
RAC ROBOTIC SOCCER SMALL-SIZE TEAM:
CONTROL ARCHITECTURE AND GLOBAL

VISION

José Rui Simões ∗ Rui Rocha ∗ Jorge Lobo ∗

Jorge Dias ∗

∗ Dep. of Electrical and Computer Engineering,
Faculty of Sciences and Technology, University of Coimbra,

3030-290 Coimbra, PORTUGAL
{jrmart}@alumni.deec.uc.pt,

{rprocha, jlobo, jorge}@deec.uc.pt

Abstract: The main goal of the RAC project is to develop a robotic soccer
team for participating in the RoboCup’s small-size league competitions. This
paper is focused on two main issues: distributed control of a team of robotic
soccer robots; and computer vision for tracking and localization. A distributed
control architecture tailored for robotic soccer is presented, which aims at fostering
cooperation in the absence of centralized control. It is also described a global vision
system based on two overhead cameras and color segmentation, which provides the
RAC team with real-time information about the game.

Keywords: robotic soccer, distributed architectures, computer vision, color
segmentation.

1. INTRODUCTION

The RAC project is an endeavor of the University
of Coimbra, which aims at stimulating teaching
and research about mobile robotics among re-
searchers and graduate students, through compe-
titions inside and outside the school. The project’s
main goal is to develop a robotic soccer team for
the RoboCup’s small-size league (SSL).

The RoboCup (Kitano et al. 1998) is an interna-
tional initiative aiming at fostering intelligent ro-
botics research. It provides standard problems re-
quiring the integration of important technologies,
such as autonomous robots, multi-agent coop-
eration, real-time reasoning, sensor-fusion, com-
puter vision, mechatronics, artificial intelligence,
etc. The RoboCup comprises essentially two test
beds: robotic soccer and rescue. Both represent
robotic applications without human intervention,

occurring in adversarial, highly dynamic and un-
certain environments, and requiring cooperation
among robotic agents. RoboCup rescue aims at
specifically promoting research in socially signifi-
cant issues. Robotic soccer is an exciting domain
for intelligent multi-agent robotics, requiring real-
time sensing, action and decision making in a
harsh and dynamic environment, where the team-
mates of a multi-robot team must cooperate to
defeat the adversarial team. Because the decision
making involves simultaneously cooperation and
competition, robotic soccer is already considered
a benchmark for the progress of robotics and
artificial intelligence (Buss et al. 2003). Due to
its connection with the very popular soccer game,
it has been growing very fast for the past few
years, with increasing number of competitions and
participant teams from different countries all over
the world.

136

Robótica 2005 – Actas do Encontro Científico 
Coimbra, 29 de Abril de 2005 



1.1 Teamwork and control paradigms

Manuela Veloso and Peter Stone have been in-
volved in robotic soccer since 1996, using it to
study multi-agent learning (Veloso and Stone
1998). They participated on the development of
CMUnited architecture, which includes a com-
mand server for strategic collaboration between
teammates, through reactive control and forma-
tions (Stone and Veloso 1999). In (Behnke and
Rojas 2001), it is described a hierarchy of reactive
behaviors for robotic soccer, where deliberation
is not implemented and each control layer is of
type sense-think-act. Tews et al. developed the
Multi-Agent Planning System (MAPS) (Tews and
Wyeth 2000), where agents share a similar per-
ceived model of the world, deriving individual co-
ordinated actions without extensive negotiations,
using the superposition of potential fields concept.
Aparicio developed a functional architecture for a
team of mobile robots (Apaŕıcio 2000), comprising
three levels: individual, relational and organiza-
tional. These levels use, respectively, the concepts
of primitive tasks, behaviors (using sense-think-
act paradigm) and joint intentions (Cohen and
Levesque 1991), where a joint intention can be
roughly defined as a property that holds a group
together in a shared activity. Tucker Balch has
developed the social potentials technique for the
formation control of multi-robot teams (Balch
and Hybinette 2000). Such formations are imple-
mented as a reactive navigation problem based on
a collection of motor schemas with different ob-
jectives and restrictions. This technique suggests
that sometimes effective cooperative teams can be
composed of agents using simple individual agent
behaviors with limited or no communication. Ex-
tensive work has been done in the field of Multi-
Agent Systems (MAS) for the last two decades
(Stone and Veloso 2000). The cooperation and
coordination of activities in MAS is not easily scal-
able due to the required huge amount of explicit
communication and to the time required to take
extensive negotiations, which are not appropriate
in real-time decision making. Thus, current multi-
robot architectures result in strategies mainly re-
active and less deliberative, where the attained
cooperation is emergent.

