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Abstract— In order to study how humans grasp and manipulate
objects diverse experimental setups have been used. Typically these
hinder to some extent the natural movements and object interaction
with the human hand. Our approach aims to minimise this interference
by using minimalist sensing (i.e., only distributed tiny accelerometers
on the hand), and instrumenting the manipulated object to have tactile
data. Using MEMs tri-axial accelerometers on each fingertip and the
palm, as well as on the object, relative angular pose can be determined
by using gravity as a vertical reference. This can be used to identify
the grasp type as well as the relative pose between the object and the
hand. Preliminary results show the validity of the method, although
the estimated relative angular pose is noisy, it is enough, together with
the tactile data, to identify grasp types. Continuous observation as the
overall pose changes for the same grasp type helps to overcome non-
observability issues due to using gravity as a vertical reference.

I. INTRODUCTION

The development of sophisticated robotic hands to work in
manmade environments, capable of working with artefacts and
objects designed to be manipulated by humans, requires a deep
knowledge of how humans perform these tasks. A wide range of
sensors and experimental setups can be used [1], however these
typically also limit the free and natural hand manipulation of
objects, or require complex setups only possible in the laboratory
(multiple cameras, lasers, etc). Our approach aims to minimise this
interference but at the same time have a device that is easy to use
outside the lab. This will enable the study of a wider range of
human manipulation tasks.

Distributed accelerometers can provide rich information about
the orientation relative to the vertical gravity reference, as well as
dynamic information about motion. Although the smartdust concept
failed in a way to deliver the initially envisioned results, for sensing
hand pose and motion, distributed accelerometers are an interesting
solution [2] . The hand can be seen as a pice-wise rigid body with
joint restricted movements, as well as some compliant parts. Minute
sensors can be linked in a local bus and provide rich data on the
pose and motion. Future implementations might even tap into the
concept of energy harvesting, taking advantage of the hand kinetic
energy to power the sensing or even the complete system.

Using MEMs tri-axial accelerometers on each fingertip and
the palm, as well as on the object, relative angular pose can
be determined by using gravity as a vertical reference. This can
be used to identify the grasp type as well as the relative pose
between the object and the hand. However some types of grasps are
very dependent on the object geometry, and the force and contact
surface is a more important cue than the finger orientation. By
instrumenting the manipulated object with additional tactile sensors
we can obtain these cues. The contact points provided by the tactile
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sensing on the object might also help to overcome non-observability
issues due to hand motion and from using gravity as a vertical
reference. The relative geometry of the fingers and the object is also
a key parameter of the physical interaction that defines the grasp
type, hence the importance of having a tri-axial accelerometer in
the manipulated object.

In the scope of the HANDLE project [3] we have developed an
experimental setup with diverse sensors shown in fig. 1. However
the used Cyberglove, Polhemus magnetic tracker, and TekScan
tactile sensors, whilst providing hand pose and tactile data, hinder
to some extent the natural movement of the hand. In [4] our multi-
sensor setup (fig. 1.) was used to record and analyse human in-hand
manipulation. Although diverse and rich data is gathered, the glove
and overlaid tactile sensing hinders the hand dexterity and natural
movements, and the full sensor setup can only be used in well
controlled lab conditions. To overcome these limitations, in our
work we aim at having a clutter free and easily deployable system
of identifying human natural manipulation of objects.
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Figure 1: Global overview of the experimental area, data acquisition devices and objects available.

One of the aspects that characterizes the manipulation task is the trajectory executed by the hand (fingers, wrist
and palm) and the arm. The trajectory represents the movements used to reach the object, to transport the object
during the execution of the task, and to release the object in the final goal. This trajectory can be used to analyse the
dynamics of the movements (velocities, acceleration), trajectory characteristics (duration, curvature) and the relation
between the distance to the target object with the grip aperture (distance index-thumb). These characteristics of the
movement are typically measured using a motion tracker attached to the fingertips, back of the hand and arm. This
type of devices provide the orientation and position of the sensors. In this work, we use a magnetic motion tracker
(Polhemus Liberty).

