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Abstract Patrolling indoor infrastructures with a team
of cooperative mobile robots is a challenging task, which
requires effective multi-agent coordination. Deterministic
patrol circuits for multiple mobile robots have become pop-
ular due to their exceeding performance. However their
predefined nature does not allow the system to react to
changes in the system’s conditions or adapt to unexpected
situations such as robot failures, thus requiring recovery
behaviors in such cases. In this article, a probabilistic multi-
robot patrolling strategy is proposed. A team of concurrent
learning agents adapt their moves to the state of the system
at the time, using Bayesian decision rules and distrib-
uted intelligence. When patrolling a given site, each agent
evaluates the context and adopts a reward-based learning
technique that influences future moves. Extensive results
obtained in simulation and real world experiments in a large
indoor environment show the potential of the approach,
presenting superior results to several state of the art strate-
gies.

Keywords Distributed systems · Multi-robot patrol ·
Multi-agent learning · Security

1 Introduction

In the past several years, evident advances in mobile robot-
ics have occurred and roboticists have increasingly turned
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to Artificial Intelligence (AI) techniques to endow robots
with perception, reasoning, planning and learning capabil-
ities. Even though single agent solutions are still one step
ahead of general multi-agent solutions, with the robust-
ness inherited by distributed AI, multi-agent systems have
been increasingly proposed, providing tools for the develop-
ment of complex systems and mechanisms for coordination
of the behavior of independent agents (Stone and Veloso
2000).

Considerable scientific work presented recently span
across the boundaries of Robotics and AI, and in the par-
ticular case of multi-robot systems (MRS), these works are
usually verified through multi-agent simulations or con-
trolled test scenarios. However, recent attempts to employ
robot teams in real world environments have become evi-
dent, e.g. as described in the works of Iocchi et al.
(2011), Pippin et al. (2013), Agmon et al. (2012), and
more. Successful examples of solutions that have prolif-
erated in public places include automated guided vehicles
(AGVs)1 and the Santander Interactive Guest Assistants
(SIGA),2 and teams of multiple robots have been increas-
ingly used in military and security applications, taking
advantage of space distribution, parallelism, task decom-
position and redundancy. In this context, there have been
several advances inmulti-robot patrolling and coverage, map
learning, graph-exploration and networked robots (Parker
2008).

Security applications are a fundamental task with unques-
tionable impact on society. Combining progress witnessed at
the behavior-level with the technological evolution observed
in the last decades, it becomes clear that robot assistance
can be a valuable resource in surveillance missions. In this

1 http://www.cybercars.org.
2 http://www.ydreamsrobotics.com/projects.
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article, we propose a distributed multi-robot solution for
indoor patrol. We believe that employing teams of robots
for active surveillance tasks has several advantages over, for
instance, a camera-basedpassive surveillance system.Robots
are mobile and have the ability to travel in the field, collect
environmental samples, act or trigger remote alarm systems
and inspect places that can be hard for static cameras to cap-
ture. These capabilities free human operators from executing
tedious, repetitive or monotonous tasks, e.g. mine clearing or
patrolling in hazardous environments, enabling them to be
occupied in nobler tasks like monitoring the system from a
safer location (Murphy 2004) and taking advantage of robots’
expendability.

The proposed multi-robot patrolling solution is based on
Bayesian reasoning and learning agents, which can adapt
to the dynamics of the system. We firstly conduct simulation
experiments and then validate our results in a large real world
environment. We show that the approach can be applied in
different types of environment, independent of its topology;
withstands failures in robotic patrol units; can be performed
with heterogeneous robots; and accomplishes exceeding per-
formance. Therefore, its potential is shown as a solution for
real world MRS.

In the next section, a literature review is conducted and
the contributions of the article are described. Afterwards,
the multi-robot patrolling problem is defined and the perfor-
mancemetric is presented. Section 4 describes the distributed
multi-robot patrolling strategy proposed in this article. Sec-
tion 5 presents the results obtained both through simulations
and hardware experiments, as well as a discussion of the
results obtained. Finally, the article ends with conclusions
and open issues for future research.

2 Related work

To patrol is literally defined as “the activity of going around
or through an area at regular intervals for security pur-
poses” (Vocabulary.com 2015). The multi-robot patrolling
problem (MRPP) requires coordination of agents’ decision-
making with the ultimate goal of achieving optimal group
performance, while visiting every position in the environ-
ment (or at least those that need surveillance). Additionally,
it aims at monitoring infrastructures, obtaining informa-
tion, searching for objects, detecting anomalies and clearing
areas in order to guard the grounds from intrusion. Con-
sequently, performing a patrolling mission with a team of
any given number of autonomous and cooperative robots
distributed in space represents a complex challenge. We pro-
pose to solve the area patrolling problem with a team of
arbitrarily many robots, focusing on intelligent strategies
for coordination of the team in order to visit all the sur-
veillance points that need vigillance inside a target area,

as effectively as possible. Thus in this context, we con-
sider the problem of border/perimeter patrol (Elmaliach et al.
2008; Marino et al. 2013), and adversarial patrol (Basilico
et al. 2009; Agmon et al. 2011a) out of the scope of this
work.

