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Abstract—This paper proposes an approach to calibrate
off-the-shelf cameras and inertial sensors to have a useful
integrated system to be used in static and dynamic situations.
The rotation between the camera and the inertial sensor
can be estimated, when calibrating the camera, by having
both sensors observe the vertical direction, using a vertical
chessbhoard target and gravity. The translation between the
two can be estimated using a simple passive turntable and
static images, provided that the system can be adjusted to
turn about the inertial sensor null point in several poses.
Simulation and real data results are presented to show the
validity and simple requirements of the proposed method.

Index Terms—computer vision, inertial sensors, sensor
fusion, calibration.

The problem of estimating the rotation between the
inertial sensor and the camera is a particular case of the
well-known orthogonal Procrustes method for 3D attitude
estimation [3]. Instead of having two sets of points we
have two sets of unit vectors corresponding to the observed
vertical in each sensor at several poses. In our work we
used the unit quaternion derivation of the method [4].

Standard hand-eye calibration [5][6] can be applied to
estimate translation, using the approach of rotating about
the inertial sensor center. However, since the target is being
repositioned after each turn, the method is not applied to
the full data set like in traditional hand-eye calibration. We
used an implementation of the full hand-eye calibration [5]
to provide a comparison in the results using only a camera

|. INTRODUCTION with fixed lever arm, by keeping a constant pivot point.

Inertial sensors coupled to cameras can provide valuable
data about camera ego-motion and how world features are
expected to be oriented. Object recognition and trackingy  ~amera Calibration
benefits from both static and inertial information. Several
human vision tasks rely on the inertial data provided by the Camera calibration has been extensively studied, and
vestibular. Artificial system should also exploit this sensorStandard techniques established. For this work camera
fusion. calibration was performed using the Camera Calibration

In our previous work we explored some of the benefitsT00lbox for Matlab [7]. The C implementation of this
of combining the two sensing modalities, and how gravity!@0!box is included in the Intel Open Source Computer
can be used as a vertical reference [1][2]. We now focu&/ision Library [8].
on how the two sensors can be cross-calibrated so that they The calibration uses images of a chessboard target in
can be used in static and dynamic situations. several positions and recovers the camera’s intrinsic pa-

The rotation between the camera and the inertial senséfmeters, as well as the target positions relative to the
can be estimated by having both sensors observe the ver@mera. The calibration algorithm is based on Zhang's
cal direction, using a vertical visual target for the cameraWork in estimation of planar homographies for camera
and gravity for the inertial sensors. Standard camera calalibration [9], but the closed-form estimation of the inter-
bration can be performed on the same set of images, botfigl parameters from the homographies is slightly different,
using the same visual target, such as a vertical chesshoatice the orthogonality of vanishing points is explicitly
target, simplifying the whole calibration procedure. used and the distortion coefficients are not estimated at

The translation between the two will not be important inthe initialization phase.

some applications, but if the inertial sensor is attached to The calibration toolbox was also used to recover camera
the camera system with a significant lever arm, it will haveextrinsic parameters in the subsequent relative pose cali-
to be taken into account for fast motions. Using a simpledration.

passive turntable, and positioning the integrated camera and
inertial system centered on the inertial sensor, the lever arm-
can be estimated. Observing the inertial sensor outputs, the Inertial navigation systems also have established cali-
system can be adjusted to turn about their null point irbration techniques, but rely on high-end sensors and ac-
several poses. The lever arm can than be estimated fromators. Nevertheless, in order to use off-the-shelf inertial
static images of a suitably placed visual target before andensors attached to a camera, appropriate modelling and
after each rotation. calibration techniques are required. Some of the inertial
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whereZ @, is the IMU centripetal acceleration, afdx .
the camera centripetal acceleration, both relative to some
rotation axis.
In general, centripetal accelerati@). at a point7 with
the origin on the rotation axis is given by

unknown

Rotation and — — —
Translation ac:wx ’Ut:UX (wx ‘T‘) (3)

§ S ’ where w is the angular velocity and@’; is the tangential
velocity.

