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Abstract. In this text we will present a novel solution for active percep-
tion built upon a probabilistic framework for multimodal perception of
3D structure and motion — the Bayesian Volumetric Map (BVM). This
solution applies the notion of entropy to promote gaze control for active
exploration of areas of high uncertainty on the BVM so as to dynami-
cally build a spatial map of the environment storing the largest amount
of information possible. Moreover, entropy-based exploration is shown to
be an efficient behavioural strategy for active multimodal perception.

1 Introduction

Perception has been regarded as a computational process of unconscious, prob-
abilistic inference. Aided by developments in statistics and artificial intelligence,
researchers have begun to apply the concepts of probability theory rigorously
to problems in biological perception and action. One striking observation from
this work is the myriad ways in which human observers behave as near-optimal
Bayesian observers, which has fundamental implications for neuroscience, par-
ticularly in how we conceive of neural computations and the nature of neural
representations of perceptual variables [1].

Consider the following scenario — an observer is presented with a non-static
3D scene containing several moving entities, probably generating some kind of
sound: how does this observer perceive the 3D structure of all entities in the scene
and the 3D trajectory and velocity of moving objects, given the ambiguities
and conflicts inherent to the perceptual process? Given these considerations,
the research presented on this text regards a Bayesian framework for artificial
multimodal perception models.

In this text we will present a novel solution for active perception built upon a
probabilistic framework for multimodal perception of 3D structure and motion —
the Bayesian Volumetric Map, a metric, egocentric spatial memory. This solution
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Fig. 1. View of the first version of the Integrated Multimodal Perception Experimental
Platform (IMPEP), on the left. On the right, the IMPEP perceptual geometry is shown:
{E} is the main reference frame for the IMPEP robotic head, representing the egocen-
tric coordinate system;{Cl,r} are the stereovision (respectively left and right) camera
referentials; {Ml,r} are the binaural system (respectively left and right) microphone
referentials; and finally {I} is the inertial measuring unit’s coordinate system.

Fig. 2. On the left: typical application context of the IMPEP active perception system.
On the right, a perspective of the current version of the IMPEP active perception head,
which adds vergence capabilities to the stereovision system besides improved motor
control and conditioning.

applies the notion of entropy to promote gaze control for active exploration of
areas of high uncertainty on the BVM so as to dynamically build a spatial map
of the environment storing the largest amount of information possible.

To support our research work, an artificial multimodal perception system (IM-
PEP — Integrated Multimodal Perception Experimental Platform) has been
constructed at the ISR/FCT-UC consisting of a stereovision, binaural and in-
ertial measuring unit (IMU) setup mounted on a motorised head, with gaze
control capabilities for image stabilisation and perceptual attention purposes —
see Figs. 1 and 2. This solution will enable the implementation of an active per-
ception system with great potential in applications as diverse as social robots or
even robotic navigation (Fig. 2).
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Fig. 3. Egocentric, log-spherical configuration of the Bayesian Volumetric Maps

2 Bayesian Volumetric Maps for Multimodal Perception

2.1 Volumetric Map Spatial Configuration Definition

Metric maps are very intuitive, yield a rigorous model of the environment and
help to register measurements taken from different locations. Grid-based maps
are the most popular metric maps in mobile robotics applications. One of the
most popular grid-based maps is the occupancy grid, which is a discretised ran-
dom field where the probability of occupancy of each cell is kept, and the prob-
ability values of occupancy of all cells are considered independent between each
other [2]. The absence of an object based representation permits the ease of fus-
ing low level descriptive sensory information onto the grids without necessarily
implicating data association.

We have developed a log-spherical coordinate system grid (see Fig. 3) that
promotes an egocentric trait and yields more precision for objects closer to the
observer, which seems to agree with biological perception.

This spatial configuration is primarily defined by its range of azimuth and
elevation angles, and by its maximum reach in distance ρMax, which in turn
determines its log-distance base through b = a

loga(ρMax−ρMin)
N , ∀a ∈ R, where ρMin

defines the egocentric gap, for a given number of partitions N , chosen according
to application requirements. This space is therefore effectively defined by

Y ≡ ] logb ρMin; logb ρMax] × ]θMin; θMax] × ]φMin; φMax] (1)

In practice, this grid is parametrised so as to cover the full angular range for
azimuth and elevation.