Despite its high potential utility in security applications,
only recently has the MRPP been rigorously addressed.
The environment to patrol is commonly abstracted through
a navigation graph (cf. Fabrizi and Saffiotti 2000) and
numerous works explore graph theory tools like span-
ning trees Fazli et al. (2013), Gabriely and Rimon (2001)
or graph partitioning (Sak et al. 2008; Stranders et al.
2012) to compute minimal-cost cycles that assign efficient
routes for each robot in the patrolling mission. Auctions
and market-based coordination are also popular among
multi-robot patrolling literature as in the case of Pippin
et al. (2013) and Poulet et al. (2012), where agents bid to
exchange vertices of the patrol graph to increase overall
patrol performance. Numerous other concepts have already
been explored, such as task allocation (Sempé and Drogoul
2003), artificial forces (Sampaio et al. 2010; Jansen and
Sturtevant 2008), Gaussian processes theory (Marino et al.
2012), evolutionary algorithms (Aguirre and Taboada 2012),
linear programming modeling (Keskin et al. 2012), and oth-
ers.

Most contributions to the literature focus on presenting
strategies to patrol any given environment with a team of
mobile agents, the majority verified through simulations.
Nevertheless, several important theoretical contributions to
the MRPP have been presented and using the idleness cri-
terion (cf. Sect. 3) it has been shown that the problem is
NP-Hard (Chevaleyre 2004; Ruan et al. 2005). Based on
a topological representation of the environment and using
global/centralized information, it has been proved previ-
ously that optimal patrolling could eventually be obtained
for the single robot case by solving the Traveling Salesman
Problem (TSP) (Chevaleyre 2004), a classical computation-
ally complex problem. As for the multi-agent situation, the
problem is even more complex and optimal performance
depends on the environment topology and the number of
robots. However, the literature commonly reports that the-
oretically superior performance can be obtained either by
optimal k-way graph partitioning, especially for high num-
ber of agents or graphs with unbalanced edges (Pasqualetti
et al. 2012; Agmon et al. 2011b); or having all robots fol-
lowing the same TSP cycle, equally distributed in time
and space, especially for low number of agents or bal-
anced graphs (Chevaleyre 2004; Smith and Rus 2010). Both
the TSP and the graph partitioning problem are NP-hard.
Therefore solving these problems is non-trivial, particu-
larly in sparse topologies, which is the case of most real
world environments. For instance, TSP cycles may not
even exist in such situations (recurrent in non-complete

123



Auton Robot

graphs) and the tour should be reduced to a minimum
cost closed walk in the graph (Portugal et al. 2014).
Additionally, these solutions lead to predefined trajecto-
ries for all robots. Commonly, these solutions cannot adapt
to non-standard situations (e.g. robot failures or heteroge-
neous agents with different speed profiles) without specific
recovery behaviors. Furthermore, such recovery behaviors
need to be triggered by a centralized entity with global
knowledge about the system. Another disadvantage is that
deterministic patrols allow an external observer to easily
apprehend the trajectory pattern. Thus, we turn to probabilis-
tic strategies with distributed intelligence and autonomous
decision-making robots. Besides being non-deterministic
and much less predictable, these strategies do not have a
central point of failure and can potentially scale to larger
teams.

The creation of adaptive behaviors that allows agents
to learn how to effectively patrol a given scenario have
shown to be extremely promising. Moreover, such adapt-
ability allows the agents to face changes in the system or
in the scenario. Nevertheless, the use of such techniques is
far from being straightforward. Certain works in this field
have adopted machine learning methods. For instance, the
pioneering approach of Santana et al. proposed to model
the MRPP as a Q-learning problem in an attempt to enable
automatic adaptation of the agents’ strategies to the environ-
ment (Santana et al. 2004). In brief, agents have a probability
of choosing an action from a finite set of actions, having
the goal of maximizing a long-term performance criterion,
in this case, node idleness. Two reinforcement learning
techniques, using different communication schemes were
implemented and compared to non-adaptive architectures.
Although not always scoring the best results, adaptive strate-
gies were generally superior to other compared strategies
in most of the simulation experiments reported. The main
attractive characteristics in this work are distribution (no cen-
tralized coordination is assumed) and the adaptive behavior
of agents, which is usually highly desirable in this domain.
Lauri and Koukam (2014) built upon the work of Santana
et al. by redefining the state space and reward function
associated to each agent, and were able to improve the
method in specific situations, depending on graph topol-
ogy and number of agents. Similarly, Ishiwaka et al. (2003)
proposed reinforcement learning to predict the location of
teammates as well as the movement direction to a com-
mon target. In another surveillance application scenario,
Ahmadi and Stone (2006) proposed an adaptive solution
for area sweeping tasks based on decentralized partition-
ing and learning behaviors. This was verified in a small
experimental arena with two AIBO robots endowed with
cameras. However, as the robots had a high field of view,
the focus was not primarily on planning exhaustive surveil-
lance routes, but more on continuously moving the agents

to positions where they were able to observe from dis-
tance.