If we assume that the rotation axis goes through the
camera center of projection, than it will not have centripetal
acceleration and its linear acceleration is given by

Fig. 1. Unknown rigid body transformation between IMU and camera
frames of reference.

sensors parameters can be determined by performing sim- @ =qla-Ta.)gq
ple operations and measuring the sensor outputs, others =@ -TT x (TT xI7))g" (4)
can not be so easily determined. We have assumed a linear = ¢l ¢ +°W x (CT xP)

sensor model and used a pendulum instrumented with an I )

encoded shaft to estimate the alignment, bias and scafénére” 7 is the translation from the IMU to the camera
factor of inertial measurements [10]. The pendulum wadn the IMU frame of refe_rencéj,? is the translation from
chosen since it is relatively straightforward to determinet® camera to the IMU in the camera frame of reference,
its motion and acting forces. It is instrumented with a@ndg” 7 ¢* = -7 _ _

high-resolution absolute encoder attached to its axis, so |f We assume that the rotation axis goes though the IMU

that the angular position of the pendulum is known andcenter, than no centripetal acceleration will be sensed, and
consequently, the pose of the inertial measuring unit (IMU)he camera linear acceleration is given by
When considering a complete inertial navigation system, ‘@ =q¢’aq -‘@x (‘@ x°P) (5)

initial calibration and alignment are more elaborate [11]. o )
The rigid body transformation between the IMU and

I1l. CAMERA AND IMU DATA RELATIONSHIP the camera has to be calibrated when using both sensors.
. Direct physical measurements are difficult to perform,
A. IMU Data in Camera Frame of Reference since the camera center of projection and inertial sensor

Since the inertial measurements performed by the inertig#€nsing poEt and axis are not obvious. But rotagoand
sensors are given in the IMU frame of referenfg} translation7 can be derived from (1) and (5) provided
and not in the camera frame of referenf@}, the rigid ~Something is known about the motion.
body tr?nsformatmn between the two has to be taken int@ cgjibration of Rotation between IMU and Camera
account.

. . . In order to determine the rigid rotation between the INS
This transformation can be expressed by the unit quater-
frame of referencdZ} and the camera frame of reference

nion g that rotates inertial measurements in the inertial . L
{C}, both sensors are used to measure the vertical direction,

sensor frame of referend€} to the camera frame of ref- o O
as shown in fig. 2. When the IMU sensed acceleration is

. _ :
erence{C}, and translation vector”. Quaternion algebra equal in magnitude to gravity, the sensed direction is the

was developed by Hamilton in the nineteenth century as an™ . . o . .
. ) . . . . .vertical. For the camera, using a specific calibration target
extension of imaginary numbers to higher dimensions. Unit . ?
such as a chessboard target placed vertically, the vertical

&Ljaternlons provide a convenient rotation representa‘uoairection can be taken from the corresponding vanishing
' . .. point.

A 1) AD%UI?r V_eI.(c)jctl)ty dothartr;era Center Ofl PrOJ?Ct',(t)n'T This boresight static approach can be easily performed,
ny point ot a ngia body nas the same anguiar velocity. 10, requiring any additional equipment, apart from the

obtain the camera angular velocity in the camera frame q hessboard target, obtained using a standard printer, already
reference, we just rotate apply the known rotation betweelaSed for camera calibration

the two frames of reference:
‘T =q¢*Tq¢" (1)

2) Linear Acceleration of Camera Center of Projection:
If a rigid body has no angular velocity, any point within
will have the same linear acceleration. But if the rigid
body is rotating about some axis, a centripetal acceleration,
proportional to the perpendicular distance to the rotation
axis, will be added, i.e.

vertical
features

e = q (IE’ - Iﬁc )q" + CE}@ (2) Fig. 2. IMU and camera observing gravity.



If n observations are made for distinct camera positions, \i static 4y

recording the vertical reference provided by the inertial sen- ‘(;)1 poses ”’\
sors and the vanishing point of scene vertical features, the e Gon
absolute orientation can be determined using the orthogonal »'\2
Procrustes method for 3D attitude estimation. We will use

Horn’s closed-form solution for absolute orientation using
unit quaternions [4], applied here only to unit vectors. Since
we are only observing a 3D direction in space, we can only
determine the rotation between the two frames of referenc%quaﬁon is a particular case of the Sylvester equation

Let 2% ; be a measurement of the vertical by the inertial y x _ x g — C. Decomposing the homogeneous trans-
sensors, anflw'; the corresponding measurement made by, ations in (8) into rotation and translation components

the camera derived from some scene vanishing point. W?R #) we get one matrix and one vector equation
want to determine the unit quaternigrthat rotates inertial '

Fig. 3. n turns,2n static poses with rotation about IMU null point.

