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Camera-Inertial Sensor Modeling and Alignment for Visual Navigation*
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Abstract: This article presents a technique for modeling and calibrating a camera with integrated low-cost iner-
tial sensors, three gyros and three accelerometers for full 3D sensing. Inertial sensors attached to a camera can
provide valuable data about camera pose and movement. In biological vision systems, inertial cues provided by
the vestibular system, are fused with vision at an early processing stage. Vision systems in autonomous vehi-
cles can also benefit by taking inertial cues into account. Camera calibration has been extensively studied, and
standard techniques established. Inertial navigation systems, relying on high-end sensors, also have established
techniques. Nevertheless, in order to use off-the-shelf inertial sensors attached to a camera, appropriate modeling
and calibration techniques are required. For inertial sensor alignment, a pendulum instrumented with an encoded
shaft is used to estimate the bias and scale factor of inertial measurements. For camera calibration, a standard and
reliable camera calibration technique is used, based on images of a planar grid. Having both the camera and the
inertial sensors calibrated and observing the vertical direction at different poses, the rigid rotation between the
two frames of reference is estimated, using a mathematical model based on unit quaternions. The technique for
this alignment and consequent results with simulated and real data are presented at the end of this article.
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1. Introduction

INTERNAL sensing using inertial sensors is very use-
ful in mobile robotic systems and autonomous vehicles

since it is not dependent on any external references, ex-
cept for the gravity field which does provide an external
reference. Artificial vision systems can provide better per-
ception of the vehicle’s environment by using the inertial
sensor measurement of camera pose (rotation and transla-
tion).

This paper presents a technique for modeling and cali-
brating a camera with integrated inertial sensors. Having
both the camera and the inertial sensors observing the ver-
tical direction at different poses, the rigid rotation between
the two frames of reference{C} and{I} shown inFig. 1,
can be estimated.

This work is part of ongoing research into the fusion of
inertial sensor data in artificial vision systems for applica-
tions on autonomous vehicles such as CyberCars [1]. A
technique for ground plane segmentation, the inertial sen-
sors, and the system prototype are described in [3] and [4].
In [5] a method is proposed for camera focal distance cal-
ibration using a vanishing point and the vertical reference.
In [6] a vertical line segmentation method is described that
performs the 3D reconstruction and mapping of the de-
tected vertical line segments.

This paper is organized as follows: in Section 2 the
data from the inertial sensors is considered. A calibration
method using a pendulum with an encoded shaft is pre-
sented to estimate inertial sensor alignment, bias and scale
factor. Section 3 introduces the camera model and the prop-
erties of vanishing points. The following section presents
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Fig. 1 Observing gravity with the camera and the inertial sensors, the
unknown rotation can be determined

the estimation of the rigid rotation between the inertial sen-
sors and camera frames of reference. In Section 5 results
are presented for both inertial sensor calibration and frame
rotation estimation.

2. Data from Inertial Sensors

Inertial sensors measure linear acceleration and angular
velocity. An inertial measurement unit (IMU) has three or-
thogonal accelerometers and three orthogonal rate gyros.
To estimate velocity and position, integration over time has
to be performed, leading to unbounded errors. The gyros
keep track of rotations, so that linear velocity and position
are computed in the correct frame of reference. Appropri-
ate calibration has to be performed to minimize the error
buildup.

When using inertial sensors, scale factor, bias and axis-
alignment need to be known. For low cost inertial sensors
these parameters are not always provided by the manufac-
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Fig. 2 Sensors’ response: (a) accelerometer, (b) rate gyro
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Fig. 3 (a) Pendulum used to calibrate the inertial sensors, (b) forces act-
ing on a moving pendulum

turer, and when using discrete components their alignment
has to be measured.

2. 1 Intrinsic calibration

Some of the inertial sensor parameters can be determined
by performing simple operations and measuring the sensor
outputs; but others cannot be so easily determined.

Observing the sensor response which is illustrated in
Fig. 2, for a particular accelerometer and a particular rate
gyro, it can be seen that this response is practically linear,
and for that reason, in this work, a linear model will be
used for the inertial sensors. This model is satisfactory to
use with our autonomous mobile vehicles.

