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Abstract— Building cooperatively 3-D maps of unknown
environments is one of the application fields of multi-robot
systems. This article focuses on the exploration problem with
multiple robots, starting upon a previously proposed successful
distributed architecture. An entropy gradient-based algorithm
is used to select exploration viewpoints in the frontier between
explored and unexplored regions. The architecture is refined
here with a mutual information-based coordination mechanism,
whereby each robot selects new exploration viewpoints so that
mutual information between robots’ individual visible maps is
minimized and map’s uncertainty is decreased as fast as possible.
Results obtained from experiments with real robots equipped
with stereo-vision demonstrate how the entropy gradient-based
method converges to a map with lower uncertainty.

Index Terms— Multi-robot systems, cooperation, 3-D
mapping, entropy, exploration, coordination.

I. INTRODUCTION

Multi-robot systems (MRS) have been widely investigated
for the last decade [1]. These systems employ teams of
cooperative robots to carry out missions that either cannot be
achieved by a single robot, or where a multi-robot solution is
more efficient, cost effective, reliable and robust than a single
robot. Building a 3-D map of an unknown environment is one
of the application fields of MRS.

Robotic mapping addresses the problem of acquiring spatial
models of physical environments through mobile robots [2],
using range sensors such as cameras or laser range finders.
As sensors have always limited range, are subject to oc-
clusions and yield measurements with noise, mobile robots
have to navigate through the environment and build the map
iteratively. Robots can be used for building fastidious maps
of indoor environments [3], but they are particularly useful
on mapping missions of hazardous environments for human
beings, such as abandoned underground mines [4] or nuclear
facilities [5]. Although it is recognized the potential of MRS
on such mapping missions, most of the current state-of-the-art
is restricted to single robot solutions, with some exceptions [6],
[7], [8]. Extensive research has been devoted to SLAM (e.g.
[9], [4], [10]), which is not addressed in this article because
it is assumed that robots are externally localized.

When a robot or a team of robots explore an unknown
environment and build a map, the objective is to acquire as

much new information as possible with every sensing cycle,
so that the time needed to completely explore is minimized.
Bourgault et al. [11] address the single robot exploration prob-
lem as a balance of alternative motion actions from the point
of view of information gain (in terms of entropy), localization
quality (using SLAM) and navigation cost. Although they
include information gain in their strategy, their formulation
is computationally heavy and they were only able to use it
off-line, for a limited number of proposed destinations. Ya-
mauchi et al. proposed frontier-based exploration [6] whereby
robots are driven towards boundaries between open space and
unexplored regions. Burgard et al. developed a technique for
coordinating a team of robots while they are exploring their
environment to build a 2-D occupancy grid [7]. They use
the frontier-cell concept [6] and consider a balance between
travel cost and utility of unexplored regions, so that robots
simultaneously explore different regions. They do not define
an architecture for the team and it is not clear how robots
should interact and what to communicate to accomplish the
proposed coordination. In their seminal work reported in [12],
they used entropy minimization to actively localize a robot by
minimizing the expected future uncertainty. In [8], robots are
arranged in exploration clusters, which group subsets of robots
that are able to communicate with each other.

Our approach to multi-robot exploration is closely related
to [6] and [7], with three important improvements. Firstly, we
use information theory (see section 2) to explicitly represent
uncertainty in the grid-based probabilistic model summarized
in section 3. Secondly, we use the distributed architecture
model proposed in section 4, which restricts the communica-
tion among robots to the minimum necessary to share useful
sensory data among robots and to coordinate the exploration.
Thirdly, we formally define in section 5 the utility of a
target viewpoint, whose maximization is accomplished by
maximizing the entropy gradient of low coverage, reachable
cells (finding frontier-cells [6]), and minimizing mutual in-
formation and interference among robots. Section 6 presents
experimental results obtained with real robots equipped with
stereo-vision and demonstrates how the entropy gradient-based
method converges to a map with lower uncertainty. The article
ends with conclusions and future work.