measurements in the inertial sensor frame of refergfige R, Rx = RxRp, (9)
to the camera frame of referen¢€}. We want to find the - SN
unit quaterniong that maximises (Ra—I)tx=Rxtp— ta. (10)
T oen O The majority of the approaches solve first for rotation
Z(q viq) " (6) " (9) and than for translation (10). At least two motions with
=1

rotations about non parallel axis are required.
which after some manipulation can be expresses as finding when performing the hand-eye calibration for a robotic
g such that manipulator the relative camera transformatidncan be
maXéTﬁé (7)  obtained using a fixed world target and computing the
where the elements of matriv can be expressed using c@mera-to-world transformation befcl)re and after the mo-
sums of all 9 product pairings of the components of theioN; A1 A2, and makingA = A, A, . Similarly, having
two vector sets. The sums contain all the information thaf€ transformation matrices from thﬁ fixed robot base to
is required to find the solution. Sindd is a symmetric e gripper,By By, we haveB = B, B. Keeping the
matrix, the solution to this problem is the four-vector '0POt base and target fixed, a setposes can generate
... corresponding to the largest eigenvalg,, of N (m) relative motions for which the above equations
- see [4] for details. A more detailed derivation and someFan be solved.

results of this calibration method are presented in [12] and FOr our particular case we want to estimate the lever arm
[10]. 7 in the camera frame of reference, and perform simple

o . turns about the lever arm end point, adjusted to coincide
C. Calibration of Translation between IMU and Camera wjith the inertial sensor center. Ohanddoes not translate,

From (5) we can see that only dynamic motion will haveand only rotates in exactly the same way as the camera,
non zero acceleration from which translatiah can be ie. tp = 0, Ry = Rp and Rx = I. Rewriting (10)

inferred. for this case we have
A static boresight approach like the one used for rotation R N7e_7 1
is easier to perform. If the IMU can be set to rotate about (Ba—I)T =—ta (11)

its sensing point and axis, than the camera motion will havgyhere the relative motion parameters can be obtained from

the same rotation and a translation depending on the levghe camera-to-target visual calibration. However, since the

arm 7 joining the two. target is being repositioned after each tutn, poses only
With a turntable and suitable positioning rig the IMU contributen relative motions for the estimation af . Each

can be set to rotate about a null point. This requires a M&sair contributes with the projection of on the rotation

chanical rig, but not a controlled dynamic motion requiringpjane, and at least two rotations about non parallel axis are

expensive equipment. The output has to be monitored angquired. The above equation can be rewritten for ithe
adjustments made, starting from the expected sensing axig|ative motionsa; as

After adjusting the IMU, if2n observations are made for
distinct camera positions, with the chessboard target fixed
and placed in camera view for each pair of measurements,
lever arm7 can be estimated. The camera translatiort ,, induced by the lever arm

Standard hand-eye calibration [6] can than formulated” can be estimated by observing a fixed chessboard target
using homogeneous transformation matrices as solving with the camera and recovering the extrinsic parameters.

(Ry, — )T =—1, (12)

AX — XB ®) The fmql camera p03|t|oq relative to its initial position gives
translation ¢ ,, and rotationR,, .
for an unknown hand-to-eye transformatiof, where A Solving (12) forn turns using the standard hand-eye

is the camera (eye) relative motion transformation, andnethod [5] we obtain the 3D lever arm in the camera
B the gripper (hand) relative motion transformation. Thisframe of reference.
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In order to validate the proposed methods and perform %ge -~
noise sensitivity tests, both where tested in simulation g 0al 7
under varying conditions. 5 ol P
A. ROtation EStimation 0 {:5.1 O.‘2 0.‘3 O.‘4 O.‘S O‘.6 0.‘7 018 0.‘9 i

added noise v (%)

For each simulation run a random rotatigris applied

to a random set of simulated inertial observed verticals,

% ;, to obtain a corresponding set of camera observed

verticals, °@,;. These simulated camera observations are

corrupted by applying a rotation magnitude with zero mean

and absolute standard deviation about a random axis, i.e. ‘ T E— — ‘
. . . . . . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a uniformly distributed 3D axis. The rotation quaternion added noise v (%)

that relates the two sets is estimatedgdy the above

method. The error in the estimation can be measured bl;,ig. 5. Simulation translation estimation mean error for increasing noise
ideri h . ired h . . Mean length error is given as a percentage of real value and angular

considering the rotation required to correct the estimate Qo py its absolute mean value. The decreasing error lines correspond

the true valueg = é * q. With . = 2cos!(e,), where  to simulating 3,4,5,6,8,10 and 15 tumns.