Equation (1) represents a simple model for each set of
three non-coplanar accelerometers or rate gyros, which ac-
counts for the three main errors in these sensors: bias, scale
factors and cross-axis sensitivity.

zo = Mzi + b

=


 sxx sxy sxz

syx syy syz

szx szy szz




 zix

ziy

ziz


+


 bx

by

bz


 . (1)

The quantities to be measured are represented by the
vector zi, while zo represents the actual output from the
sensors. Vector b represents the bias for each individual
sensor, while skk is the sensitivity (or scale factor) for the
sensor oriented along axis k, and skl the cross sensitivity,
resulting from axis misalignments, relating axis k and l.

2. 2 Calibration with a pendulum

In this work, a pendulum is used in order to determine
the inertial sensor parameters—see Fig. 3.

The pendulum was chosen since it is relatively straight-
forward to determine the real quantities the sensors are
measuring. To get an indication of the quantities the iner-
tial sensors should be measuring, it is instrumented with a
high-resolution absolute encoder attached to its axis, so that
the angular position of the pendulum is known and conse-
quently, the pose of the inertial measuring unit.

In Fig. 3(b) the forces acting on the moving pendulum
are represented. A friction force, F f , is represented with
its direction opposite to the direction of the instantaneous
velocity of the pendulum, accounting for all kinds of fric-
tion inherent to the pendulum’s motion.

The sum of all forces acting on the pendulum induces
an acceleration which characterizes the motion equation of
the pendulum. From this motion equation, the acceleration
components along the x and z axis, as illustrated in Fig. 3,
can be written as

ax = −‖g‖ sin θ − ‖F f‖
M

sgn(v) (2)

az =
‖T ‖
M

− ‖g‖ cos θ =
v2

R
. (3)

In these equations, sgn(·) is the sign function, given by

sgn(v) =
{

+1, v ≥ 0
−1, v < 0.

(4)

The accelerometers measure the acceleration sensed by
a proof mass internal to the measuring unit which in turn
is attached to the pendulum. This means that the measured
accelerations are caused by forces acting on the measur-
ing unit’s case, but not on the proof mass. In this particular
scenario, since the gravity force acts both on the proof mass
and on the case, the accelerometers only measure the accel-
erations caused by the other forces: the tension, T , and the
friction force, F f . The measured accelerations along the x
and z axis, ãx and ãz , are given by

ãx = −‖F f‖
M

sgn(v) = ax + ‖g‖ sin θ

= αR + ‖g‖ sin θ (5)

ãz =
‖T ‖
M

=
v2

R
+ ‖g‖ cos θ

= ω2R + ‖g‖ cos θ (6)

where ω and α represent the angular velocity and angular
acceleration of the pendulum.

The values for θ, ω and α are measured by the encoder
readings, and its derivatives. The measurements of the rate
gyros are the components of the angular velocity of the
pendulum. This means that the only rate gyro with a non-
zero measurement should be the one oriented perpendicu-
lar to the plane of motion. Using Fig. 3 as a reference, only
the rate gyro along the y axis should measure a non-zero
quantity, i.e.

ω̃ =


 0

ω̃y

0


 =


 0
−dθ

dt
0


 . (7)
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By attaching the measuring unit to the pendulum in three
different orthogonal orientations, sufficient data can be col-
lected to calibrate the three accelerometers and the three
rate gyros of the inertial measuring unit. The procedure
consists in determining the nine scale factors, skl, and the
three biases, bk, of the sensor model described in Eq. (1).
Rewriting the system of Eq. (1) as a function of the un-
knowns skl and bk. The resulting system of equations is
given by

zo = AM ′

=



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(8)

where M ′ is the vector with the twelve parameters to be
determined.

Each measurement provides three equations as can be
seen in Eq. (8). The sensor inputs, zi, are known by feed-
ing the encoder readings, and its derivatives, into Eqs. (5),
(6) and (7); the sensor outputs, zo, are directly measured.
Only the twelve parameters in vector M ′ are unknown. To
obtain a solution for M ′, at least four measurements have
to be known, but since the measurements are disturbed by
random noise, a much bigger set of measurements should
be used.

A least squares solution can be obtained for the parame-
ters, by using Eq. (9):

M ′ = A†zo (9)

where A† denotes the pseudo-inverse of matrix A obtained
through the use of the singular value decomposition [13].

It should be noted that two systems of equations have
to be solved: one to determine the parameters of the ac-
celerometers, and another to determine the parameters of
the rate gyros.