II. ENTROPY AND MUTUAL INFORMATION

Entropy is a general measure for the uncertainty of a belief
[13], [14]. Being X a discrete random variable over a discrete
sample space S, its entropy H(X) takes values in the interval
0 ≤ H(X) ≤ b, where b is the size of S. The quantity
H(X) measures its shortest description (e.g. in bits), being
as high as its uncertainty. Hereafter, we use the base 2 for the
logarithm and, in this case, entropy is measured in bits. Given
two discrete random variables X and Y , the entropy definition
can be extended to compute the joint entropy H(X,Y ) and
the conditional entropy H(X | Y ) or H(Y | X).

Mutual information provides a measure of the reduction of a
random variable’s uncertainty due to the knowledge of another
and it can be defined as

I(X ;Y ) = H(X) −H(X | Y ) = H(Y ) −H(Y | X) (1)

= H(X) +H(Y ) −H(X,Y ). (2)

Notice that I(X ;Y ) = I(Y ;X) and I(X ;Y ) ≥ 0, where the
equality occurs if X and Y are statistically independent.

A. Sets of discrete random variables

The joint entropy of a set of discrete random variables X =
{X1, . . . , Xn} with joint pdf p(X ) = p(X1, . . . , Xn) is [14]

H(X ) = H(X1, . . . , Xn) =
n∑

i=1

H(Xi | X1, . . . , Xi−1).

(3)
It can be proved that

H(X ) ≤ H(X1)+H(X2)+ . . .+H(Xn) =
n∑

i=1

H(Xi), (4)

where the equality occurs if all variables in the set X are
statistically independent. The definition of mutual information
given by equation (1) can be generalized to define the mutual
information I(X 1;X 2) between two sets of random variables
X 1 = {X1

1 , . . . , X
1
m} and X 2 = {X2

1 , . . . , X
2
n}. It can be

proved that

I(X 1;X 2) = I(X1
1 , . . . , X

1
m;X2

1 , . . . , X
2
n)

=
m∑

i=1

n∑
j=1

I(X1
i ;X2

j | X1
1 , . . . , X

1
i−1, X

2
1 , . . . , X

2
j−1) (5)

Equation (2) can be generalized to a relation between joint en-
tropy and mutual information of two sets of random variables.
It can be proved that for any pair of sets of random variables
we have

I(X 1;X 2) = H(X 1) +H(X 2) −H(X 1 ∪ X 2). (6)

1) Sets of independent random variables: Given equation
(4), the joint entropy of the union of sets of independent
random variables is

H(X 1 ∪ X 2 ∪ . . . ∪ Xn) =
∑

Xk∈X 1∪X 2∪...∪Xn

H(Xk), (7)

i.e. it is simply the sum of its variables’ entropy. Let X be a
set of statistical independent random variables. Consider two

subsets of independent random variables X 1 ⊆ X and X 2 ⊆
X . Using equation (7), equation (6) may be re-written as

I(X 1;X 2) = H(X 1) +H(X 2) −H(X 1 ∪ X 2)

=
∑

X1
i ∈X 1

H(X1
i ) +

∑
X2

j ∈X 2

H(X2
j ) −

∑
Xk∈X 1∪X 2

H(Xk).

(8)

All of the terms in the two first sums of equation (8) will
be cancelled by the terms in the last sum, except the terms
related with variables belonging to both sets. Thus, we have
two cases:

I(X 1;X 2) =




∑
Xi∈X 1∩X 2

H(Xi), X 1 ∩ X 2 �= ∅,

0, otherwise.

, (9)

which means that any mutual information between the two
sets is due to variables belonging to both sets.

III. PROBABILISTIC VOLUMETRIC MAP

This section briefly describes the framework proposed in
[15], [16]. The 3-D workspace is divided into equal sized
voxels with edge ε, ε ∈ R and volume ε3. The set of all voxels
yielded by such division is the 3-D discrete grid Y . Given a
3-D point x ∈ R

3, v(x) denotes the voxel l ∈ Y containing
the point x. Given a voxel l ∈ Y , w(l) ∈ R