esis the scalar component @&, we takedy, = |0.| as the

error measure. Fig. 4 shows simulation results of several . o

takes with different noise levels and number of observations TO better understand noise sensitivity issues, we have

used, with 1000 runs in each take. As expected the methd@ take into account how the rotation induced translation
performs well, even with few observations. is measured. By observing the chessboard target and per-

forming the camera calibration with the Matlab Camera
Calibration Toolbox [7], we obtain the camera extrinsic
- parameters for each image relative to the target, as shown
in fig. 6.
The above described camera translaticiﬁ@ and rota-
tions R,,, induced by the unknown lever arf, can be

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ derived from the camera extrinsic parameters as follows
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

std of added noise rotation angle (deg) RAi _ RCl chl (14)
Fig. 4. Simulation rotation estimation mean error for increasing standard ¥ -1/ - 1
deviation of zero mean gaussian noise added as a rotation of the observed ta, Rc, (R02 ( t 82)) + tca ( 5)
camera verticals. The decr_easmg error Ilnes_ corres_pond to smulatmglhere index1 and? indicate the initial and final extrinsic
4,5,6,8,10 and 15 observations. For each noise setting the method runs ) .
1000 times and the mean error is evaluated. camera parameters for tuin both relative to the camera
position before the turn.
_ o Since the real data will be derived in this way, a
B. Translation Estimation second simulation trial was made, but now adding white
The above described method takes a set of measurdussian noise tot ¢, and Rc,. The behavior of the
camera translationg ,. and rotationg, ., induced by the method with added noise and number of turns has already
unknown lever arnw. been evaluated. The critical factor when considering the

For each simulation run a random lever awis chosen geometry presented in fig. 6 is the dilution of precision

and set of random rotation®,. are app“ed to produce a that results when estimating the translation with (15). To
set of simulated camera translations, .. study this effect, the simulation runs where performed for

With » = SNR™! € (0, 1) being the inverse of the signal different target distances, relative to the lever arm length.
to noise ratio, we disturb the simulated translation values
—

t,,, by
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rotation angular error (deg)

T o = Fo +v|[F o randnga (13)

where randn,,«1 is a n vector of random numbers that
follow a uniform distribution, simulating white gaussian
noise with zero mean and = 1.

The estimated lever ar® is compared with the true
simulation value7, in length and alignment, to get the
error measure. Fig. 5 shows a set of simulation results of
several takes with different noise levels and number of turngig. 6.  Parameters obtained from camera calibration and derived
used, with 1000 runs in each take. translation induced by lever arm rotation.




length % error
N

L = - L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
added noise v (%)

Fig. 7. Translation estimation from simulated camera extrinsic param-
eters for increasing noise. Mean length error is given as a percentage
of real value. The increasing error lines correspond to simulating 1,2,4,6
and 8 target distance scale relative to lever arm length.

Fig. 9. Setup and results of rotation estimation

this setup a set of 30 images was taken, corresponding to 15
distinct turns about a single pivot point with the chesshoard
target always in view, placed in 2 different places during
image acquisition.

Our method is compared with a standard implementation
of the Tsai and Lenz [5] hand-eye calibration. Assuming
the fixed pivot point and fixed target, the gripper to camera
transformation will be the lever arm translation, if the cam-
era rotation is used as the world to gripper transformation.
Fig. 8. Required setup for rotation calibration, and turntable used for Table la presents the results. A total of 40 images where
translation calibration taken, the first 10 were used only to improve the camera

calibration set, data set A has 5 turns (10 images) with a
. ) ] _single pivot point and set B has 10 turns (20 images) with
_Fig. 7 shows simulation results of several takes withy gjstinct fixed pivot point. Results of lever arm estimation,
dlfferent noise levels and target distance to camera sgalg» = (ry,ry,72) With r = || 7|, are shown for our method
relative to Ie_ver arm length, using 10 turns per run, withgnq for Tsai and Lenz applied to sets A&B, A and B, and
1000 runs in each take. The results clearly shows the s the mean of the distinct estimates from set A and set
limitations of the method, and that care has to be take The values shown in bold fall within the uncertainty of
in positioning the target, so that the error is not amplifiedine direct ruler measuremeny,.
in the lever arm computation. Tsai and Lenz clearly has a better performance, since
it performs a global optimization using all the images by
] o considering the pivot point and the target are always fixed.
A. Rotation Estimation When the method is applied to the complete data set A&B

The rotation estimation can be performed together witht fails completely since its not applicable. Our method
the camera calibration with the simple setup shown injust requires sets of turns between which both the target
fig. 8. The code used is available from the implementedand pivot point can be repositioned. It is based only on the
InerVis Matlab Toolbox [13], that adds on to the Camerarelative camera motion in each turn, and is therefor more
Calibration Toolbox [7]. sensitive and prone to errors. But, as we will see in the

To present some results, a data set was obtained usecond example, requires a much simpler setup and can
ing MT9-B IMU sensor from Xsens [14] and a low provide a good estimate of the lever arm under controlled
cost firewire camera from Unibrain shown in fig. 9. conditions.