Each cell of the grid is defined by two limiting log-distances, logb ρmin and
logb ρmax, two limiting azimuth angles, θmin and θmax, and two limiting elevation
angles, φmin and φmax, through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax] × ]θmin; θmax] × ]φmin; φmax] (2)

where constant values for log-distance base b, and angular ranges Δθ = θmax −
θmin and Δφ = φmax − φmin, chosen according to application resolution re-
quirements, ensure grid regularity. Finally, each cell is formally indexed by the
coordinates of its far corner, defined as C = (logb ρmax, θmax, φmax).
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Relevant variables:
C ∈ Y: indexes a cell on the BVM;
AC : identifier of the antecedents of cell C (stored as with C);
Z1, · · · , ZS ∈ {“No Detection”} ∪ Z: independent measurements taken by S sensors;

OC , O
−1
C ∈ O ≡ {0, 1}: binary values describing the occupancy of cell C,

for current and preceding instants, respectively;
VC : velocity of cell C,

discretised into n possible cases ∈ V ≡ {v1, · · · , vn}.
Decomposition:

P (C AC OC O
−1
C VC Z1 · · ·ZS) =

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )
S∏

i=1

P (Zi|VC OC C)

Parametric forms:
P (AC): uniform;
P (VC |AC): histogram;
P (C|VC AC): Dirac, 1 iff clogb ρ = alogb ρ + vlogb ρδt, cθ = aθ + vθδt and cφ = aφ + vφδt)

(constant velocity assumption);

P (O−1
C |AC): probability of preceding state of occupancy given set of antecedents;

P (OC |O−1
C ): defined through transition matrix T =

[ 1−ε ε
ε 1−ε

]
,

where ε represents the probability of non-constant velocity;
P (Zi|VC OC C): direct measurement model for each sensor i, given by respective sub-BP.

Identification:
None.

Questions:

P (Oc Vc|z1 · · · zS c) →
{

P (Oc|z1 · · · zS c)
P (Vc|z1 · · · zS c)

Fig. 4. Bayesian Program for the estimation of Bayesian Volumetric Map current cell
state

2.2 Using Bayesian Filtering for Visuoauditory Integration

We have developed a novel probabilistic, volumetric occupancy grid framework
called the Bayesian Volumetric Map (BVM), which is defined in the Bayesian
Program presented in Fig. 4, a formalism created by Lebeltel [3] to supersede,
restate and compare numerous classical probabilistic models such as Bayesian
Networks (BN), Dynamic Bayesian Networks (DBN), Bayesian Filters, Hidden
Markov Models (HMM), Kalman Filters, Particle Filters, Mixture Models, or
Maximum Entropy Models. The BVM is based on the solution presented by Tay
et al. [4] called the Bayesian Occupancy Filter (BOF), adapted so as to conform
to the BVM egocentric, three-dimensional and log-spherical nature.

The estimation of the joint state of occupancy and velocity of a cell is an-
swered through Bayesian inference on the decomposition equation given in Fig.
4. This inference effectively leads to the Bayesian filtering formulation as used
in the BOF grids — see Fig. 5. In this context, prediction propagates cell occu-
pancy probabilities for each velocity and cell in the grid — P (OC VC |C). Dur-
ing estimation, P (OC VC |C) is updated by taking into account the observations
yielded by the sensors

∏S
i=1 P (Zi|VC OC C) to obtain the final state estimate
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Observation

Fig. 5. Bayesian filtering for the estimation of occupancy and local motion distributions
in the BVM. The schematic considers only a single measurement for simpler reading,
with no loss of generality.

P (OC VC |Z1 · · · ZS C). The result from the Bayesian filter estimation will then
be used for the prediction step in the next iteration.

2.3 Using the BVM for Sensory Combination of Vision and
Audition with Vestibular Sensing

Consider the simplest case, where the sensors may only rotate around the ego-
centric origin and the whole perceptual system is not allowed to perform any
translation. In this case, the vestibular sensor models will yield measurements of
angular velocity and position, which can then be easily used to manipulate the
BVM, which is, by definition, in spherical coordinates.

To maintain a head-centred coordinate system for the BVM, which would
obviously shift in accordance to head turns, instead of rotating the whole map,
the most effective solution is to perform the equivalent index shift. This process
is described by redefining C: C ∈ Y indexes a cell in the BVM by its far corner,
defined as C = (logb ρmax, θmax − θinertial, φmax − φinertial) ∈ C ⊂ Y.

This process obviously relies on the assumption that inertial precision on
angular measurements is greater than the chosen resolution parameters for the
BVM.