2. 3 Temperature dependence

A well-known fact is that inertial sensor parameters are
temperature dependent. This model does not account for
that, and usually there is a non-linear relation between the
parameters and the temperature, which can be different for
each of the individual sensors. The proposed solution, be-
ing able to cope with different working temperatures, is to
build a lookup table containing the parameters for several
working temperatures, and then to determine the appropri-
ate parameters for the current temperature by interpolating
the contents of the table.

3. Data from Camera Sensor

The camera used in the vision system is modeled as pin-
hole model. The pinhole camera model derives from the
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Fig. 4 Line projection onto the unit sphere

geometry of the camera, and considers the projection of
world points onto a plane, but the projection need not be
onto a plane. Consider a unit sphere around the optical cen-
ter, with the images being formed on its surface. The im-
age plane can be seen as a plane tangent to a virtual sphere
of radius f , concentric with the unit sphere, as shown in
Fig. 4. The distance f is the focal distance of the camera.
The image plane touches the virtual sphere at the equator,
and at this point the origin of the image plane coordinate
system, the image center, is defined.

Using the unit sphere gives a more general model for
central perspective and provides an intuitive visualization
of projective geometry [8]. It also has numerical advan-
tages when considering points at infinity, such as vanishing
points.

A world point P i will project on the image plane as pi

and can be represented by the unit vector mi placed at the
center of the sphere, the optical center of the camera. With
image centered coordinates pi = (ui, vi) we have

P i → mi =
P i

||P i|| =
1√

u2
i + v2

i + f2


 ui

vi

f


 . (10)

To avoid ambiguity, mi is forced to be positive, so that only
the points on the image side hemisphere are considered.

Image lines can also be represented in a similar way.
Any image line defines a plane with the center of projec-
tion, as shown in Fig. 4. A vector n normal to this plane
uniquely defines the image line and can be used to repre-
sent the line.

For a given image line au + bv + c = 0, the unit vector
is given by

n =
1√

a2 + b2 + (c/f)2


 a

b
c/f


 . (11)

As seen in Fig. 4, we can write the unit vector of an im-
age line with points m1 and m2 as

n = m1 × m2. (12)

3. 1 Vanishing points

Parallel lines only meet at infinity, but in the image
plane, the point where they meet can be quite visible and is
called the vanishing point of that set of parallel lines.

A space line with the orientation of a unit vector m has,
when projected, a vanishing point with unit sphere vector
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Fig. 5 Vanishing point of a set of 3D parallel lines

±m, as shown in Fig. 5. Since the vanishing point is only
determined by the 3D orientation of the space line, projec-
tions of parallel space lines intersect at a common vanish-
ing point.

As seen in Fig. 5, the normals to the line projection
planes will all lie in the same plane, orthogonal to the van-
ishing point m. The vanishing point of a set of 3D parallel
lines with image lines n1 and n2 is given by

m = n1 × n2. (13)

4. Rotation Between Camera and IMU

In order to determine the rigid transformation between
the INS frame of reference {I} and the camera frame of
reference {C}, both sensors are used to measure the ver-
tical direction, as shown in Fig. 1. When the IMU sensed
acceleration is equal in magnitude to the gravity, the sensed
direction is the vertical. For the camera, either using a spe-
cific calibration target, such as a chessboard placed verti-
cally, or assuming the scene has enough predominant verti-
cal edges, the vertical direction can be taken from the cor-
responding vanishing point.

If n observations are made for distinct camera positions,
recording the vertical reference provided by the inertial
sensors and the vanishing point of scene vertical features,
the absolute orientation can be determined using Horn’s
method [9]. Since we are only observing a 3D direction
in space, we can only determine the rotation between the
two frames of reference.

Let Ivi be a measurement of the vertical by the inertial
sensors, and Cvi the corresponding measurement made by
the camera derived from some scene vanishing point. We
want to determine the unit quaternion q̊ that rotates iner-
tial measurements in the inertial sensor frame of reference
{I} to the camera frame of reference {C}. In the follow-
ing equations, when multiplying vectors with quaternions,
the corresponding imaginary quaternions are implied. We
want to find the unit quaternion q̊ that maximizes

n∑
i=1

(̊q Ivi q̊∗) · Cvi (14)

which can be rewritten as
n∑

i=1

(̊q Ivi) · (Cvi q̊). (15)

The quaternion product can be expressed as a matrix. Us-
ing Ivi = (Ixi,

I yi,
I zi)T and Cvi = (Cxi,

C yi,
C zi)T we

define

q̊ Ivi =




0 −Ixi −Iyi −Izi
Ixi 0 Izi −Iyi
Iyi −Izi 0 Ixi
Izi

Iyi −Ixi 0


 q̊ =I Viq̊

(16)

and

Cvi q̊ =




0 −Cxi −Cyi −Czi
Cxi 0 −Czi

Cyi
Cyi

Czi 0 −Cxi
Czi −Cyi

Cxi 0


 q̊ =C Viq̊.

