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Abstract— In this work, we introduce adaptive tracking sys-
tem for quadrotor flying vehicle in the presence of uncertainty.
The uncertainty is assumed to be associated with the vehicles
payload mass, inertia matrix, actuator faults, and aerodynamic
damping force-moment effects and flying environment. The
control input combines desired acceleration and proportional-
derivative(PD) like auxiliary signals with an adaptation law
to learn and compensate uncertainty. Lyapunov method is
employed to analyze the closed loop stability of the translational
and rotational dynamics of the vehicle. This analysis shows that
the tracking error of the translational and rotational dynamics
are bounded to zero. Simulation results on a quadrotor vehicle
are presented to demonstrate the effectiveness of theoretical
arguments of this paper.

I. INTRODUCTION

In recent years, the use of small scale quadrotor un-
manned aerial vehicle (UAV) is growing in military and
civilian applications, such as, surveillance, inspection, search
and rescue mission in dangerous or awkward environments
that are inaccessible for human intervention. In practice,
accurate autonomous flight tracking system design for such
small scale quadrotor vehicle capable of flying in uncertain
environment against uncertainty is challenging because of
its underactuated property, coupling between translational
and rotational dynamics and nonlinearity associated with the
kinematic and dynamical model. Various automatic control
methods for quadrotor UAV have been proposed in the
literature to achieve desired control stability and tracking
performance. These existing results can be classified into two
categories as model based linear control and partial model
based nonlinear control methods. Classical proportional-
integral-derivative (PID) and linear quadratic regulator type
controllers were proposed in [2, 3, 4]. In [5, 6, 7], authors
used backstepping control technique to address the problem
of nonlinear coupling between translational and rotational
kinematic and dynamical model of the vehicle. To reduce the
steady state tracking errors, authors in [8, 9, 10] included
an additional integral action term with the backstepping
algorithm [5, 6, 7]. Recently, model based dynamic inversion
mechanism have proposed in [11] to achieve hovering flight
of the quadrotor UAV system. The existing linear algorithms
were designed only for acheiving simple hovering flight
control strategy by assuming that the miodel of the vehicle
is known a priori. As a result, these linear designs may not
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be able to achieve desired control stability and tracking per-
formance in the presence of modeling errors and disturbance
uncertainties.
Most recent research efforts have been focused on adaptive
design to deal with the modeling error uncertainty. Sliding
mode technique was applied in [12] to guarantee the stability
of the attitude dynamics of the quadrotor UAV vehicle. In
[13], authors designed nonlinear control law to guarantee
the tracking errors of the linear position and yaw angle of
the quadrotor UAV system against a priori known distur-
bance uncertainty. Adaptive backstepping technique was also
applied for quadrotor UAV system against modeling error
uncertainty in [14, 15].
In this paper, we develop adaptive flight control strategy
for quadrotor UAV system to deal with modeling errors
and disturbance uncertainty. The proposed design allows the
vehicle to fly in uncertain flying environment against the
variation of the mass, inertia, actuator faults and nonlinear
aerodynamic damping force-moment effects. The altitude,
virtual position and attitude controller combines damping and
PD like linear control terms with adaptive and robust control
terms. Adaptive controller learns and compensates paramet-
ric uncertainty associated with the vehicle’s model while
robust adaptive control deals with the bounded external dis-
turbance uncertainty. The control algorithm and convergence
analysis is designed by using Lyapunov second method. It
shows that the tracking errors of the altitude, position and
orientation are bounded and their bounds converge to zero
asymptotically in the Lyapunov sense. To demonstrate these
theoretical arguments, simulation example on a quadrotor
vehicle is presented.
This paper is organized as follows. In section II, kinematics
and dynamics of the four rotor flying vehicles are briefly
presented. Algorithms are developed in section III. Various
evaluation results are presented in section IV. Finally, con-
clusion is given in section V.