3 denotes the
voxel’s center coordinates [xl, yl, zl]T . The coverage of a voxel
l ∈ Y is the portion of the the cell which is covered (occupied)
by obstacles. It is modeled through the continuous random
variable Cl, taking values cl in the interval 0 ≤ cl ≤ 1. The
tuple Mk = (xk,Vk) denotes the k-th batch of measurements,
being xk the sensor’s position from where measurements are
obtained and Vk the set of measurements belonging to the
batch, provided by the robot’s sensor at t = tk, tk ∈ R, k ∈
N. The set Mk = {Mi : i ∈ N, i ≤ k} is a sequence of k
batches of measurements, corresponding to the period of time
t0 ≤ t ≤ tk, being t0 the initial time before any batch of
measurements. The knowledge about the voxel’s coverage C l,
after k batches of measurements, is modeled through the pdf
p(cl | Mk), 0 ≤ cl ≤ 1. The 3-D probabilistic map, after
k batches of measurements, is the set of random variables
C = {Cl : l ∈ Y}, described statistically through the set of
coverage probability density functions P(C | Mk) = {p(cl |
Mk) : l ∈ Y}. The coverage of each individual voxel is
assumed to be independent from the other voxels’ coverage
and thus C is a set of independent random variables.

A. Voxel’s entropy and map’s Entropy

A quantized version of the voxel’s coverage pdf is used
to compute the voxel’s discrete entropy1. Each coverage
continuous random variable Cl, l ∈ Y is sampled through
a discrete random variable C�

l having b possible outcomes

1Although the voxel’s coverage is a continuous random variable, we prefer
to discretise it and use discrete entropy, because it is always positive.



c�l ∈ {1, . . . , b} and a relative frequency histogram p(c�
l ).

Thus, the voxel’s discrete entropy is

H(Cl) ≡
b∑

i=1

p(c�l = i) log p(c�l = i). (10)

Hereafter, we will always assume that we use b = 128 bins in
the computation of H(Cl), which means that 0 ≤ H(Cl) < 7.
Accordingly with equation (7), the map’s joint entropy is the
sum of voxels’ individual entropy

H(C) ≡
∑
l∈Y

H(Cl). (11)

If our knowledge about the voxels’ coverage is conditioned to
the k previous batches of measurements Mk, equations (10)
and (11) can obviously also be used to compute the voxel’s
coverage entropy H(Cl | Mk) and the map’s joint entropy
H(C | Mk) conditioned to that knowledge, by using p(c l |
Mk) and p(c�l | Mk) instead of using p(cl) p(c�l ). In order
to simplify our notation, the quantity H(C | Mk) will be
denoted hereafter as H(tk).

IV. DISTRIBUTED ARCHITECTURE MODEL

Consider a fleet F = {1, . . . , n} of n robots equipped
with on-board range sensors and performing a 3-D mapping
mission. Fig. 1 depicts our distributed architecture model for
3-D mapping. It was firstly proposed in [16] and is extended
here with an exploration coordination mechanism. Although
Fig. 1 refers to an individual robot i ∈ F , the interaction with
the rest of the team (the set of robots F\i) is represented
through the communication block and its associated data flow.
The diagram applies to every robots in the fleet F .

The robot’s sensor provides new sets of vectors Vk+1

where obstacles are detected from the current sensor’s pose
Y (t). The localization module gives the sensor’s pose Y (t),
including position and attitude2. The actuator changes the
sensor’s pose (robot’s pose) accordingly with new selected
viewpoints Y s. Whenever the robot’s sensor yields a new batch
of measurements Mk+1 = (xk+1,Vk+1), the map is updated
accordingly. Robot i selects a new viewpoint Y s = Y s

i ,
given the current map, its current pose Yk = Yk,i, its current
visibility parameters ri and αi, and visibility information
{(Y s

j , rj , αj) : j ∈ F\i} about all the other robots in the team
F\i. The new selected viewpoint Y s is the reference input to
the robot’s actuator. Whenever a robot selects a viewpoint for
its sensor, the communication module is used to communicate
the tuple (Y s

i , ri, αi) to other robots, i.e. the new selected
viewpoint and its current visibility parameters. As we shall
see, this minimal communication enables to coordinate the
team. As part of the map updating, it is built a batch of
measurements Sk = (xk,Uk) having the most useful data
from sensor Uk ⊆ Vk. Those selected measurements are shared
between robot i and the other robots in the fleet F\i through
the communication module. This module can also provide the

2It is assumed that each robot is able to localize itself in a global coordinates
frame.
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Fig. 1. Block diagram showing the relation between different parts of the
process and the resources of a given robot i of the fleet F .

robot with batches of measurements Rk = (x′
k,U ′

k) given
by other robots and the map is then updated accordingly.
Cooperation among robots arises because of this altruistic
commitment to share useful measurements [16].