(17)

Substituting in Eq. (15)

n∑
i=1

(IViq̊) · (CViq̊) (18)

or
n∑

i=1

q̊T IVT
i

CViq̊ (19)

factoring out q̊ we get

q̊T

(
n∑

i=1

IVT
i

CVi

)
q̊. (20)

So we want to find q̊ such that

max q̊T N q̊ (21)

where N =
∑n

i=1
IVT

i
CVi. Having

Sxx =
n∑

i=1

Ixi
Cxi, Sxy =

n∑
i=1

Ixi
Cyi (22)

and analogously for all 9 pairings of the components of the
two vectors, matrix N can be expressed using these sums
as in Eq. (23). The sums contain all the information that is
required to find the solution.

Since N is a symmetric matrix, the solution to this prob-
lem is the four-vector qmax corresponding to the largest
eigenvalue λmax of N—see [9] for details.

(23)
4. 1 Measurement span for rotation estimation

The above method finds the rotation that maximizes the
alignment of the rotated inertial frame verticals with the
camera observed verticals expressed by Eq. (14).

The inertial frame verticals, Ivi, are easily obtained.
The only restriction is that the system has to be motionless,
or subject to constant speed, so that the accelerometers give
the direction of the gravity vector g, i.e.,

Ivi = − g

‖g‖ =
1√

a2
x + a2

y + a2
z


 ax

ay

az


 (24)
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N =




(Sxx + Syy + Szz ) Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy (Sxx − Syy − Szz) Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)


 (23)

where ax,ay and az are the calibrated accelerometer mea-
surements along each axis. Notice that the accelerometer
will measure the reactive (upward) force to gravity.

The camera frame verticals, Cvi, are not so easily ob-
tained. Some scene element must be known to have vertical
features, so that the vertical vanishing point can be deter-
mined. In our experimental work we relied on the same
chessboard target used for calibrating the camera, but now
placing it vertically. For the n observations, the target does
not have to remain in the same position, but must be verti-
cal.

A single pair of measurements, i.e. n = 1, provides a
valid rotation for the given observation, but prone to de-
generate cases, depending on the system pose and rotation
between frames. Using more observations at distinct sys-
tem poses avoids this, and improves the estimate by reduc-
ing estimation error, assuming that the measurements have
zero mean Gaussian noise. The camera poses used need
not span the entire 3D attitude space, a few poses with the
system at different rotations relative to the inertial vertical
are sufficient to avoid ill conditioned cases.

5. Tests and Results

The tests were performed using a DMU-FOG inertial
unit from Crossbow Technology coupled with a Sony XC-
999 CCD video camera.

5. 1 Inertial sensor calibration

The inertial sensors were calibrated using the method de-
scribed in Section 2. The inertial unit was attached to the
pendulum in three distinct orientations in order to obtain a
significative set of measurements for each sensor and the
correspondent position of the pendulum. The outputs of
the sensor were registered in time and the angular position
of the pendulum is given by the absolute encoder measure-
ments. These measurements were used with Eqs. (5), (6)
and (7).

Since the inertial measurement unit used in this work is
a medium-grade unit, the manufacturer supplies an individ-
ual calibration table which can be used as a ground truth to
evaluate our calibration procedure.

Table 1 presents the parameters supplied by the manu-
facturer and compares them with the ones obtained using
the calibration method described in this paper. It should be
noted that in the table, the sensitivity is compared in (g/V)
and (deg/sec/V), which are the inverses of the scale factors,
skk, as defined in Eq. (1).