II. MODEL DYNAMICS

Let us first model quadrotor flying robot vehicle [1, 2].
To do that, we define the linear position and velocity of
the vehicle as xs = [x y z]T and vs = [vs1 vs2 vs3]T . The
rotation and angular velocity of the vehicle is chosen as
η = [φ θ ϕ]T and Ωs = [Ω1s Ωs2 Ωs3]. The transformation
from body frame to inertial frame is performed by using the
following rotation matrix Rs ∈ <3×3

Rs =



CφCϕ SφSθCϕ − CφSϕ CφSθCϕ + SφSϕ
CθSϕ SφSθSϕ + CφCϕ CφSθCϕ − SφSϕ
−Sφ SφCθ CφCθ




(1)
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where Cθ and Sθ denotes cosθ and sinθ. The dynamic model
for quadrotor vehicle subjected to translational forces and
control torques can be written by the following equation

ẋs = vs (2)

msv̇s = −msg




0
0
1


 + Ft + Fd (3)

Ṙs = RsS (Ωs) (4)

IΩ̇s = − (Ωs × IΩs) + ut + ug + ua (5)

where m is positive constant, I ∈ <3×3 = diag[Ix, Iy, Iz] is
the inertia matrix and S(Ωs) is the skew-symmetric matrix
S(Ωs) as defined as follows

S(Ωs) =




0 −Ωs3 Ωs2
Ωs3 0 −Ωs1
−Ωs2 Ωs1 0


 (6)

The quadrotor model (2) to (5) can be further simplified as
follows [5, 6, 7, 16]

ẍ =
1
pa

(cosφ sin θ cosϕ+ sinϕ sinφ)u1 −

Yvs1(vs1)θvs1 + udx

ÿ =
1
pa

(cosφ sin θ sinϕ − sinφ cosϕ)u1 −

Yvs2(vs1)θvs2 + udy

z̈ =
1
pa

(cosφ cos θ) u1 − g − Yvs3(vs3)θvs3 + udz

φ̈ = pb

(
θ̇ϕ̇

)
+ pb1u2 − pb2f(u)θ̇ − YΩs1(Ωs1)θΩs1

+urx
θ̈ = pc

(
φ̇ϕ̇

)
+ pc1u3 + pc2f(u)φ̇ − YΩs2(Ωs2)θΩs2

+ury

ϕ̈ = pd

(
θ̇φ̇

)
+ pd1u4 − YΩs3(Ωs3)θΩs3 + urz (7)

with pa = m, Pb =
(
p1
Ix

)
, pc =

(
p2
Iy

)
, pd =

(
p3
Iz

)
,

p1 = (Iy − Iz), p2 = (Iz − Ix), p3 = (Ix − Iy),

pb1 =
(
l
Ix

)
, pc1 =

(
l
Iy

)
, pd1 =

(
1
Iz

)
, pb2 =

(
Ir

Ix

)
,

pc2 =
(
Ir

Iy

)
, Yvs1(vs1)θvs1 = δx

m
, YΩs1(Ωs1)θΩs1 =

π1x

Ix
, Yvs2(vs2)θvs2 = δy

m , YΩs2(Ωs2)θΩs2 = π1y

Iy
,

Yvs3(vs3)θvs3 = δz

m
, YΩs3(Ωs3)θΩs3 = π1z

Iz
, Yvs1(vs1) =

[vs1, vs1|vs1|], Yvs2(vs1, vs2) = [vs2, vs2|vs1|], Yvs3(vs3) =
[vs3, vs3|vs3|], YΩs1(Ωs1) = [Ωs1, Ωs1|Ωs1|], YΩs2(Ωs2) =
[Ωs2, Ωs2|Ωs2|], YΩs3(Ωs3) = [Ωs3, Ωs3|Ωs3|], θvs1 =[
ζ1
m
, ζ2
m

]T
, θvs2 =

[
ζ3
m
, ζ4
m

]T
, θvs3 =

[
ζ5
m
, ζ6
m

]T
, θΩs1 =

[
ξ1
Ix
, ξ2
Ix

]T
, θΩs2 =

[
ξ3
Iy
, ξ4
Iy

]T
, θΩs3 =

[
ξ5
Iz
, ξ6
Iz

]T
, f(u) =

(ω1 − ω2 + ω3 − ω4), ud(t) = [udx(t), udy(t), udz(t)]T and
ur(t) = [urx(t), ury(t), urz(t)]T .