V. COORDINATED EXPLORATION WITH A TEAM OF ROBOTS

In an exploration mission, the objective is to acquire as
much new information about the environment as possible with
every sensing cycle. In [15], [16], an entropy gradient-based
exploration method was proposed, which directs the robot’s
sensor to frontier voxels between more explored and less
explored regions. This strategy works well with a single robot
but it presents two problems in the multi-robot case, due to
uncoordinated exploration. Firstly, a robot might choose the
same exploration viewpoint selected by other robots or, at
least, the map’s region that a robot can sense might overlap
the sensed regions by other robots. Secondly, there is also
intrinsic interference among robots, which arises when another
robot appears in the path of a given moving robot, or when
the robot’s sensor is occluded due to the presence of another
robot in its sensory field.

A. Robot’s visibility

Consider a robot and its pose Y = (x, a), which includes
its position x ∈ R

3 and orientation a = {θ, φ, ψ}. The angles
θ, φ and ψ are the yaw angle, the pitch angle and the roll
angle, respectively, and are assumed to be positive in the
counterclockwise direction. We denote as the robot’s visibility
the maximum volume the robot can sense upon its current
pose (Fig. 2). Given the maximum range distance r and the
maximum angle α with the heading p̂ of the robot’s sensor,
the robot’s visibility V(x, a, r, α) ⊂ R

3 is a region defined as



Fig. 2. Robot’s visibility represented in 2-D: it is the light-grey shaded region
computed upon the maximum range distance r and the maximum angle α
with the heading p̂. Both parameters r and α change dynamically with the
surrounding environment and, thus, the robot’s visibility is smaller than the
potential sensor’s range (dark-grey shaded region).

the continuous set of points:

V(x,a, r, α) = {y ∈ R
3 :‖y − x‖ ≤ r,

0 ≤ arccos
(

(y − x) · p̂
‖y − x‖

)
≤ α},

(12)
with

p̂ = [cos θ. cosφ, sin θ. cosφ,− sinφ]T . (13)

As Fig. 2 shows, the robot’s visibility is obviously limited
by the sensor’s intrinsic nature and its limitations, but it is also
limited by the environment surrounding the robot. Whether the
robot is currently exploring a wide open area or a narrower
space, the robot’s visibility is also dynamically conditioned by
the presence of obstacles in front of the sensor, which hide the
space behind them and reduce the sensor’s intrinsic range. In
order to dynamically adapt the robot’s visibility, we use the
latest sensor data to estimate r and α. Given the latest batch
of mk measurements Mk = (x,Vk), the robot’s visibility
parameters are estimated as:

(r̂, α̂) =

(
1
mk

mk∑
i=1

‖−→v k,i‖, max
i

[
arccos

(−→v k,i · p̂
‖−→v k,i‖

)])
.

(14)

B. Visible maps and mutual information

Consider the fleet F = {1, . . . , n} of n robots performing
a 3-D mapping mission and one of the robots in the team
i ∈ F . Its visibility Vi = V(xi,ai, ri, αi) ⊂ R

3 represents
a sub region of the environment that robot i is able to
sense and, thus, measurements gathered from its current pose
Yi = (xi,ai) will only influence its knowledge about that sub
region. That sub region refers to the subset of voxels

Zi = {l ∈ Y : w(l) ∈ V(xi,ai, ri, αi)} ⊂ Y. (15)

We denote as the robot’s visible map the subset of coverage
random variables

Ci = {Cl, l ∈ Zi} ⊂ C, (16)

which models the robot’s knowledge about the visible sub
region defined by the voxels l ∈ Z i. Restricting the sum in

(11) to the set of voxels Z i, the joint entropy of the robot’s
visible map is

H(Ci) =
∑
l∈Zi

H(Cl) < H(C), (17)

where the inequality means that the robot’s visible map covers
less uncertainty than the global map’s uncertainty.