A set of 16 images and accelerometer data was taken, A second calibration was done with a passive turntable,
and the estimated rotation wag = —0.7149 <  placing the camera with attached inertial sensors in differ-
0.010013,0.023479,0.69876 >, indicating a—88.73° ro-
tation about the axig0.0143,0.0336,0.9993), i.e. a near
right angle about the cameraaxis consistent with the
layout shown in fig. 9. Using the estimated rotation, the
inertial sensed verticals where rotated to match with the'§g
vertical vanishing point of the chessboard target, and thEl
observed misalignment had a root mean square error o.
0.69°.

V. REAL DATA RESULTS

B. Translation Estimation

To better assess the calibration performance a rotating u
joint was |n|t|ally used So_that a fixed pivot could be usedFig. 10. Camera reconstructed pose relative to calibration target, with
over several turns, enabling the use of standard hand-eye pivot point at two different positions, showing frame number, camera
calibration methods for comparison, as seen in fig. 10. Wittprientation and the estimated lever arm in green.



TABLE |
a) Translation estimation using two data sets with fixed pivot point b) Translation estimation using turntable
[ Our method Tsai and Lenz -]

[n [11:15] 1:2:15] 1:1:10] 1:2:11] 5:1:15] 5:2:15] mean] o |

A&B A B T o A&B A B T o T
u T -87.4| -86.7| -92.9| -86.6| -83.0| -83.2| -86.6| 3.6
r, || 252.54 252.77 | 253.05| 252.91| 0.14 || 81.70|| 251.16| 251.79| 251.48| 0.32 || 249+5 Ty 917 916 9.0 915 931 9211 92.0] 06
Ty 26.27| 29.85| 22.28| 26.07|3.79| -75.00| 28.72| 21.67| 25.20| 3.52| 25+3 - 26 17 18 17 6.0 28 28 17

r. | -31.57| -34.47| -29.64| -32.05| 2.42 || 793.01| -28.71| -27.78| -28.24| 0.46 | -31+3
r || 255.86|| 256.85| 255.75| 256.26 | 0.55 || 800.72 || 254.42| 254.25| 254.31| 0.09 || 2525

[r 126.7] 126.1] 130.8] 126.0] 1249] 124.1] 126.4] 2.3]

ent poses as shown in fig. 8 and 11, and fine adjusting the Lever arm calibration can also be accomplished using
position to zero the force sensed by the accelerometerstandard Hand/Eye calibration [6], like the Tsai and Lenz
besides gravity, placing them at the rotation center. implementation used above for comparison [5]. These

With the passive turntable setup a set of 30 images wasethods, applied here in a simplified case where the camera
taken, corresponding to 15 distinct turns. The acceleromrotation is used as the base-to-hand transformation, are
eter output was observed while manually forcing rapidclearly more stable. Our method only uses the relative
turns to adjust their position to the center of rotation.camera motion in each turn, but Hand/Eye methods use
The chessboard target was conveniently placed, and thbe full camera and hand pose data over the complete data
reconstruction result for the complete set is shown in figset. But they are also more restrictive on the setup. A
11. simple turntable is no longer sufficient, since a fixed pivot

In table Ib results are presented for several groupings gboint has to be maintained. A passive double gimbal might
sets of measurements, to better evaluate the estimation pgarove useful, but would have to accommodate for proper
formance. Direct measurement of the lever arm indicated aentering of the system, and using an active controlled
length aboutl 25 & 10mm, since the exact position of the manipulator might be better. Our aim however is to have a
accelerometers within the packaged sensor is not knowrsimple procedure to estimate the lever arm, that can be
confirming the estimated value. performed without complicated equipment, and comple-

The implemented code for translation estimation will bement the simple procedure used for camera and rotation
made available in the InerVis Matlab Toolbox [13], that calibration.

currently only performs rotation estimation.
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