III. CONTROL DESIGN AND STABILITY ANALYSIS

It is very challenging task to design autonomous flight
control system for a small size quadrotor flying vehicle
to ensure control stability and tracking against modeling

error and disturbance uncertainties in uncertain flying envi-
ronment. This is mainly because of unpredictable variation
in flying environment, very strong dynamic coupling and
nonlinearities associated with the translational and rotational
dynamics of the vehicle. In view of the model (7), we can no-
tice that the mass, inertia, aerodynamic damping forces and
torques are uncertain as they may vary with uncertain flight
mission and flying environment. To deal with this problem,
we introduce adaptive tracking algorithms to learn and cope
with uncertain modeling error and disturbance uncertainties
entering into the system. The proposed design and stability
analysis are assumed to be satisfied the following conditions:
A1: The linear and angular position and their first and second
derivatives are bounded. A2: The linear and angular position
are available for measurement. A3: The external disturbances
and their time derivatives are assumed to be bounded.

A. Design and Convergence Analysis

Let us first introduce the following altitude tracking con-
trol algorithm [16]

u1 =
pa

cosφ cos θ
(z̈d + g + Yvs3(vs3)θ̂vs3 + ubz +

αz1ėz + kzSz)
ubz = −b̂zsign (Sz)
˙̃
θvs3 = −γzY Tvs3

(vs3)Sz
˙̃
bz = γpasign

T (Sz)Sz (8)

with ez = (zd − z), ėz = (żd − ż), αz � 0, θ̃vs3 =(
θ̂vs3 − θvs3

)
, b̃z =

(
bz − b̂z

)
, γpa � 0, kz � 0, αz1 > αz,

γz = diag[γz1, γz2], γz1 > 0 and γz2 > 0. We now develop
virtual position controller for generating desired rolling and
pitching motion to keep the flying vehicle over the desired
point. The desired rolling motion in x axis is generated by
the following input

pxi =
pa
u1

(ẍd + Yvs1(vs1)θ̂vs1 + αx1ėx + ubx + kxMx)

˙̃
θvs1 = −γxY Tvs1

(vs1)Mx, ubx = −b̂xsign(Mx)
˙̃
bx = γdxsign

T (Mx)Mx (9)

with Mx = (ėx + αxex), αx � 0, γdx � 0, θ̃vs1 =(
θ̂vs1 − θvs1

)
, b̃x =

(
bx − b̂x

)
, kx � 0, αx1 > αx,

γx = diag[γx1, γx2], γx1 > 0 and γx2 > 0. The pitching
motion in y direction can be obtained by using the following
virtual input

pyi =
pa
u1

(ÿd − Yvs2(vs2)θ̂vs2 + αy1ėy + uby + kyMy)

˙̃θvs2 = −γyY Tvs2
(vs2)My, uby = −b̂ysign(My )

˙̃
by = γdysign

T (My)My (10)

with My = (ėy + αyey), αy � 0, ex = (xd − x), ey =
(yd − y), γdy � 0, θ̃vs2 =

(
θ̂vs2 − θvs2

)
, b̃y =

(
by − b̂y

)
,

ky � 0, αy1 > αy and γy = diag[γy1, γy2], γy1 > 0
and γy2 > 0. We now design algorithms for stabilizing
and tracking the attitude dynamics of the vehicle against
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Fig. 1. State dependant disturbance uncertainty acting along with x axis
in newton.