The other robots in the fleet F\i cover the set of voxels

Wi =
⋃

j∈F\i

Zj ⊆ Y (18)

and have a joint visible map T i with joint entropy

H(T i) =
∑

l∈Wi

H(Cl) ≤ H(C). (19)

The fleet covers the set of voxels W = Z i ∪ Wi and has a
joint visible map T = C i ∪ T i. Using equation (6), the joint
entropy of the team’s visible map is given by

H(T ) = H(Ci) +H(T i) − I(Ci; T i), (20)

which measures the uncertainty being covered by the team.
Since both sets of coverage random variables C i and T i are
subsets of Y , which is a set of independent random variables,
the mutual information I(C i; T i) between the robot’s visible
map and the joint visible map of the other robots is given
by equation (9): it is null if the robot’s visible map does not
overlap with the other robots’ visible maps; otherwise, it is the
sum of the entropy of the voxels belonging to the overlapping.

C. Multi-robot exploration strategy

In an exploration mission, the objective is to acquire as
much new information about the environment as possible with
every sensing cycle. Intuitively, this is equivalent to select new
regions to explore so that the robot’s sensor covers as much
uncertainty as possible. That’s why the method proposed in
[15], [16] aims at maximizing the visible map joint entropy
H(Ci) of each single robot i ∈ F . However, with multiple
robots, the goal of each a robot i ∈ F is to contribute to
the maximization of the map’s uncertainty H(T ) covered
by the team. As equation (20) shows, this is a twofold
goal: to maximize the joint entropy of its own visible map
H(Ci), likewise in the single robot case; and to avoid the
overlapping with the other robots’ visible maps so that the
mutual information I(C i; T i) is minimized (see Fig. 3).

Considering a given robot i ∈ F , our exploration method
selects the best voxel from a subset of Y in its neighborhood,
by computing entropy gradient, visible map’s mutual infor-
mation, reachability and occlusions due to other robots. We
assume that, whenever a robot j ∈ F selects a new pose
Y s

j = (xs
j , a

s
j), all the other robots in the team F\j are

informed through direct communication about its new selected
pose and its current range parameters rj and αj , i.e. they
receive the tuple (Y s

j , rj , αj). This minimal communication
enables each robot i ∈ F to compute the mutual information
I(Ci; T i) between its visible map C i and the joint visible map
of the rest of the team F\i.



Fig. 3. Example showing visible maps with 3 robots i, j and k. The mutual
information I(Ci;T i) > 0 decreases the team’s visible map joint entropy,
i.e. the team covers a smaller part of the map’s uncertainty H(C).

1) Subset of voxels in the robot’s neighborhood: As we are
mainly interested on ground mobile robots, whose sensor’s
motion is instantaneously restricted to a plane Γ parallel to
the robot’s motion plane (e.g. the floor plane), voxels near
to plane Γ are preferable to be explored. Consider the current
robot’s pose3 Y = (x,a), being x its current position and a =
{θ, φ, ψ} its orientation. Given a robot’s coordinates frame
{R}, equal to the global (absolute) coordinates frame {W}
after translation and rotation, the robot’s sensor motion plane
Γ is defined by two orthogonal axes: a longitudinal axis p̂′ =
[1, 0, 0]T , which is the unitary vector along xx axis, and a
transverse axis q̂′ = [0, 1, 0]T , which is the unitary vector
along yy axis; for example, for an UAV, p̂ would be the axis
between tail and head, and q̂ would be the axis connecting the
wings. It can be shown that robot’s axes can be expressed in a
robot’s coordinates frame {Rr}, equal to {W} after translation
but without rotation, where p̂ is given by equation (13) and

q̂ =


 cos θ. sinφ. sinψ − sin θ. cosψ

sin θ. sinφ. sinψ + cos θ. cosψ
cosφ. sinψ


 , (21)

Any vector −→u can be projected on the robot’s sensor motion
plane Γ as

proj
Γ

−→u = (−→u · p̂)p̂ + (−→u · q̂)q̂. (22)

Let denote the applied vector connecting the robot’s position
x ∈ R

3 to the center of voxel l as

−→u (x, l) = w(l) − x. (23)

The new robot’s selected position is selected as the center of
a voxel from the set of voxels

NΓ(x, r) = {l ∈ Y, ‖−→u (x, l)‖ ≤ r, l = v(proj
Γ

w(l))},
(24)

in the neighborhood defined by current robot’s position x and
range r.