In order to evaluate the temperature dependence of the
sensors parameters, Table 1 presents the obtained parame-
ters for two different temperatures. The internal tempera-
ture of the inertial unit stabilizes after some time (from five
to ten minutes) and only after that time were the calibration
tests performed, in order that all the data be obtained at the
same constant temperature. Since the manufacturer only
presents the calibration parameters for an internal temper-

Table 1 Comparison of the obtained inertial sensors’ parameters at two
different temperatures with the ones supplied by the manufac-
turer

Accelerometers

X Y Z

Sensitivity (g/V)

Manuf. Supplied (29.82◦C) 1.008 1.000 1.017

Obtained (29.68◦C) 1.015 1.026 1.022

Obtained (24.45◦C) 0.999 1.027 1.030

Null Offset (V)

Manuf. Supplied (29.82◦C) 2.485 2.519 2.455

Obtained (29.68◦C) 2.539 2.514 2.456

Obtained (24.45◦C) 2.526 2.510 2.446

Rate Gyros

X Y Z

Sensitivity (deg/sec/V)

Manuf. Supplied (29.82◦C) 102.731 101.643 102.388

Obtained (29.68◦C) 102.202 102.085 102.216

Obtained (24.45◦C) 102.115 102.155 102.054

Null Offset (V)

Manuf. Supplied (29.82◦C) 2.499 2.499 2.499

Obtained (29.68◦C) 2.500 2.500 2.499

Obtained (24.45◦C) 2.502 2.500 2.500

ature of 29.82◦C , these should only be compared with the
ones obtained at a similar internal temperature (29.68◦C),
which was the stabilized internal temperature of the unit
when the room temperature was around 22◦C . Regarding
parameter variations with temperature, one can easily ob-
serve that these variations differ for each individual sen-
sor; considering also that the stabilized internal tempera-
ture of the unit varies slightly for normal operation con-
ditions, a lookup table for the parameters can be a simple
and straightforward solution to compensate for temperature
variations.

The manufacturer does not present any parameters relat-
ing to axis alignment in their unit. However, from the re-
sults of our method the system exhibits a mean cross-axis
sensitivity of about 0.6%. These small cross-axis errors can
cause high drifts over time if the inertial data measurements
are to be used to estimate position, by integrating in time
the data of the sensor.

To demonstrate the effects of this cross-axis sensitivity
effect and the differences between using our calibration or
the manufacturer’s calibration data, a test was performed
where the pendulum swung for some time with the inter-
nal temperature of the unit close to what is specified in the
manufacturer’s calibration sheet. During the experiment,
the motion of the pendulum was sometimes forced, and

c©2003 Cyber Scientific Machine Intelligence & Robotic Control, 5(3), 103–111 (2003)
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Fig. 6 Results for the integration of inertial data calibrated by our
method

Fig. 7 Results for the integration of inertial data calibrated by manufac-
turer

otherwise the pendulum was left oscillating freely. The
data of the sensors were recorded and afterwards the rate
gyros outputs were integrated over time in order to obtain
the angle of the pendulum.

Figure 6 presents the results obtained by the simple in-
tegration of the inertial data after being calibrated with the
parameters obtained by us for the testing temperature. The
inability to distinguish between the two curves shows that
the real angle, obtained by the encoder readings, only has
slight differences from the one obtained by the integration
of the rate gyro output.

In Fig. 7, the results for the same experiment are pre-
sented, but this time using the manufacturer’s supplied cal-
ibration sheet to calibrate the inertial data. As can be eas-
ily seen, the estimation has a significant drift, much higher
than the drift achieved when using the calibration data ob-
tained by the procedure in this paper.

These results proved themselves satisfactory, and good
enough for many mobile robotic applications. The calibra-
tion procedure presented has been able to reduce drastically
the drift obtained by the integration of inertial data, by de-
termining the sensors’ parameters with a reasonably high
accuracy.

5. 2 Rotation estimation

To validate the above method, a simulation was per-
formed, using a known rotation with added noise. Figure
8 shows the data set with added noise used, the known ro-
tation, and the estimated rotation. The adjoining table in-
dicates the estimated quaternions and the angular errors.
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20 random positions, rotated with added noise

real 0.98079 < 0.18110, 0.040244, 0.060366 > error (deg)

SNR=5 0.97568 < 0.18435, 0.065185, 0.099079 > 5.31◦

SNR=10 0.97702 < 0.19855, 0.062037, 0.046521 > 3.57◦

SNR=20 0.98476 < 0.15888, 0.041402, 0.057394 > 2.58◦

SNR=40 0.98072 < 0.18157, 0.040012, 0.060126 > 0.07◦

Fig. 8 Plot of simulation data for 20 random positions, filled markers
indicate initial points, and circles the same points after rotation
(22.5◦ about axis [0.9, 0.2, 0.3]) and with added white Gaussian
noise SNR=5; the plotted axes indicate the known and estimated
rotation quaternions; the table shows a set of simulation results,
indicating angular error of the estimated rotations for different
noise values

0) 5) 9)

Chessboard target

Camera vertical
Inertial Vertical
Reprojected vert.