modeling error and disturbance uncertainties. We propose the
following input for generating the desired rolling moment

u2 =
1
pb

[φ̈d − M̂1Kl(Ωs2,Ωs3) + M̂2Ml(u,Ωs2) +

YΩs1(Ωs1)θ̂Ωs1 + urφ + αφ1 ėφ + kφNφ]

urφ = −ĉφsign (Nφ) ,
˙̃
θΩs1 = −γφY TΩs1

(Ωs1)Nφ,

˙̃cφ = γpb1sign
T (Nφ)Nφ,

˙̃
M1 = γM1KT

l (Ωs1,Ωs2)Nφ
˙̃M2 = −γM2MT

l (u,Ωs2)Nφ (11)

with kφ � 0, Kl(Ωs2,Ωs3) = θ̇ϕ̇, Ml(u,Ωs2) = f(u)θ̇,
Nφ = (ėφ + αφeφ), eφ = (φd − φ), αφ � 0, αφ1 >
αφ, γpb1 � 0, γφ = diag[γφ1 , γφ2 ], γM2 � 0, γM1 �
0, θ̃Ωs1 =

(
θ̂Ωs1 − θΩs1

)
, c̃φ = (cφ − ĉφ), M̃2 =(

M̂2 −M2

)
, M̃1 =

(
M1 − M̂1

)
and φd is the reference

rolling angle and calculated from the relationship φd =
arc sin (px sin(ϕd) − py cos(ϕd)). We design the following
input to generate the pitching moment

u3 =
1
pc1

[θ̈d − M̂3Bl(Ωs1,Ωs3) − M̂4Cl(u,Ωs1) +

YΩs2(Ωs2)θ̂Ωs2 + urθ + αθ1 ėθ + kθLθ]

urθ = −ĉθsign (Lθ) ,
˙̃
θΩs2 = −γθY TΩs2

(Ωs2)Lθ,

˙̃cθ = γpc1sign
T (Lθ)Lθ,

˙̃M4 = γM4CTl (u,Ωs1)Lθ,
˙̃M3 = γM3BTl (Ωs1,Ωs3)Lθ (12)

with Cl(u,Ωs1) = f(u)φ̇, Bl(Ωs1,Ωs3) = φ̇ϕ̇, Lθ =
(ėθ + αθeθ), eθ = (θd − θ), kθ � 0, θd is the ref-
erence pitching angle, αθ � 0, αθ1 > αθ, γpc1 �
0, γθ ∈ <2×2, γM3 � 0, γM4 � 0, θ̃Ωs2 =(
θ̂Ωs2 − θΩs2

)
, c̃θ = (−ĉθ + cθ), M̃3 =

(
−M̂3 +M3

)

and M̃4 =
(
−M̂4 +M4

)
. Using ϕd, φd, px and

py, θd can be calculated from the relationship θd =
arc sin

(
px sin(ϕd)+py cos(ϕd)

cos(φd)

)
. Finally, the following input
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Fig. 2. State dependant disturbance uncertainty included in y axis in
newton.
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Fig. 3. State dependant disturbance uncertainty included with z axis in
newton.

is designed to develop the desired yaw moment

u4 =
1
pd1

[ϕ̈d − M̂5Dl(Ωs1,Ωs2) + YΩs3(Ωs3)θ̂Ωs3 +

urψ + αϕ1 ėϕ + kϕPϕ]

urψ = −ĉψsign (Pϕ) , ˙̃θΩs3 = −γϕY TΩs3
(Ωs3)Pϕ

˙̃cψ = γpd1sign
T (Pϕ)Pϕ,

˙̃M5 = γMDT
l (Ωs1,Ωs2)Pϕ

(13)

with Dl(Ωs1,Ωs2) = θ̇φ̇, Pϕ = (ėϕ + αϕeϕ), eϕ =
(ϕd − ϕ), kϕ � 0, ϕd is the reference yaw angle, αϕ � 0,
αϕ1 > αϕ, γpd1 � 0, γM � 0, γϕ = diag[γϕ1 , γϕ2 ], θ̃Ωs3 =(
θ̂Ωs3 − θΩs3

)
, M̃5 =

(
M5 − M̂5

)
and c̃ψ = (ĉψ − cψ).

