), (6) and (7); the sensor outputs, zo,
are directly measured. Only the twelve parameters
in vector M ′ are unknown. To obtain a solution for
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Fig. 3: Line projection onto the Unit Sphere.

M ′, at least four measurements have to be known,
but since the measurements are disturbed by random
noise, a much bigger set of measurements should be
used.

A least squares solution can be obtained for the
parameters, by using equation (9), where A† denotes
the pseudoinverse of matrix A obtained through the
use of the singular value decomposition (see [6]).

M ′ = A† · zo (9)

It should be noted that two systems of equations
have to be solved: one to determine the parameters
of the accelerometers, and another to determine the
parameters of the rate gyros.

3 Data from Camera Sensor

The pinhole camera model derives from the cam-
era’s geometry, and considers the projection of world
points onto a plane, but the projection need not be
onto a plane. Consider a unit sphere around the op-
tical center, with the images being formed on its sur-
face. The image plane can be seen as a plane tangent
to a sphere of radius f , the camera’s focal distance,
concentric with the unit sphere, as shown in figure 3.
The image plane touches the sphere at the equator,
and this point defines, on the image plane, the image
center. Using the unit sphere gives a more general
model for central perspective and provides an intu-
itive visualization of projective geometry [7]. It also
has numerical advantages when considering points at
infinity, such as vanishing points.

A world point Pi will project on the image plane
as pi and can be represented by the unit vector
mi placed at the sphere’s center, the optical cen-
ter of the camera. With image centered coordinates
pi = (ui, vi) we have

Pi → mi =
Pi

||Pi||
=

1
√

u2
i + v2

i + f2





ui

vi

f



 (10)
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Fig. 4: Vanishing point of a set of 3D parallel lines.

To avoid ambiguity mi is forced to be positive, so
that only points on the image side hemisphere are
considered.

Image lines can also be represented in a similar way.
Any image line defines a plane with the center of pro-
jection, as shown in figure 3. A vector n normal to
this plane uniquely defines the image line and can be
used to represent the line.

For a given image line au + bv + c = 0, the unit
vector is given by

n =
1

√

a2 + b2 + (c/f)
2





a
b

c/f



 (11)

As seen in figure 3, we can write the unit vector of
an image line with points m1 and m2 as

n = m1 × m2 (12)

3.1 Vanishing Points

Parallel lines only meet at infinity, but in the image
plane, the point where they meet can be quite visible
and is called the vanishing point of that set of parallel
lines.

A space line with the orientation of an unit vector
m has, when projected, a vanishing point with unit
sphere vector ±m, as shown in figure 4. Since the
vanishing point is only determined by the 3D orien-
tation of the space line, projections of parallel space
lines intersect at a common vanishing point.

As seen in figure 4, the normals to the line projec-
tion planes will all lie in the same plane, orthogonal
to the vanishing point m. The vanishing point of a
set of 3D parallel lines with image lines n1 and n2 is
given by

m = n1 × n2 (13)

4 Rotation between Camera and IMU

Frames of Reference

In order to determine the rigid transformation be-
tween the INS frame of reference {I} and the camera
frame of reference {C}, both sensors are used to mea-
sure the vertical direction, as shown in figure 1. When
the IMU sensed acceleration is equal in magnitude
to gravity, the sensed direction is the vertical. For
the camera, either using a specific calibration target,
such as a chessboard placed vertically, or assuming
the scene has enough predominant vertical edges, the
vertical direction can be taken from the corresponding
vanishing point.

If n observations are made for distinct camera po-
sitions, recording the vertical reference provided by
the inertial sensors and the vanishing point of scene
vertical features, the absolute orientation can be de-
termined using Horn’s method [8]. Since we are only
observing a 3D direction in space, we can only deter-
mine the rotation between the two frames of reference.

Let Ivi be a measurement of the vertical by the in-
ertial sensors, and Cvi the corresponding measurement
made by the camera derived from some scene vanish-
ing point. We want to determine the unit quaternion
q̊ that rotates inertial measurements in the inertial
sensor frame of reference {I} to the camera frame of
reference {C}. In the following equations, when mul-
tiplying vectors with quaternions, the corresponding
imaginary quaternions are implied. We want to find
the unit quaternion q̊ that maximizes

n
∑

i=1

(q̊ Ivi q̊∗) · Cvi (14)

which can be rewritten as

n
∑

i=1

(q̊ Ivi) · (
Cvi q̊) (15)

The quaternion product can be expressed as a matrix.
With Ivi = (Ixi,

I yi,
I zi)

T and Cvi = (Cxi,
C yi,

C zi)
T

we have

q̊ Ivi =









0 −Ixi −Iyi −Izi
Ixi 0 Izi −Iyi
Iyi −Izi 0 Ixi
Izi

Iyi −Ixi 0









q̊ = I
Viq̊

(16)
and

Cvi q̊ =


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



0 −Cxi −Cyi −Czi
Cxi 0 −Czi

Cyi
Cyi

Czi 0 −Cxi
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Cxi 0
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q̊ = C
Viq̊

(17)
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Substituting in (15)

n
∑

i=1

(IVi q̊) · (CVi q̊) (18)

or
n
∑

i=1

q̊T I
Vi

T C
Vi q̊ (19)

factoring out q̊ we get

q̊T

(

n
∑

i=1

I
Vi

T C
Vi

)

q̊ (20)

So we want to find q̊ such that

max q̊T N q̊ (21)

where N =
∑n

i=1
I
Vi

T C
Vi. Having

Sxx =

n
∑

i=1

Ixi
Cxi , Sxy =

n
∑

i=1

Ixi
Cyi (22)

and analogously for all 9 pairings of the components
of the two vectors, matrix N can be expressed us-
ing these sums as in (23). The sums contain all the
information that is required to find the solution.