Another parameter that is typically used to describe the shape of the hand during a manipulation task are the flexure
level of the hand’s joints: the adduction/abduction, flexure/extension, and rotation level of the main hand joints. This
type of data can be acquired using a data glove. For this work we are using CyberGlove II.

The two devices presented above were used to determine the pose, and level of flexure of specific segments of the
hand. However, it has been proven that the biological signals related with tactile inputs are also relevant to do the fine
control of manipulation tasks. Typically, tactile sensing devices are attached to the human hand surface. The analysis
of this type of signals is important to determine the temporal profile of the forces/pressure applied by the human hand.
This analysis can also provide information about the fingers that are more active in different types of grasp (contact
signatures) and what is the temporal sequence of the hand regions that come into contact with the object. But using
the sensors on humans to grab the signals has one drawback: some sensors may be invasive constricting the natural
movements of the hand, inhibiting some human sensory inputs (eg: tactile sensing) and influencing the performance
of the subject. Our approach also complement the hand-centered perspective of the data acquisition by introducing
sensors on the manipulated object. These sensors (tactile, inertial and motion trackers) are used to estimate the pose,
the grasped parts of the object and the effects of the manipulation actions in the status of the object.

2.2. Curvatures and Hand Orientation as Trajectory features
To find the pan and tilt information, we are working on spherical coordinate system, analysing the (r, θ, ϕ) in-

formation. The intention is to analyse the 3D points of the trajectories to know the hand directions, e.g. up, down,
left, right, up-left, up-right, down-left, down-right and other information such as whether the hand is going further or
closer from the initial position. For that, we are computing the angle of the vectors points that form the trajectory. At
each two points of the trajectory we have the vectors representation, and the angle formed between these two vectors
by the projection on (x, y) plane, we achieve the θ angle, which gives us the pan information. If the angle is increasing,
we have the curvature left, or if it is decreasing we reach the curvature right. The same 2 vectors and their formed
angles by the projection on (z, y) plane, we can achieve ϕ angle for tilt information. In a 3D space we can make some
combinations of the possible directions, for example, we have up and down reached by (ϕ), left and right reached by
(θ) and further and closer reached by (r). We need to combine (r), (θ) and (ϕ) to know features like up-right, up-left,
down-right and down-left. The detailed curvatures computation can be found in our previous work [15].

Another type of feature is the hand orientation along the trajectory. It allows us to identify some type of grasp
such as top or side-grasp by looking the orientation of the hand. Since we have the trajectories of all fingers of the
hand, using the position of three fingers we can approximate the hand plane and compute the hand orientation. We

Fig. 1. Global overview of the HANDLE experimental area, data
acquisition devices and objects available [3].

II. RELATED WORK

Gesture recognition and man-machine interfaces (MMI) have
pursued many ways of attaching sensors to the human hand, in
[1] an extensive survey of glove-based systems their applications is
presented.

An acceleration sensing glove was, to our knowledge, first
presented in [2] as an input device for static gestures and as a
pointing device for MMI. This short paper already envisions a
future goal of Smart Dust on a finger, with self powered wireless
accelerometers on the fingernails. Following the same idea, in [5]
the AcceleGlove is presented as a whole-hand input device for
virtual reality, although the focus is on MMI for mouse control
and American Sign Language alphabet recognition.

In our previous work [6] hand distributed accelerometers from
a commercial version of the AcceleGlove were used to identify
static gestures, including the Portuguese Sign Language alphabet.



The feature space consisted in the relative angular pose between
each fingertip and the palm, and the roll and pitch of the palm.
These were determined by using gravity as a vertical reference,
and observing the same gesture in distinct poses. A simple nearest
neighbour method identified the performed gesture against a library
of gestures. This followed from our previous work on using gravity
as a vertical reference for camera-IMU cross calibration [7] and in
robot inertial aided vision [8].