3Hereafter, the expression robot’s pose shall be interpreted as the more
accurate expression robot’s sensor pose.

2) Entropy gradient: The 3-D grid Y discretises the 3-
D workspace R

3 at discrete points w(l), l ∈ Y , equally
spaced by ε (the voxel’s edge). The 3-D map enables us
to associate with each of these points an entropy H(l) =
H(Cl) given by equation (10), therefore we might say that
a continuous entropy field H : R

3 → R is sampled along the
voxels’ centers belonging to the grid Y . Our volumetric model
assumes that each edge of any voxel l ∈ Y is aligned with
one of the axes (xx, yy or zz) of the global coordinates frame
{W}. Let lΘ− denote the contiguous voxel to l in the negative
direction of axis Θ. A reasonable (first order) approximation
to the voxel’s entropy gradient at the center of a voxel l is

−→∇H(l) ≈ 1
ε
[H(l)−H(lx−), H(l)−H(ly−), H(l)−H(lz−)]T .

(25)
The projection of the voxel’s entropy gradient on the robot’s
sensor motion plane Γ is

−→∇HΓ(l) = proj
Γ

−→∇H(l), (26)

with magnitude
∥∥∥−→∇HΓ(l)

∥∥∥. Given that the maximum value of
discrete entropy is the number of histogram bins b in equation
(10), and given the gradient approximation yielded by equation
(25), the gradient magnitude can be normalized to the interval
[0, 1] as ∥∥∥−→∇HΓ(l)

∥∥∥
N

=
ε√

2 log2 b

∥∥∥−→∇HΓ(l)
∥∥∥. (27)

If the center of a voxel l ∈ NΓ(x, r) is selected to be
the next robot’s selected position xs, our method claims that
the robot should select the gaze direction a(l) defined by the
unitary vector

p̂(l) =
−→∇HΓ(l)∥∥∥−→∇HΓ(l)

∥∥∥ ,
−→∇HΓ(l) �= −→

0 . (28)

3) Visible map’s mutual information: Before a robot i ∈ F
selects its new pose, it can compute the other robots’ visibility
through equation (12), because, as it was already mentioned,
the robot knows (Y s

j , rj , αj), ∀j∈F\i. Then, using equations
(18) and (19), that robot can compute, respectively, the set W i

of visible voxels by the other robots, their joint visible map
T i and the joint entropy H(T i).

Now consider any voxel l ∈ NΓ(x, r) whose center w(l) is
a candidate point to the robot’s next selected position xs, being
the new sensor’s gaze a(l) determined through equation (28).
Hereafter, this robot’s pose is denoted as Y l = (w(l),a(l)).
The current range parameters r and α of the robot’s sensor de-
fine a visibility region V(w(l), a(l), r, α), computed through
equation (12). Using equations (15), (16) and (17), the robot
computes the visible voxels Z i(Y l), the visible map C i(Y l)
and the visible map’s joint entropy H(C i(Y l)), when its pose
is Y l. Then the mutual information I(C i(Y l); T i) between the
visible map from that voxel and the other robots’ joint visible
map can be computed through equation (9), being equal to the



joint entropy of the intersection voxels Z i(Y l)∩Wi. The non-
redundancy coefficient for a candidate voxel is the function
λ : Y →]0, 1], defined as

λ(l) = exp
[
−1
ξ
I(Ci(Y l); T i)

]
, (29)

where ξ is a scale factor.
4) Reachability: Assuming by simplicity that the robot’s

path between two consecutive exploration viewpoints is a
straight line, the reachability of a given voxel is a function
of how much covered are the voxels traversed by the robot
when moving its sensor from current pose Y = (x,a) to pose
Y l. These voxels may be either occupied with obstacles in
the environment or other robots. Being O(Y, Y l) the traversed
voxels by the robot and OF\i the voxels occupied by the rest
of the team F\i, the reachability of a voxel l ∈ NΓ(x, r) is

ρ(x, l) =




min
m∈O(Y,Y l)

[1 − E(Cm)], O(Y, Y l) ∩ OF\i = ∅

0, otherwise
.