One scientific goal of the RAC project is to de-
velop a new real-time distributed, cooperative ar-
chitecture for a team of soccer robots, comprising
both reactive and deliberative control. The main
idea is to combine these two control paradigms,
as a means to take advantage from the respon-
siveness of reactive control and from the ability of
deliberative control to perform complex and intel-
ligent behaviors, while coping with the hard real-
time requirements imposed by the soccer game.

Section 2 presents the distributed architecture
that we are implementing within the RAC project.

1.2 Intelligent sensors

Another scientific goal of the RAC project is to
develop new intelligent sensors, based on the inte-
gration of artificial vision and inertial sensors. A
small vision system is being implemented, which
integrates inertial sensors on the robots, improv-
ing their autonomy. From our previous experience
on inertial and vision sensor fusion, we intend to
explore more dynamic situations, such as having
an inertial-sensor-enhanced visual tracker. The
high velocities of the small league robots enable
the use of low cost micro-machined inertial sensors
for short range inertial navigation to be used to-
gether with visual landmark and odometry data.
The inertial sensors will be used to detect and
assess robot collisions.

At the current stage of the project, robots have
still low sensory power. Thus, most of the in-
formation about the game is dependent on a
global vision system, providing real-time informa-
tion about the game, namely the position of the
players and the ball. Section 3 describes our global
vision system, based on two overhead cameras
and color segmentation, which provides the RAC
robotic team with real-time information about the
game.

2. DISTRIBUTED CONTROL
ARCHITECTURE

The RAC project’s current goal is to develop ro-
botic soccer teams for the small-size league (SSL)
of the RoboCup. In SSL, the robots have small size
(18cm diameter) and have usually very limited
computational and sensory capabilities, being the
emphasis usually placed on the robots’ dynam-
ics and speed. For this reason, the SSL games
are very fast and impose the hardest real-time
requirements amongst the robotic soccer modal-
ities. The SSL teams are usually controlled in a
centralized way from a remote PC (e.g. (Veloso
and Stone 1998)), being the robots used mainly
as actuators, providing fast motion and other ad-
ditional basic skills, such as kicking or dribbling
the ball. Because of the lack of on-board sensory
power, using global vision system, comprising one
or more cameras positioned over the playing field,
is currently allowed by the competition rules.

Although a centralized control approach fits well
with SSL, given that a system completely depen-
dent from a global vision can be assumed, the
RAC project’s long-term goals go beyond current
SSL requirements. In fact, the long-term goal of

137



the project is to evolve towards a middle-size
league team deployment, which requires on-board
sensory and computational power and high con-
trol autonomy. For this reason, the team’s control
architecture has been developed in such a way
that it can be instantiated along different levels of
robot’s autonomy, ranging from a centralized sys-
tem completely dependent from global vision to a
completely distributed system, where each robot’s
individual controller runs locally in the robot’s
own embedded computer and the robot possesses
higher sensory power (e.g. on-board vision). More
specifically, the RAC’s control architecture main
features are: three different abstraction levels of
robot’s control, with a suitable balance between
reactivity and deliberation; distribution, modu-
larity and flexibility; and centralized world model
based on sensor fusion.

The main idea behind the RAC’s control architec-
ture is to combine both reactive and deliberative
control paradigms, as a means to take advantage
from the responsiveness of reactive control and
from the ability of deliberative control to perform
complex and intelligent behaviors, while coping
with the hard real-time requirements imposed by
the soccer game (especially the SSL games). Reac-
tive control allow robots to exhibit fast response to
new events (e.g. intercepting the ball), fast basic
behaviors (e.g. moving while controlling the ball)
and taking chance opportunities (e.g. shooting to
goal). The deliberative control makes possible to
define intelligent playing strategies based on coop-
eration among robots, using explicit communica-
tion. For reactive behaviors, cooperation is mainly
emergent and does not use communication with
teammates. Deliberative behaviors are devoted to
more complex and time consuming decision mak-
ing activities, implementing explicit cooperation
through coordination and negotiation protocols
between the robotic agents, which usually require
explicit communication.