While the focus of some of the above works is on gesture
recognition and man-machine interfaces, we want to observe how
humans grasp objects, and focus on grasp type classification. In
hand motion research many taxonomies can be found. The most
widely used grasp taxonomy is that of Cutkosky [9]. He focuses
on all aspects of grasping, basing his taxonomy on that of Napier
[10]. Van Nierop et al. introduced a hand-motion taxonomy in a two
dimensional parameter space based on tasks that are evolutionary
linked to the environment [11]. On the basis of a comparative liter-
ature research, the GRASP consortium developed a comprehensive
human grasp taxonomy [12] [13]. A total of 33 different grasps
were identified and arranged in an original taxonomy. The position
of the thumb was introduced as an additional attribute, which can be
either abducted or adducted. Depending on the need for precision,
the taxonomy offers a second level of classification which includes
only 17 grasp types. Following this taxonomy, in [14] a spatio-
temporal modeling of grasping actions is presented.

III. OBSERVING RELATIVE POSE WITH DISTRIBUTED

ACCELEROMETERS

Assuming the hand is performing a steady grasp on the object,
and distributed accelerometers on the hand and object (fig. 2), the
vertical reference provided by gravity can be used to determine
relative angular pose.

In order to determine the rigid rotation between the finger sensor
frames of references, {Fk}, k ∈ {1, 2, 3, 4, 5}, and the palm frame
of reference, {P}, all sensors are used to measure the common
vertical direction, as shown in fig. 2. When the sensed acceleration
is equal in magnitude to gravity, the sensed direction is the vertical.
The rigid rotation between the object frame of reference {O} and
the palm is determined in the same way.

The distributed accelerometers provide a set of observed acceler-
ations vectors as, with s ∈ {0, 1, 2, 3, 4, 5, obj} (0-palm, 1-thumb,
2 − 5-fingers, obj object). To deal with the non-observability of
rotations about the vertical, a new observation of the same grasp at
a distinct pose relative to the vertical is required, providing the set
{as|t,as|t+1, }.

If n observations are made for distinct hand positions, recording
the vertical reference provided by the inertial sensors, the absolute
orientation can be determined using the orthogonal Procrustes
method for 3D attitude estimation. We will use Horn’s closed-
form solution for absolute orientation using unit quaternions [15],
applied here only to unit vectors. Since we are only observing a 3D
direction in space, we can only determine the rotation between the

Fig. 2. Accelerometer sensor sensor axis distributed on the hand and object,
and actual instrumented object and glove with the accelerometers.

two frames of reference. A single observation will not be enough
to estimate the rotation, since rotations about the vertical direction
are not observable, however a few observations with distinct hand
orientations are enough. In [7] the same method is applied to
the cross calibration of cameras and inertial sensors, and an error
sensitivity analysis is performed with extensive simulation results,
showing that even when not too diverse orientations are used,
the geometric dilution of precision from such a narrow field of
observation leads to the poorer results, but these improve with
increasing number of observations. For the hand this means that
if the hand is moving slightly when the grasp is stable, there is
enough data to estimate the relative rotations.

Consider the case of finding the rotation between a single
finger and the palm. Let Fvi be a measurement of the vertical
by the inertial sensor on the finger, and Pvi the corresponding
measurement made by the inertial sensor on the palm (from the
sensor data, vi = as|i/‖as|i‖). We want to determine the unit
quaternion q̊ that rotates inertial measurements in the finger sensor
frame of reference {F} to the palm sensor frame of reference {P}.
For the n observations, we want to find the unit quaternion q̊ that
maximises

nX
i=1

(̊q Fvi q̊∗) · Pvi (1)

After rearranging terms and some manipulation, using Fvi =
(Fxi,

F yi,
F zi)

T and Pvi = (Pxi,
P yi,

P zi)
T this can be re-

written as finding q̊ that maximises q̊T Nq̊ where

N =

"
(Sxx + Syy + Szz) Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy (Sxx − Syy − Szz) Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)

#
(2)

with
Sxx =

nX
i=1

Fxi
Pxi , Sxy =

nX
i=1

Fxi
Pyi (3)

and analogously for all 9 pairings of the components of the two
vectors, matrix N can be expressed using these sums as in (2). The
sums contain all the information that is required to find the solution.
Since N is a symmetric matrix, the solution to this problem is the
four-vector qmax corresponding to the largest eigenvalue λmax of
N - see [15] for details.