2.4 Sensor Models

Our motivations suggest for the vision sensor model a tentative data structure
analogous to neuronal population activity patterns to represent uncertainty in
the form of probability distributions — a spatially organised 2D grid has each
cell associated to a population code simulation, a set of probability values of
a neuronal population encoding a probability distribution [5]. The stereovision
algorithm used for visual depth sensing is an adaptation of the fast and sim-
ple coherence detection approach by Henkel [6], yielding an estimated disparity
map δ̂(k, i) and a corresponding confidence map λ(k, i). For visual perception
of occupancy, this stereovision sensor described can be decomposed into simpler



374 J.F. Ferreira, C. Pinho, and J. Dias

COCGCZ

Fig. 6. Bayes network corresponding to the Bayesian Program for the vision sensor
model. Variables and distributions other than the ones already defined on the Bayesian
Program of Fig. 4 are presented below the diagram.

linear (1D) depth ρ(k, i) measuring sensors per projection line/pixel (k, i), each
oriented in space with spherical angles (θ(k, i), φ(k, i)).

This algorithm is then easily converted from its deterministic nature into a
probabilistic implementation simulating the population code-type data struc-
ture. This results in probability distributions on sensor measurements made
available as likelihood functions taken from sensor readings — soft evidence,
or “Jeffrey’s evidence” in reference to Jeffrey’s rule [7]; the relation between vi-
sion sensor measurements Z and the corresponding readings δ and λ is thus
described by the calibrated expected value ρ̂(δ̂) and standard deviation σρ(λ)
for each sensor, defined later on.

We have decided to model these sensors in terms of their contribution to
the estimation of cell occupancy in a similar fashion to the solution proposed
by Yguel et al. [8] — see the Bayesian Program presented on Fig. 6. The an-
swer to the Bayesian Program question in order to determine the sensor model
P (Z|OC C) for vision, which is in fact related to the decomposition of interest
P (OC Z C) = P (C)P (OC |C)P (Z|OC C), is answered through Bayesian infer-
ence on the decomposition equation; the inference process will dilute the effect
of the unknown probability distribution P (GC |OC C) through marginalisation
over all possible states of GC . In other words, the resulting direct model for
vision sensors is based solely on knowing which is the first occupied cell on the
line-of-sight and its relative position to a given cell of interest C.

Given the first occupied cell [C = k] on the line-of-sight, the likelihood func-
tions yielded by the population code data structure become

Pk(Z) = Lk(Z, μρ(k), σρ(k)),

{
μρ(k) = ρ̂(δ̂)
σρ(k) = 1

λσmin

(3)

with σmin and ρ̂(δ̂) taken from calibration, the former as the estimate of the
smallest error in depth yielded by the stereovision system and the latter from
the intrinsic camera geometry. The likelihood function constitutes, in fact, the
elementary sensor model as defined above for each vision sensor.
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Fig. 7. On the left: the IMPEP Bayesian binaural system. On the right: schematic of
a typical auditory sensor space configuration defined during calibration.

We have adapted Yguel et al.’s Gaussian elementary sensor model so as to
additionally perform the transformation to distance log-space, as follows

Pk([Z = z]) =⎧⎪⎪⎨
⎪⎪⎩

∫
]−∞;1] N (μ(k − 0.5), σ(σρ))(u)du, z ∈ [0; 1]∫ �z	+1
�z	 N (μ(k − 0.5), σ(σρ))(u)du, z ∈ ]1; N ]∫
]N ;+∞] N (μ(k − 0.5), σ(σρ))(u)du, z = “No Detection”

(4)

where μ(•) and σ(•) are the operators that perform the required spatial coordi-
nate transformations, and k = �μρ� is assumed to be the log-space index of the
only occupied cell in the line-of-sight, which represents the coordinate interval
]k − 1; k].

As for the audition sensor model, it is built upon a binaural sensor system
composed of three distinct and consecutive processors (Fig. 7): the monaural
cochlear unit, which processes the pair of monaural signals {x1, x2} coming from
the binaural audio transducer system by simulating the human cochlea, so as to
achieve a tonotopic representation (i.e. a frequency band decomposition) of the
left and right audio streams [9]; the binaural unit, which correlates these signals
and consequently estimates the binaural cues and segments each sound-source;
and, finally, the Bayesian 3D sound-source localisation unit, which applies a
Bayesian sensor model so as to perform localisation of sound-sources in 3D space.
A full description together with preliminary results have been presented in [10].