2.1 General description

Figure 1 depicts a general diagram of the RAC’s
distributed control architecture. It is composed of
a centralized world model (WM), processes that
directly access WM, one controller for each robot
in our team (robotic agent) and an interface to
global vision (GLBSENS).

The world model (WM) is a centralized repository
of the information about the game, owned by the
team. It stores fundamental data about the game,
such as pose and velocity of all players and the
ball, game’s score, game’s state, etc. This infor-
mation is used by all the robots to take decisions
under a consistent and common world representa-
tion. Modules UPDMOD and RFRINT are inter-

RFRINT
Referee Interface

World
Model

WM

MNT
System Monitor

QRYMOD
Query Model

NTFYEV
Notify Event

UPDMOD
Update Model

World

HMNSVS
Human Supervisor

Local
Data

LD STRCTR
Strategic Cont rol

TCTCTR
Tactic Control

OPRCTR
Ope rational Con trol

ACT
Actuators

SENSPROC
Sensory Processing

SENS
Sensors

AGENT 1

Events

Local
Data

LD STRCTR
Strategic Cont rol

TCTCTR
Tactic Control

OPRCTR
Ope rational Con trol

ACT
Actuators

SENSPROC
Sensory Processing

SENS
Sensors

AGENT n

Queries
Sensory Fusion

Inter-Agent

Supervision

GLBSENS
Global Sensors

(6)

(6)

(7)

(7)

(2)

(7)

(5)

(2)

(1)

(4)

(1, 3) (1, 3)

(8) (9)

Fig. 1. General diagram of the RAC’s control
architecture: it comprises a robotic agent for
each robot, representing each robot’s con-
troller, a shared information repository (WM
– World Model), modules for getting infor-
mation from WM (NTFYEV, QRYMOD),
modules for updating WM (GLBSENS, UP-
DMOD, RFRINT) and modules used for su-
pervising the team (MNT, HMNSVS).

GLBSENS SENSPROC
Agent 1

SENSPROC
Agent 2

UPDMOD WM

update-robots-position

localization-estimate

localization-estimate

localization-estimate

localization-estimate

localization-estimate

update-robots-position

update-robots-position

localization-estimate

Fig. 2. Example of a sequence diagram related
with updating the world model (WM).

faces with the sensory modules (including global
vision) and the referee, respectively, which update
and maintain WM consistent with current game’s
situation. The module UPDMOD implements sen-
sor fusion from sensory information gathered by
robots’ local sensors and global sensors. Figure 2
shows an example of a sequence that updates WM
as long as new data comes from sensors.

The module MNT implements a graphical user
interface that enables the team’s supervisor to
monitor and log the game. The module HMNSVS
enables the team’s supervisor to tune the strategy
followed by the team. The modules QRYMOD and
NTFYEV makes WM available to all robots in the
RAC team. While the former process works upon
specific robot’s queries about the world model (on
demand information), the latter process is a way
to synchronize each robot with the occurrence of

138



STRCTR
Strategic Control

TCTCTR
Tactic Control

OPRCTR
Operational Control

Local
Data

LD

ACT
Actuators

SENSPROC
Sensory Processing

SENS
Sensors

Events
Queries

Sensory Fusion

Inter-Agent

Supervision

World

(2)

(1)(3)

(4) (9.1) (8.1) (10.1) (9.2) (8.2) (10.2) (9.3) (8.3)

(11) (12)

(2)(13)

Fig. 3. Diagram of the robot’s controller, com-
prising three control levels: operational, tac-
tic and strategic. The different types of in-
formation are represented through different
information channels.

those events for which the robot requested to be
notified.

2.2 Robot’s own controller

Each robot is represented in figure 1 by a robotic
agent. Figure 3 shows a detailed block diagram of
each robot’s own controller. Both figures 1 and 3
show the different types of information conveyed
between modules. There are three modules tak-
ing care with the robot’s control at three differ-
ent control levels: strategic (STRCTR), tactical
(TCTCTR) and operational (OPRCTR). At the
strategic level, the robot’s behaviors are typically
deliberative. At the tactical level, the robot uses
both reactivity and deliberation. The operational
level is mainly reactive and implements behav-
iors with the hardest real-time requirements. The
module SENSPROC processes information gath-
ered by the robot’s own sensors (if any). Modules
SENS and ACT interface directly with the robot’s
sensors and actuators.