Camera pose

Fig. 9 Some of the images used and result obtained, showing camera
pose, camera sensed verticals, inertial sensed verticals and iner-
tial verticals re-projected to camera frame of reference

With improving signal to noise ratio, the estimated rotation
approaches the real value.

The camera calibration toolbox provided by Intel Open
Source Computer Vision Library [10] was used to provide
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Table 2 Rotation estimation error: table shows how the mean angular
error for the re-projection of the complete set shown in Fig. 10
varies for increasing measurements used in computing the un-
known rotation

n 1 1:2 1:3 1:4 1:5 1:6

error 46.71◦ 1.854◦ 2.683◦ 2.410◦ 2.384◦ 1.784◦

n 1:7 1:8 1:9 1:10 1:12 1:14

error 1.660◦ 1.628◦ 1.666◦ 1.655◦ 1.627◦ 1.610◦

Table 3 Rotation estimation error after outlier removal

frames 1 1:2 1:4 1:5 1:6 1:7

error 43.45◦ 1.587◦ 1.487◦ 1.464◦ 1.365◦ 1.414◦

frames 1:8 1:9 1:10 1:11 1:12 1:14

error 1.473◦ 1.303◦ 1.307◦ 1.314◦ 1.305◦ 1.312◦

a standard camera calibration method. The calibration used
images of a chessboard target in several positions and re-
covers the intrinsic parameters of the camera, as well as the
target positions relative to the camera. The calibration al-
gorithm is based on Zhang’s work in estimation of planar
homographies for camera calibration [11].

In a test sequence, the camera was moved through sev-
eral poses with the vertical chessboard target in sight, and
all IMU data and images were logged. The camera calibra-
tion was performed with images sampled from the com-
plete set recorded. Figure 9 shows some of the images
used and the reconstructed camera positions.

Having calibrated the camera, the vertical vanishing
point was determined for each image, providing a set of
measurements Cvi. Having the corresponding Ivi from
the inertial sensors, the estimation method was applied to
the data set. Figure 9 shows the result obtained for a real
data set.

The estimated rotation has an angle 91.25◦ about an axis
(0.89,−0.27,−0.3582), and is about the expected one,
given the mechanical mount, of a near right angle approx-
imately about the x axis. Re-projecting the inertial sensor
data showed consistency of the method. The mean-square
error in the re-projected verticals was 1.570◦.

Figure 10 shows another test, where 14 observations
were made. The unit sphere is shown for each frame, with
the projected image, the vanishing point construction, the
IMU measured vertical and its re-projection to the camera
frame. The mean-square error in the re-projected verticals
was 1.312◦.

Table 2 shows the mean error of the 14 re-projected ver-
ticals for different sequential frame sets used in computing
the unknown rotation. The table shows that the data from
frame 002 is a clear outlier form the rest, raising the error
significantly. Table 3 shows the error after outlier removal.

6. Conclusions

In order to use off-the-shelf inertial sensors and cameras
for computer vision, appropriate modeling and calibration
techniques are required. This article presents a technique
for modeling and calibrating a camera with integrated low-
cost inertial sensors.

Using a pendulum with an encoded shaft, inertial sen-

sor alignment, bias and scale factor can be estimated, for
both accelerometers and gyros. With the inertial sensors
rigidly fixed to the camera, the rotation between the two
frames of reference can be found by moving the system
and observing the vertical direction with both sensors. The
inertial sensors when static only sense gravity, providing a
vertical reference. Sets of parallel vertical edges provide
the vertical vanishing point, giving the vertical direction
in the camera frame of reference. The two sets of mea-
surements allow the estimation of the rotation between the
sensors. Knowing this rotation, the inertial sensor data can
be mapped to the camera frame of reference, and used in
image processing tasks.
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Fig. 10 Experimental setup and results for some of the 14 frames used, where the unit sphere is
shown for each frame, with the projected image, the vanishing point construction, the IMU
measured vertical and its re-projection to the camera frame
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