This is done for each of the fingers and the object, using the n
observations, so that the angular pose relative to the palm can be
determined. The above method finds the rotation that maximises
the alignment of the rotated sensed verticals from the object and
fingertip sensors to the palm sensed vertical, expressed by (1). The
inertial frame verticals, Fkvi, Ovi, and Pvi, are easily obtained
from the distributed accelerometers. The only restriction is that the
system has to be motionless, or subject to constant speed, so that
gravity can be used as a vertical reference.

With the closed form solution we obtain the relative rotation
quaternions between each finger and the palm, and the object and
the palm when using instrumented objects, q̊1, q̊2, ..., q̊5, q̊obj ,.
This is our feature space for identifying the grasp types. A given
observation is compared against a library of grasp types in this
feature space.

IV. FITTING RELATIVE POSE OF FINGERS AND OBJECT

TACTILE DATA TO KNOWN GRASP TYPES

For this work we are using the GRASP consortium comprehen-
sive human grasp taxonomy presented in [12], a summary of which
is shown in fig. 3. To confine the taxonomy to the goals of the
GRASP project, grasp is defined as: A grasp is every static hand
pose with which an object can be held securely with one hand. This



Fig. 2. Comprehensive Grasp Taxonomy which includes 33 different grasp
types.

done, depending on whether the opposition type is Palm, Pad
or Side Opposition. The opposition type is also defining the
VF 1: In the case of Palm Opposition the Palm is mapped into
VF 1, in Pad and Side Opposition the Thumb is VF 1. The
only exception to this “rule” is the Adduction Grasp, where the
thumb is not even in contact with the object. To differentiate
between the two rows, the position of the thumb is used. The
classification here depends on whether the CMC joint of the
thumb is in an adducted or abducted position, which is a new
feature introduced in our taxonomy, to further distinguish the
grasps.

B. Merge of grasps within one cell
Since many grasps have the same properties (opposition

type, thumb position etc.), some cells are populated with more
than one grasp. The grasps within such a cell all resemble each
other quite well, normally the sole difference is the shape of
the object. This offers the possibility to reduce the set of all 33
grasps down to 17 grasps by a merge of the grasps within one
cell to a corresponding “standard” grasp. Depending on the
task, this offers the possibility to choose two different levels
of accuracy of the grasp classification.
As comparison the classification of Cutkosky [3] has 15

different grasp types that fit into the grasp definition. This is
very close to the amount of grasps the reduced taxonomy has.
The comparison shows, that even though the number of grasps
is nearly the same, the classification is very different. When
one classifies the grasps according to our scheme, the grasps
only populate 7 cells, which is a reduction by more than half.
This is not so astonishing, since Cutkosky mainly differs his
grasps by the object properties and this is done within one
cell.

IV. CONCLUSION AND FUTURE WORK

A comprehensive human grasp taxonomy, on the basis of a
comparative literature research, was developed. A total of 33
different grasps was identified and arranged in a taxonomy
which differs from that of other authors. The position of

the thumb was introduced as additional attribute, which can
be either abducted or adducted. Depending on the need for
precision, the taxonomy offers a second level of classification
which includes only 17 grasp types.
The taxonomy should cover the whole range of static

grasping patterns, which will serve as a basis for further
studies on human grasping. Therefore, the temporal sequences
of hands performing the 33 grasp types will be recorded and
analyzed on how this very complex model can be reduced in
order to still allow a lot of dexterity.
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Fig. 3. Comprehensive Grasp Taxonomy which includes 33 different grasp
types [12].

implies that the grasp stability has to be guaranteed irrespective
of the relative force direction between object and hand. Therefore
intrinsic movements are excluded because the object is not in a
constant relationship to the hand. The use of both hands and gravity
dependent grasps is also excluded. For instance, the Hook Grasp
and the Flat Hand Grasp are not considered, since the hand extrinsic
orientation is vital to the grasp stability.