(30)
taking values between 0 (invalid path) and 1 (path completely
clear of obstacles).

5) Occlusions due to other robots: The presence of other
robots within the robot’s visibility region yields undesirable
occlusions and interference. Using equation (15), the robot
computes the visible voxels Z i(Y l) when its sensor’s pose is
Y l. Let denote as −→u (Y1, Y2) the vector connecting the center
of mass of a robot whose sensor’s pose is Y1 to the center of
mass of another robot whose sensor’s pose is Y2. The non-
interference coefficient is the function η : Y → [0, 1], which
we define as

η(l) = min
j∈F

{‖p̂(l)×−→u (Y l,Y s
j )‖

r , j �= i ∧ Zi(Y l) ∩ Oj(Y s
j ) �= ∅

1, otherwise,
(31)

where Oj(Y s
j ) denotes the set of voxels occupied by robot j,

located in its current selected pose Y s
j .

6) Cost factor: If we want to reduce the traveled distance
during exploration, it is also important to consider the cost
associated with each candidate voxel l ∈ NΓ(x, r), which is
the distance ‖−→u (x, l)‖ between current robot’s position x and
the center of the candidate voxel l. We define the cost factor
as the function ϑ : R

3 × Y → [0, 1], whose expression is

ϑ(x, l) =
‖−→u (x, l)‖

r
. (32)

7) Determination of the robot’s next viewpoint: Accord-
ingly with our exploration strategy, given the set of voxels
NΓ(x, r) in the robot’s neighborhood, the robot is directed to
the voxel

ls = argmax
l∈NΓ(x,r)

(∥∥∥−→∇HΓ(l)
∥∥∥

N
.λ(l).ρ(x, l).η(l) − κ.ϑ(x, l)

)
.

(33)
with a gaze on arrival defined by the unitary vector p̂(ls),
computed through equation (28). In the argument of equation
(33), the left term measures utility and the right term measures
cost, being κ a cost sensitivity coefficient.

Fig. 4. Robots used in the experiments: (a) Scout mobile robots from
Nomadic Technologies (top), equipped with stereo-vision sensors (bottom)
and wireless communication; (b) example of a stereo image pair (top) and its
respective disparity map (bottom-left) and depth map (bottom-right).

VI. EXPERIMENTS WITH REAL ROBOTS

The 3-D mapping framework presented in previous sections
has been used for carrying out experiments with two real
mobile robots in our lab. The mobile robots (see Fig. 4-a) are
Scout robots from Nomadic Technologies, having differential
kinematics, odometry sensing and sonars. We mounted on the
top of both robots a stereo-vision sensor and a modem radio
providing wireless TCP/IP communication. Each stereo-vision
sensor (see bottom of Fig. 4-a) is a small, compact, low-
cost analog stereo rig from Videre Design, with resolution
160x120 pixels. For computing range data from stereo images,
we use the Small-Vision System (SVS) v2.3c, a stereo engine
from SRI International, which implements an area correla-
tion algorithm for computing range from stereo images, and
supports camera calibration, 3-D reconstruction and effective
filtering. See Fig. 4-b for an example of a depth map yielded
by the SVS engine. Each robot has a ring of 16 Polaroid
6500 sonar ranging modules, which were used for avoiding
obstacles when moving the platform, and for preventing the
robot to acquire stereo image pairs below a given distance
threshold to obstacles.

Fig. 5 depicts a diagram of the software that was built to
implement the distributed architecture model of Fig. 1, which
is easily scalable to a team having an arbitrary number of
robots. There is a host PC for supervision, wherein the user can
control the mission execution (e.g. start, pause, restore, stop,
etc.) and get access to robots’ data (e.g. robots’ individual
maps, log data, etc.). The host PC is also responsible for
providing global localization to the team of robots, through
a color segmentation algorithm that detects colored markers
on the top of the robots’ platforms (see Fig. 4-a).