Using Lyapunov analysis, we can show state that all the error
states in the closed loop tracking error systems formulated
by equations (7), (8) to (13) are bounded and their bounds
asymptotically converge to zero [16].

IV. EVALUATION RESULTS

In this section, we evaluate the proposed algorithms on a
simulated model of quadrotor flying robot vehicle. Extensive
simulation studies have been conducted to evaluate the
flight control stability and tracking property of the proposed
algorithms with respect to varying mass and inertia matrix,
aerodynamic damping effect and external disturbances. The
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Fig. 4. State dependant disturbance with roll angle axis in newton-meters.
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Fig. 5. State dependant disturbance uncertainty with pitch angle axis in
newton-meters.

time varying desired trajectories xd, yd and zd are chosen as
xd(t) = (1 − e−5t3)sin(10t), yd(t) = (1 − e−5t3)cos(10t)
and zd(t) =

(
1 − e−5t3

)
. The desired trajectory for ψd is

generated by using the output of the transfer function H(s) =
4

s2+4s+4 . The control design parameters are chosen arbitrar-
ily as γM1 = 0.5, γM2 = 2, γM3 = 2, γM4 = 2, γM5 = 2,
γx = [5 0; 0 3], γy = [5 0; 0 3], γz = [0.01 0; 0 0.01],
γpa = 2, γpb1 = 2, γpc1 = 2, γpd1 = 2, αx = 10, αy = 10,
αz = 70, αφ = 2, αθ = 2, αψ = 2, kx = 1, ky = 1, kz = 1,
kφ = 1, kθ = 1 and kψ = 1. It is noted that these parameters
can be increased to improve the tracking performance fur-
ther. The mass, inertia and nonlinear aerodynamic damping
parameters of the vehicle are considered relatively large
values as m = 8 kg, Ix = 2 Nm. s

2

rad , Iy = 2.5 Nm. s
2

rad ,
Iz = 3 Nm. s

2

rad
, Ir = 0.3 Nm. s

2

rad
, ζ1 = 2 N. s

m
, ζ2 = 5

N. sm , ζ3 = 6 N. sm , ζ4 = 6 N. sm , ζ5 = 7 N. sm , ζ6 = 3
N. sm , ξ1 = 1 N. sm , ξ2 = 3 N. sm , ξ3 = 6 N. sm , ξ4 = 6
N. sm , ξ5 = 8 N. sm and ξ6 = 3 N. sm . In our evaluation,
the state dependant disturbance uncertainties along with the
translational and rotational dynamics (7) are choses as Ex =
ysin(pit) + zsin(pit), Ey = zsin(pit) + xcos(pit), Ez =
ysin(pit)+xcos(pit), Eφ = θsin(2pit)+ψsin(2pit), Eθ =
φcos(pit) + ψsin(pit) and Eϕ = φcos(pit) + θsin(pit).
The time history of these disturbances is shown in Figs. 1
to 6. Using with these parameters, we implement the design
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Fig. 6. State dependant disturbance with yaw angle axis in newton-meters.
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Fig. 7. Desired and actual attitude tracking of roll, pitch and yaw angles.

on the simulated quadrotor flying vehicle. The evaluation
results are depicted in Figs 7 to 8. From these results, we
can observe that the position, altitude and attitude of the
flying vehicles converges to the given reference position,
altitude and attitude even in the presence of large modeling
errors and disturbance uncertainties. These evaluation results
demonstrate the validity of the control stability and tracking
property of the proposed design.

V. CONCLUSION

In this paper, we have introduced adaptive tracking system
for quadrotor flying vehicle to deal with the modeling errors
and disturbance uncertainties. Algorithm designs and their
stability analysis have been established through Lyapunov-
like energy function by assuming that all the states are
available for feedback. The design can learn and compensate
the bounds of the modeling errors and disturbances while
maintain the bounded stability and tracking control property
of the whole closed loop system in Lyapunov sense. To
illustrate these arguments, simulations results on a quadrotor
vehicle have been presented.
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