In fig. 3 the top classification in columns is done by the
power/precision requirements. The finer differentiation is done,
depending on whether the opposition type is Palm, Pad or Side
Opposition. The opposition type is also defining the virtual finger
VF 1: In the case of Palm Opposition the Palm is mapped into VF 1,
in Pad and Side Opposition the Thumb is VF 1. The only exception
to this rule is the Adduction Grasp, where the thumb might not even
contact with the object. To differentiate between the two rows, the
position of the thumb is used. The classification here depends on
whether the CMC joint of the thumb is in an adducted or abducted
position [12]. The virtual finger (VF) grouping is used to define
individual grasps, VF1 is defined by the opposition type and VF2
and VF3 by the fingers that together form the virtual finger.

Since many grasps have the same properties (opposition type,
thumb position etc.), some cells in fig. 3 are populated with more
than one grasp, the only difference being many times in the shape
of the object. This offers the possibility to reduce the set of all 33
grasps down to 17 grasps by a merge of the grasps within one cell
to a corresponding standard grasp. For our work we are only using
the higher level 17 grasp types of the grasp classification [12].

As indicated in the previous section, from the distributed ac-
celerometers we obtain the relative rotation quaternions between
each finger and the palm, and the object and the palm when using
instrumented objects, q̊1, q̊2, ..., q̊5, q̊obj ,. This is our feature space
for identifying the grasp types. A given observation is compared
against a library of grasp types in this feature space. The distance
metric used is the angular difference between the corresponding
quaternions, given by

δq̊ = q̊−1 ∗ q̊lib (4)

θδq = 2 cos−1(δqs) (5)

where δqsis the scalar component of δq̊. We take the absolute value
δθ = |θδq| as the distance measure.

For the object we have to consider the symmetries, for instance
for the cube, grasp-wise, any right angle rotation keeps the same
orientation to the hand. So we have to compare with q̊obs in 6

variations corresponding to distinct faces of the cube being adjacent
to the hand, since the grasp type will be the same. For other objects
this will also need to be taken into account.

The above feature space is not sufficient to fully determine the
grasp type, since the angular pose, relative to the palm, of the fingers
and object is similar in some of the grasps. By using instrumented
objects, not only with accelerometers, but also with tactile sensors,
we can use the number of contact sensing points or contact area and
to some degree the intensity to narrow down the range of grasps
types to be matched in the above feature space.

For the instrumented cube used (fig.2 and fig. 4) each face has
9 tactile sensors, so we have as tactile data Tc as a matrix of tf,i
with f ∈ {r, g, y, b, o, w} (coloured faces) and cell index within
each face i ∈ {1, ..., 9}.

The number os cells above a minimum force threshold is used
to distinguish between a power grasp and a precision grasp. We
follow a decision tree: first the contact area determines if it is a
power grasp or a precision grasp, then the nearest neighbour in
the feature space of the relative finger-palm angular pose is found
against the library of pre-recorded grasp types.

V. EXPERIMENTAL RESULTS

Figure 4 shows the experimental setup used, and an example of
a grasp being performed.

Fig. 4. Experimental setup used: a glove with distributed accelerometers
(Acceleglove[5]), and instrumented objects, cube and soda can, with tactile
and inertial sensors [3]; and example of performing a grasp.