Since N is a symmetric matrix, the solution to this
problem is the four-vector qmax corresponding to the
largest eigenvalue λmax of N - see [8] for details.

5 Results

5.1 Inertial Sensor Calibration

The inertial sensors were calibrated using several
measurements from both the inertial sensors and the
absolute encoder. The inertial measurement unit was
attached to the pendulum in three distinct orienta-
tions in order to measure significative quantities for
each sensor. The sensors’ outputs were logged, and
the inputs were estimated by using the encoder read-
ings to feed equations (5), (6) and (7).

Since the inertial measurement unit used in this
work is a medium-grade unit, the manufacturer sup-
plies an individual calibration table which can be used
as a ground truth to evaluate our calibration proce-
dure.

Table 1 presents the parameters supplied by the
manufacturer and compares them to the ones obtained
using the calibration method described in this paper.
It should be noted that in the table, the sensitivity is

Table 1: Comparison of the obtained inertial sen-
sors’ parameters with the ones supplied by the manu-
facturer.

Accelerometers
Sensitivity (g/V) Null Offset (V)

Axis Supplied Obtained Supplied Obtained
X 1.008 0.9987 2.485 2.5259
Y 1.000 1.0273 2.519 2.5095
Z 1.017 1.0295 2.455 2.4459

Rate Gyros
Sensitivity (g/V) Null Offset (V)

Axis Supplied Obtained Supplied Obtained
X 102.731 102.1154 2.499 2.5015
Y 101.643 102.1553 2.499 2.4997
Z 102.388 102.0536 2.499 2.5001

compared in (g/V), which is the inverse of the scale
factors, skk, as defined in (1).

The manufacturer doesn’t present any parameters
relating to axis alignment in their unit, but our results
show a mean cross-axis sensitivity of about 0.6%.

The results obtained by this process are satisfac-
tory since they only differ slightly from the ones sup-
plied by the manufacturer. On the other hand, even
these small differences can cause high drifts over time
if the measurements are to be used to estimate posi-
tion by integrating the sensors data.

5.2 Rotation Estimation

To validate the above method, a simulation was
performed, using a known rotation with added noise.
Figure 5 shows the data set with added noise used, the
known rotation, and the estimated rotation. The ad-
joining table indicates the estimated quaternions and
the angular errors. With improving signal to noise ra-
tio, the estimated rotation approaches the real value.

The camera calibration toolbox provided by Intel
Open Source Computer Vision Library [9] was used to
provide a standard camera calibration method. The
calibration used images of a chessboard target in sev-
eral positions and recovers the camera’s intrinsic pa-
rameters, as well as the target positions relative to
the camera. The calibration algorithm is based on
Zhang’s work in estimation of planar homographies
for camera calibration [10].

In a test sequence, the camera was moved with the
target in sight, and all IMU data and images logged.
The camera calibration was performed with images
sampled from the complete set recorded. Figure 6
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Fig. 5: Plot of simulation data for 20 random posi-
tions, with added noise SNR=5, showing the known
and estimated rotation, and table with simulation re-
sults, indicating angular error of the estimated rota-
tions.

shows some of the images used and the reconstructed
camera positions.

Having calibrated the camera, the chessboard tar-
get was placed vertical and the vertical vanishing
point determined, providing a set of measurements
Cvi. Having the corresponding Ivi from the inertial
sensors, the estimation method was applied to the
data set. Figure 6 shows the result obtained for a
real data set. The estimated rotation has an angle
91.25◦ about an axis (0.89,−0.27,−0.3582), and is
the near expected one, given the mechanical mount,
of a near right angle approximately about the x axis.
Re-projecting the inertial sensor data showed consis-
tency of the method. The mean-square error in the
re-projected unit vectors was 0.2019◦ with variance
σ2 = 1.5699◦.

6 Conclusions

This paper presented a method for inertial sensor
integration in vision systems. In order to use off-the-
shelf inertial sensors and cameras, appropriate mod-
elling and calibration techniques were presented.

Using a pendulum with an encoded shaft, inertial
sensor alignment, bias and scale factor can be esti-
mated, for both accelerometers and gyros. With the
inertial sensors rigidly fixed to the camera, the rota-
tion between the two frames of reference can be found
by moving the system and observing the vertical di-
rection with both sensors. The inertial sensors when
static only sense gravity, providing a vertical refer-
ence. Sets of parallel vertical edges provide the verti-
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Fig. 6: Some of the images used and result obtained,
showing camera position, verticals and re-projected
vectors.

cal vanishing point, giving the vertical direction in the
camera frame of reference. The two sets of measure-
ments allow the estimation of the rotation between
the sensors. Knowing this rotation, the inertial sensor
data can be mapped to the camera frame of reference,
and used in image processing tasks [2][3][4][5][11].
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