The module STRCTR cooperates with peer processes
of other teammates in order to select the best
team’s strategy under the current world state. The
process TCTCTRL does the same as STRCTR
but at the tactical level. It cooperates with peer
processes of other teammates in order to map
the chosen strategy to tactics, doing role assign-
ment and coordination (synchronization). Figure
4 shows an example of a sequence diagram at
tactical level under a defensive strategy.

The module OPRCTR implements a pool of
sense-think-act control sequences (finite state ma-
chines) that are instantiated by the tactic level
to perform primitive actions (e.g. dribble-ball-to-
position). Each primitive action is a closed loop
control sequence through the robot’s sensors and
actuators, although global information can also
be used (see figure 5 for an example). Each robot
has a local data repository, which is a sub-model
of WM built upon data gathered by the robot’s

STRCTR
Agent 1

STRCTR
Agent 2

TCTCTR
Agent 1

TCTCTR
Agent 2

QRYMOD

defend

NTFYEV OPRCTR
Agent 1

OPRCTR
Agent 2

bid-for-defender1-is

defend

robots-pose?

robots-pose?

robots-pose-is

robots-pose-is

bid-for-defender1-is

when-ball-enters-my-influence-area

follow-opponent-owning-ball

defend-goal

ball-entered-in-influence-area

steal-ball-to-opponent

Fig. 4. Example of a sequence diagram at the tac-
tical control level under a defensive strategy.

SENS
Agent i

SENSPROC
Agent i

QRYMOD OPRCTR
Agent i

ACT
Agent i

encoder-readings

velocity

touching-ball?

yes-touching-ball

set-robot-velocity

Fig. 5. Example of a sequence diagram of the exe-
cution of a primitive action at the operational
control level.

distance-to-ball?

my-pose-global-estimate?

position-of-opponent-that-
owns-ball?

ball-position?

robots-pose?

is-our-ball?

8.1 Strategic level

close-to-end-of-game?

8.2 Tactic level

ball-in-my-influence-area?

touching-ball?

8.3 Operational level

8. Queries

when-close-to-position

when-opponent-in-front

when-ball-enters-my-
influence-area

when-ball-in-my-line-of-view

when-we-score-a-goal

9.1 Strategic level

when-we-win-ball-
possession

9.2 Tactic level

9.3 Operational level

9. Notification of events

my-bid-for-role-is

intercepted-ball

my-bid-for-being-captain-is

new-captain-is

10.1 Strategic level

new-strategy-is

10.2 Tactic level

prepared-to-receive-pass

10. Inter-Agent messages

follow-opponent-owning-ball

catch-ball-and-kick

steal-ball-to-opponent

defend-goal

dribble-ball-to-position

12. Primitive actions

kicker’s state

image

encoders’ pulses

1. Sensory information

kicker-ready (flag)

localization-estimate

encoder-readings

2. Sensory data

kicker shot

wheels’ movement

3. Actuators actions

defensive-team

offensive-team

4. Supervision actions

game’s statistics

game’s score

5. Monitor data

free-kick

stop-game

start-game

update-ball-position

begin-first-half

update-robots-position

6. Write access to WM

read-player velocity

read-ball-postition

read-game-state

read-player-position

7. Read access to WM

defend

attack

defend strongly

counter-attack

11. Strategies

release-kicker

turn-on-dribbler

set-robot-velocity

13. Commands

Fig. 6. Examples of the kind of information con-
veyed through the different information flows.

own sensors, suitable for the real-time operational
control performed locally by the robot.

Each information flow between modules is num-
bered uniquely in figures 1 and 3. Figure 6 shows
examples concerning the kind of conveyed among
modules (not an exhaustive enumeration).

139



2.3 Instantiations having different levels of robot’s
autonomy

The architecture presented above can be easily
adapted to different levels of robot’s autonomy.
We are particularly interested in two instances:
small-size league (SSL) and middle-size league
(MSL) of RoboCup. In both cases, the assignment
of some modules to computational resources is
fixed: modules SENS, ACT always run locally on
the robots; modules UPDMOD, RFRINT, MNT,
HMNSVS, QRYMOD and NTFYEV always run
on a remote PC. If communication resources usage
or the robots’ computational power requirements
have to be reduced as much as possible, all robotic
agent’s modules (except SENS and ACT) can
run in the remote PC. Conversely, if the robot’s
controller should run totally in the robot itself, all
robotic agent’s modules processes run locally on
the robot’s own embedded computer.