The instrumented cube has one tri-axial accelerometer per face,
but we consider a single one that averages de values from the 6
sensors taking into account the geometry. The soda can has 10 faces
in a ring, again we consider a single tri-axial acceleration measure.
The cube has 9 tactile cells per face, providing the measurement
matrix Tc as indicated above, fig. 5 shows overlaid values.

To have a set verticals from acceleration measurements as
described above, we consider that if the modulus of the sensed
acceleration is close to gravity it can be used as a vertical reference
(fig. 6). The accelerometers are sampled at 20 Hz, and when the
modulus is below a certain threshold, a new observation for the
relative pose is performed every 0.5 s (every 10 samples), with a
local window of 3 samples to filter sensor and vibration noise. The
cube has a higher sample rate (500 Hz) but we subsample to the
glove sample rate.

To evaluate the quality of the estimated relative angular pose, we
re-project the finger observations to the palm frame of reference,
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Fig. 5. Overlay of tactile force distribution on the instrumented cube during
manipulation, 9 sensing cells per coloured face.
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Fig. 7. Re-projection error of the estimated angular finger and object pose.

and take the angular mismatch as an error measure. From the results
presented in fig. 7 we see that the r.m.s error can be up to 10 deg,
but this is enough for our grasp type classification.

Tables I shows the grasp type identification, indicating the
distances of the observed relative pose to the grasp types in the
library, as well as the contribution of the tactile data to distinguish
power grasps from precision grasps. The gesture being performed
is a power/palm/2-5 grasp as shown in figure 4. It is also the nearest
neighbour considering a Manhattan distance in the feature space,
in this case about 27 deg.

VI. CONCLUSIONS AND FUTURE WORK

We presented a clutter free and easily deployable system of
identifying human natural manipulation of objects. By using small
accelerometers distributed on the back of the fingers and hand, and
instrumenting the manipulated object, we are able to determine the
grasp type and contact points with the object. Preliminary results
show that the method works, although many aspects need to be
worked upon to improve robustness and range of detected grasp
types. Although for our experimental setup we used a commercial
glove with accelerometers, we intend to build a custom one that
can attach the minute sensors to the fingers and palm without a
full glove. The used instrumented object, the cube, is wired, but
we have under final development wireless versions including the
soda can object shown in fig. 4. This will enable studying human
manipulation in diverse environments and situations.

We intend to explore the use of more accelerometers, one on
each finger segment, to enable the full reconstruction of the hand
pose, making it more robust in identifying the grasp types. Going
beyond identifying sequences of stable grasps, we also intend to
further explore in-hand manipulation using the dynamic inertial
data to classify intrinsic hand movements as proposed in [16].
Here intrinsic movements are defined as coordinated movements

TABLE I
RESULT OF GRASP TYPE IDENTIFICATION

power power power power prec. prec. prec. prec. power int prec.
Op : VF Pal : 2-5 Pad: 2 Pad: 2-3 Pad: 2-4 Pad: 2 Pad: 2-3 Pad: 2-5 Pad: 2-5 Pal: 2-5 Side: 2 Pad: 2-5

tactile cell cnt: 18 13 11 10 6 6 8 9 11 2 2

m.. dist. (deg): 27 51 53 61 31 32 33 44 136 207 56
Distance of the observed grasp to the grasps in the library, and masking of range of grasps using the tactile data. The identified grasp type is
the power/palm/2-5 grasp, corresponding to the lowest value of the distance, the cell count of the trial was 17, indicating a power grasp.

of the digits to manipulate and object within the hand. They are
contrasted with extrinsic movements, defined as movements of a
prehended object by displacement of the hand as a whole. The
intrinsic movements are subdivided into simultaneous, exploring
simple and reciprocal synergies, and sequential patterns. In order
to deal with non-observability issues more accelerometers will be
required and eventually gyrometers and magnectic sensors for the
wrist or palm. The geometric distribution of contact points provided
by the tactile sensing on the object can also help to overcome non-
observability issues.
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