To process the inertial data, we adapted the Bayesian model proposed by
Laurens and Droulez [11] for the human vestibular system. The aim is to provide
an estimate for the current angular position and angular velocity of the system,
that mimics human vestibular perception.
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Fig. 8. Active multimodal perception using entropy-based exploration. Only the
Bayesian models for multimodal perception and the entropy-based exploration algo-
rithm implemented by the gaze computation module are described herewith; the gaze
control module is beyond the scope of this text.

3 Active Multimodal Perception Using Entropy-Based
Exploration

Active perception has been an object of study in robotics for decades now, spe-
cially active vision, which was first introduced by Bajcsy et al. [12] and later
explored by Aloimonos et al. [13]. Many perceptual tasks tend to be simpler if
the observer is active and controls its sensors [13]. Active perception is thus an
intelligent data acquisition process driven by the measured, partially interpreted
scene parameters and their errors from the scene. The active approach has the
important advantage of making most ill-posed perception tasks tractable [13].
Moreover, the research of behavioural strategies to implement active perception
as efficiently as possible is a very important research topic.

The availability of a probabilistic framework to implement spatial mapping
of the environment substantiated by the BVM allows the use of the concept of
information entropy, which can be used to promote an exploratory behaviour of
areas of the environment corresponding to cells on the volumetric map associated
to high uncertainty, an idea recently explored by Rocha et al. [14,15].

Information in the BVM is stored as the probability of each cell being in a
certain state, defined in the BP of Fig. 5 as P (Vc Oc|z c). The state of each cell
thus belongs to the state-space O×V . The joint entropy of the random variables
VC and OC that compose the state of each BVM cell [C = c] is defined as follows:

H(c) ≡ H(Vc, Oc) = −
∑

oc∈O
vc∈V

P (vc oc|z c) log P (vc oc|z c) (5)

The joint entropy value H(c) is a sample of a continuous joint entropy field
H : Y → R, taken at log-spherical positions [C = c] ∈ C ⊂ Y. Let cα− denote
the contiguous cell to C along the negative direction of the generic log-spherical
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axis α, and consider the edge of cells to be of unit length in log-spherical space,
without any loss of generality. A reasonable first order approximation to the
joint entropy gradient at [C = c] would be

−→∇H(c) ≈ [H(c) − H(cρ−), H(c) − H(cθ−), H(c) − H(cφ−)]T (6)

with magnitude ‖−→∇H(c)‖.
A great advantage of the BVM over Cartesian implementations of occupancy

maps such as the one presented on [14,15] is the fact that the log-spherical
configuration avoids the need for time-consuming ray-casting techniques when
computing a gaze direction for active exploration, since the log-spherical space
is already defined based on directions (θ, φ). Hence, the active exploration algo-
rithm is simplified to the completion of the following steps:

1. Find the last non-occluded, close-to-empty (i.e. P ([OC = 1]|[C = c]) < .5)
cell for the whole span of directions (θmax, φmax) in the BVM — these are
considered to be the so-called frontier cells as defined on [14,15]; the set of
all frontier cells will be denoted here as F ⊂ C.

2. Compute the joint entropy gradient for each of the frontier cells and select
cs = arg maxc∈F

[
(1 − P ([OC = 1]|[C = c]))‖−→∇H(c)‖

]
as the best candidate

cell to direct gaze to. In case there is more than one global maximum, choose
the cell corresponding to the direction closest to the current heading (i.e.
(θmax, φmax) = (0, 0), so as to ensure minimum gaze shift rotation effort.

3. Compute gaze direction as being (θC , φC), where θC and φC are the angles
that bisect cell [C = cs] (i.e. which pass through the geometric centre of cell
cs in Cartesian space).

The full BVM entropy-based active perception system is described by the
block diagram presented in Fig. 8.

4 Conclusions

In this text we have presented a novel solution for active perception built upon a
probabilistic framework for multimodal perception of 3D structure and motion
— the Bayesian Volumetric Map (BVM), a metric, egocentric spatial memory.
This solution applies the notion of entropy to promote gaze control for active
exploration of areas of high uncertainty on the BVM so as to dynamically build
a spatial map of the environment storing the largest amount of information
possible. Moreover, entropy-based exploration was shown to be an efficient be-
havioural strategy for active multimodal perception.

Further details on the calibration and implementation of these models on
the Integrated Multimodal Perception Experimental Platform can be found at
http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception.

http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
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