For SSL, there are only very primitive local sen-
sors on the robots and it is available a very
powerful global sensor – an overhead camera –
which is interfaced and integrated in the world
model through GLOBSENS. As most of the sen-
sory information comes from the global sensor,
the implementation of module UPDMOD is very
simple because sensor fusion is very minimal. If
the robot’s computational power is restrictive, all
modules, except SENS and ACT, might run on
the remote PC.

For MSL, global sensors are completely forbidden,
therefore the module GLOBSENS doesn’t exist.
As sensory capacity is almost evenly distributed
among robots, the module UPDMOD is much
more complex than in the SSL instantiation. If
robots have reasonable computational power, the
most distributed and higher autonomy architec-
ture instance can be implemented.

We are about to deploy our first team for robotic
soccer, which uses global vision and implements
a reduced version of the presented control ar-
chitecture, with all robots’ individual controllers
running on the same PC. Figure 7 shows some
photos of our first prototype. In order to increase
the robots’ autonomy and work without global
vision, we intend to equip the robots with intel-
ligent sensors, including vision and inertial sen-
sors, and to implement a fully distributed ver-
sion of the control architecture, by putting each
robot’s controller running locally on the robot’s
own embedded computer. For this purpose, the
RAC robot’s embedded computer is a PC104-
based embedded computer, having the required
enough computational power. Our long-term goal
is to evolve gradually to the RoboCup middle-size
league.

Fig. 7. RAC robot (RACbot) – first working
prototype.

Fig. 8. Global Vision System implementation

3. GLOBAL VISION SYSTEM

3.1 Introduction

Our implementation of the global vision uses two
cameras, one for each half of the field, which
then report the acquired information to a central
process. This process provides our soccer robots
with information concerning the position of robots
and the ball. Our implementation is shown in
figure 8.

3.2 Camera calibration

Camera calibration (Wei 1994) is the process of
computing the camera’s physical parameters, such
as the image center, focal length, position ori-
entation, etc. In our case, we achieved camera
calibration using the Camera Calibration Toolbox
for MatLab c© (Bouguet 2005), since it was readily
available and met our requirements. Using a tar-
get chessboard pattern, we can calculate all the
camera parameters from a set of images, including
radial distortion parameters.

3.3 Coping with camera’s radial distortion

Lens distortion is a phenomena that is very com-
mon, especially in wide-angle lenses. This kind

140



of phenomena is of relative importance for im-
age quality, but it is of major importance when
the image geometry must be maintained. In most
cases, radial distortion is the most relevant type
of distortion that lenses cause, and we can usually
neglect all other kinds of distortion.

As we can see on the left side of figure 10, in our
case, the barrel distortion is evident and, since
we need the coordinates of robots and the ball
with a high degree of confidence, this image is
unacceptable. Thus, using the distortion parame-
ters calculated with Camera Calibration Toolbox
for MatLab c© (Bouguet 2005), and applying the
undistort routine supplied by the toolbox, a rec-
tified version of the image is readily obtained (see
the resulting image in the right side of figure 10).
In our software, this functionality will be achieved
using a similar routine included in the OpenCV
distribution (OpenCV 2005).

3.4 Color segmentation

Vision systems employing region segmentation by
color are crucial in real-time mobile robot appli-
cations, such as RoboCup (Kitano et al. 1997), or
other domains where interaction with humans or a
dynamic world is required. An important first step
in many color vision tasks is to classify each pixel
of the image into one of a discrete number of color
classes (Bruce et al. 2000). To achieve this objec-
tive, there are four main approaches: linear color
thresholding, nearest neighbor classification, color
space thresholding and probabilistic methods. We
have applied a method that falls mainly on the

Fig. 9. Sample image used for camera calibration.

Fig. 10. Compound of two images: on the left,
the original image having significant radial
distortion; on the right, the radial distortion
is corrected.