A. Results

Fig. 6 shows results obtained within an experiment with
the two Scout robots. The mission was to build a 3-D map
of a volume in our lab with approximate dimensions 4.1m
x 4.4m x 0.7m. This volume of approximately 12.6m3 was
limited by the floor and existing walls. As the robots’ motion
was restricted to the floor plane, the upper limit of 0.7m was
imposed by the robots’ stereo-vision sensors, which had a
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Fig. 5. Diagram of the implemented software in real robots: (a) interaction
between the team of robots and a host PC used for supervising 3-D mapping
missions and localizing the robots through a global camera; (b) software
modules for 3-D mapping, running locally on each robot.

vergence of approximately 12 degrees towards the floor. The
entropy of the initial map was H(C | M0) = 129360 bits.

The five rows of Fig. 6 represent the map’s status of a
robot along the mission, at five different instant times tk with
decreasing values of the map’s entropy H(C | Mk). In each
row, it is represented in the left column the current 3-D map
relative to the world reference frame {W} (red referential), in
the middle column the current robot’s sensor pose and its next
exploration viewpoint, and in the right column a graph of the
entropy gradient magnitude

∥∥−→∇HΓ(l)
∥∥

N
as a function of the

xy coordinates of the voxels’ center, for voxels l that belongs
to the robot’s sensor motion plane Γ, i.e. voxels that obey
the condition l ∈ Y ∧ l = v(proj

Γ
w(l)). The middle column

also shows a blue polyline drawn in the floor plane, whose
vertexes indicate the sequence of the robot’s positions since
the beginning of the mission. Comparing the left and right
columns, we observe that voxels located at frontiers between
explored and unexplored regions have higher values of entropy
gradient. Due to equation (33), we can see in the middle and
right columns that the robot usually chooses a voxel in its
neighborhood with maximum entropy gradient, which yields
a robot’s visible region with high uncertainty (entropy) and
thus high expected information gain. As we can observe in
the left column, the entropy gradient-based method converges
to a map with lower uncertainty as time tk increases.

In the experiment of figure 6, the robots used the coordi-
nated exploration method presented in this article. The exper-
iment was repeated with the uncoordinated version reported
in [15], [16]. Comparing both methods, we concluded that
the coordinated exploration method: (1) yielded a reduction
of 13.4% in the time required by the team to perform the
mission; (2) and reduced that time from 72.1% [15], [16] to
only 62.4% of the time needed by a single robot.

VII. CONCLUSION

This article presented a 3-D mapping distributed architecture
model for a team of cooperative mobile robots, which enables

to share efficiently sensory data and coordinate the exploration,
using minimal communication. An exploration method was
proposed whereby each robot selects exploration viewpoints
with high entropy gradient, located in the frontier between
explored and unexplored regions. Moreover, in order to coordi-
nate exploration, each robot minimizes the mutual information
between its visible map and the other robots’ visible map,
and also the interference with other robots, so that robots
explore different map’s regions and the map’s uncertainty is
decreased as fast as possible. Results obtained with real robots
equipped with stereo-vision demonstrated that the entropy
gradient-based method nicely converges to a map with lower
uncertainty. The presented work is being extended with further
experiments to better demonstrate the improvement of team’s
performance due to the coordination yielded by the proposed
exploration method.
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Fig. 6. Results obtained within an experiment with two Scout robots. The five rows represent the map’s status of a robot at different instant times tk with
decreasing values of the map’s entropy H(C | Mk). The left column depicts a VRML model of current 3-D map in the world reference frame (red referential).
The middle column shows the current robot’s sensor pose – orange arrow – and its next exploration viewpoint – green arrow – within the volume being
explored. The arrows’ origin indicates position and their direction indicates orientation. The middle column also shows a blue polyline drawn in the floor
plane, whose vertexes indicate the sequence of the robot’s positions since the beginning of the mission. The right column depicts a graph of the normalized
entropy gradient magnitude of voxels belonging to the sensor’s motion plane Γ as a function of the voxels’ center xy coordinates (expressed in millimeters).
The orange and green arrows point to the current position of robot’s sensor and its next exploration point, respectively. The scale of the pictures in the left
and middle columns is such that each represented arrow (red, orange or green) is equivalent to a real length of 1 meter.