Do Forever Acquire a new frame
For all the pixels
check if the color of the pixel
is one of the colors of interest

Extract contours from the regions created
If contour is of right size

Save contour information
Position and colour

Build the robots and
get the ball position

Send positions

Table 1. Pseudo-code of our algorithm.

third approach, that is, we use two threshold levels
for each channel to uniquely define each color.

3.4.1. Color Space There are several color
spaces used in computer vision (RGB, YUV,
YCrCb,HSV, etc.). Since we are using OpenCV
for capturing images, the image is required to use
the OpenCV’s standard color space BGR when
acquiring images. This color space is equivalent
to RGB, but the color channels appear in reverse
order. Consequently, it has the same problems
than RGB color space; for instance, the luminance
is encoded in all of the three channels. That’s why
we convert the acquired image to the YCrCb color
space, which is a variant of YUV. This color space
is much more interesting, because it separates
luminance in the channel Y and the chrominance
is coded in the other two channels. Although we
are introducing some overhead when doing this
conversion, the reliability on detecting the dif-
ferent markers is greatly improved, because the
color detection is much less influenced by different
lightning conditions.

3.4.2. Implementation Our implementation was
based on the algorithm described in (Bruce et
al. 2000). We begin by converting the color space
to YCrCb and then we apply the thresholds for
each pixel of the frame, which results in a binary
image with all the regions of interest. The result
of this can be seen in figure 11. This binary image
is further processed for finding contours (shown in
figure 12) and looking for regions of interest. This
decision is based on the area of the region. Finally,
we extract the position, heading and identification
of the robot from the information gathered in the
previous steps, which is marked in figure 13. If
the region represents the ball, only the position is
acquired, since there is no other relevant informa-
tion about the ball in the image. Regarding the
opposite team we can only acquire their position,
because we don’t know a priori the type of mark-
ers that they use for heading and identification.

141



Fig. 11. Result of color segmentation.

Fig. 12. Contours retrieved from color segmenta-
tion.

Fig. 13. Result of a positive detection of one of
the robots.

3.5 Experiments and results

3.5.1. Framerate The framerate that we achieve
is relatively low. Our cameras limit ourselves to 15
frames per second, but adding the processing of
each frame, we have at most 5 frames per second.
This was the highest frame rate observed since
this value is highly dependent from the amount of
noise and false positives in each frame.

Fig. 14. Colored markers used on the top of the
robots to localize and identify them through
color segmentation.

Ball Robot

X (cm) Y (cm) X (cm) Y (cm) θ (o)

-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 -176.424
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 -176.424
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 43.5183 0.9472 -175.914
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 -176.424
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 43.5183 0.9472 180
-61.3931 50.1168 43.5183 0.9472 180
-61.3931 50.1168 44.1069 0.9134 -176.424
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 44.1069 0.9134 -176.424
-61.3931 50.1168 44.1069 0.9134 180
-61.3931 50.1168 43.5183 0.9472 -175.914

Mean -61.3931 50.1168 44.0301 0.9178 178.8791

σ 0 0 0.2357 0.0135 1.7164

Table 2. Results of static detection.

3.5.2. Results The markers that we are cur-
rently using are shown in figure 14. Since the
prototype is still being developed, the tests are
not very extensive. In table 2 we see the results for
static detection of the ball and robot. As we can
see, the measurements are very accurate, having a
minimal standard deviation σ. This is in part due
to using two cameras, since we have bigger regions
to estimate the objects’ position. The second set of
tests, whose results are presented in table 3, were
conducted with the robot going trough the center
line, i.e. with x = 0. As we can see, the standard
deviation is relatively bigger but still acceptable.

4. CONCLUSION

This article focused on two main issues of the RAC
project. Firstly, it was presented a distributed, co-
operative control architecture for a robotic soccer
team. It combines both reactive and deliberative

142



Position in cm Heading

X (cm) Y (cm) θ (o)

-2.29885 129.337 83.991
1.72414 109.75 85.9144
2.29885 99.9736 90

1.14943 78.7224 87.1376
8.34465 33.333 81.8699
1.14943 11.481 85.9144
14.9425 -40.4016 83.6598
13.7931 -50.7332 78.1113
11.4943 -56.454 80.5377
12.6437 -64.5131 80.5377
13.7931 -77.17 83.6598
19.5402 -101.949 93.3665
16.092 -102.484 94.3987

Mean 7.6765 85.3357

σ 7.1087 4.7235

Table 3. Results of detection with a
moving robot.

control and provides each robot with as much
control autonomy as possible, while coping with
the real-time requirements imposed by the soccer
game. Secondly, as our current robots have not on-
board vision, the team’s global vision system was
presented, which is based on two overhead cam-
eras and real-time color segmentation algorithms.

We are about to deploy our first team for robotic
soccer, which uses global vision and implements
a reduced version of the presented control ar-
chitecture, with all robots’ individual controllers
running on the same PC. In order to increase
the robots’ autonomy and work without global
vision, we intend to equip the robots with intelli-
gent sensors, including vision and inertial sensors,
and to implement a fully distributed version of
the control architecture, by putting each robot’s
controller running locally on the robot’s own em-
bedded computer. Our long-term goal is to evolve
gradually to the RoboCup middle-size league.

ACKNOWLEDGMENTS

This work was funded by FCT Fundação para
a Ciência e a Tecnologia, with project grant
POSI/ROBO/43890/2002. This work was possi-
ble thanks to the contribution from all RAC team
members.

REFERENCES

Apaŕıcio, Pedro (2000). Design and implemen-
tation of a population of cooperative au-
tonomous robots. Master’s thesis. Instituto
Superior Técnico. Lisboa, Portugal. Super-
vised by Pedro U. Lima.

Balch, T. and M. Hybinette (2000). Social poten-
tials for scalable multi-robot formations. In:
Proc. of IEEE International Conference on
Robotics and Automation (ICRA’00). pp. 73–
80.

Behnke, S. and R. Rojas (2001). A hierarchy of re-
active behaviors handles complexity. In: Bal-
ancing Reactivity and Social Deliberation in
Multi-Agent Systems. pp. 125–136. Springer-
Verlag.

Bouguet, Jean-Yves (2005). Camera Calibration
Toolbox for Matlab. URL
http://www.vision.caltech.edu/bouguetj/calib doc.

Bruce, J., T. Balch and Veloso M. (2000). Fast and
inexpensive color image segmentation for in-
teractive robots. Technical report. School of
Computer Science, Carnegie Mellon Univer-
sity, USA.

Buss, M., M. Hardt, J. Kiener, M. Sobotka,
M. Stelzer, O. Stryk and D. Wollherr (2003).
Towards an autonomous, humanoid, and dy-
namically walking robot: modelling, optimal
trajectory planning, hardware architecture,
and experiments. In: Proc. of IEEE/RAS Int.
Conf. on Humanoid Robots, Karlsruhe, Ger-
many.

Cohen, P. and H. Levesque (1991). Teamwork.
Nous, Special Issue on Cognitive Science and
Artificial Intelligence 25(4), 487–512.

Kitano, H., I. Kuniyoshi, M. Asada, H. Matsubara
and Osawa E. (1997). Robocup: A challenge
problem for ai. AI Magazine 18(1), 73–85.

Kitano, H., M. Asada, I. Noda and H. Matsubara
(1998). RoboCup: Robot world cup. IEEE
Robotics and Automation Magazine 5(3), 30–
36.

OpenCV (2005). OpenCV-
Open Computer Vision Library. URL
http://sourceforge.net/projects/opencvlibrary.

Stone, P. and M. Veloso (1999). Task de-
composition, dynamic role assignment, and
low-bandwidth communication for real-time
strategic teamwork. Artificial Intelligence
110(2), 241–273.

Stone, P. and M. Veloso (2000). Multiagent sys-
tems: A survey from a machine learning
perspective. Autonomous Robots, Special Is-
sue on Heterogeneous Multi-Robot Systems
8(3), 345–383.

Tews, A. and Wyeth (2000). MAPS: a system for
multi-agent coordination. Technical report.
Computer Science and Electrical Engineer-
ing, University of Queensland, Australia.

Veloso, M. and P. Stone (1998). Towards col-
laborative and adversarial learning: a case
study in robotic soccer. Int. Journal of Hu-
man Computer Studies.

Wei, Guo-Qing (1994). Implicit and explicit cam-
era calibration: Theory and experiments.
IEEE Transactions on Pattern Analysis and
Machine Intelligence 16(5), 469–480.

143