Alternatively to reinforcement learning and adaptive
behaviors some strategies have followed stochastic approa-
ches that benefit from probabilistic decision-making to
overcome the deterministic nature of classical patrolling
applications. For instance, in Marier et al. (2010), the
patrolling problem is cast as a multi-agent Markov deci-
sion process, where reactive and planning-based techniques
are compared. The authors concluded that both perform
similarly, with the latter being slightly superior in gen-
eral, since it looks further ahead than the former, which
is purely local. However, the reactive technique runs much
faster, suggesting that a simple and computationally cheaper
approach can be used in many applications, instead of
more complex strategies which only perform slightly bet-
ter. Similarly to reactive agents, swarm-based solutions to
the patrolling problem have been studied in Yanovski et al.
(2003), Baglietto et al. (2009) and Cannata and Sgorbissa
(2011), where it is assumed that agents have limited compu-
tational power, communication abilities andmemory storage.
Interesting collective patrol behavior emerges using these
type of approaches.

In this article, a new distributed and adaptive approach
for multi-robot patrol is presented. Each robot decides its
local patrolling moves online, without requiring any central
planner. Decision-making is based upon Bayesian reason-
ing on the state of the system, considering the history of
visits and teammates’ actions, so as to promote effective
coordination between patrolling agents. Experimental results
illustrate the advantages of using the proposed distributed
technique, when compared to several state of the art strate-
gies in simulation, and the well-known TSP solution in real
world results.

2.1 Contributions

To summarize, the contributions of the work to the state of
the art are as follows:

• We propose a new probabilistic, distributed and scal-
able approach to solve the MRPP, whose effectiveness
is attested in the experiments conducted;

• We employ Bayesian decision-making together with
adaptive learning in the context of the MRPP for the first
time, as far as our knowledge goes, yielding intelligent
patrolling behavior within the robot team;

• We show the advantages of using the proposed algorithm
by assessing its performance and effectiveness using real-
istic simulations in Stage/ROS (Quigley et al. 2009), and
comparing these results with those reported in Portugal
and Rocha (2013a) where several patrolling approaches
were tested in the same conditions;
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• We implement the approach in a large indoor scenario
with up to six physical robots, and compare it with the
classical multi-agent TSP approach, which is theoret-
ically optimal using one robot and nearly-optimal for
generic teams of robots;

• Fault-tolerance and scalable behaviors are verified in real
world experiments, as well as the possibility to use the
approach in heterogeneous teams of robots.

In the past, we have shown that naive Bayesian decision
models have the potential to tackle the patrolling prob-
lem, by presenting methods based on conditional probability
distributions and without agent learning behaviors (Por-
tugal and Rocha 2013b). In this work, we intend to go
much further by presenting a new strategy that rectifies
weaknesses previously identified. We describe a proba-
bilistic multi-robot patrolling strategy, where a team of
concurrent learning agents adapt their moves to the state
of the system at the time, using Bayesian decision rules
based on the robot’s accumulated experience and distrib-
uted intelligence. When patrolling a given site, each agent
evaluates the context and adopts a reward-based learn-
ing technique that influences future moves. Learning of
the likelihood distributions involved in the robots’ deci-
sions is done online, along the mission, and robots are
constantly updating their prior information, i.e. their past
experience.

This article is a culmination of two preliminary works
(Portugal et al. 2013a, b), yet it clearly distinguishes itself
from the previous publications by presenting an extended lit-
erature survey and a more complete Bayesian model, which
includes vertex lookahead (cf. Sect. 4.4) in order to solve the
MRPP using multi-agent concurrent reward-based learning.
In addition, the implementation of a fully distributed system
is described, carrying out completely new experiments both
in simulation and in a real world indoor infrastructure and
discussing in detail the implementation aspects. Also, unlike
the two previous works, we assess through real world exper-
iments the adaptability, scalability and fault-tolerant nature
of the proposed approach.

3 Problem definition

In this article, the problem of efficiently patrolling inside
a given area with an arbitrary number of robots is studied.
Agents are assumed to have an a priori representation of
the environment and through a graph extraction algorithm
(Portugal and Rocha 2013c), they are able to acquire an undi-
rected, connected and metric navigation graph G = (V, E),
which enables them to assess the topology of its surround-
ings. G is composed of vertices vi ∈ V and edges ei, j ∈ E .
Each vertex represents a specific location that must be visited

regularly and each edge represents the connectivity between
these locations, having a weight |ei, j | defined by the metric
distance between vi and v j . |V| and |E | represent the cardi-
nality of the set V and E respectively.

Informally, a good strategy is one that minimizes the time
lag between two passages to the same place and for all places.
Thus, the MRPP can be reduced to coordinate robots in
order to visit frequently all vi ∈ G, ensuring the absence of
atypical situations with regard to a predefined optimization
criterion.

In order to address and compare the performance of
different patrolling algorithms, it is important to establish
an evaluation metric. Diverse criteria have been previ-
ously proposed to assess the effectiveness of multi-robot
patrolling strategies. Typically, these are based on the idle-
ness of the vertices (Almeida et al. 2004), the frequency
of visits (Agmon et al. 2011b) or the distance traveled by
agents (Iocchi et al. 2011). In this work, the first one has
been considered, given that it measures the elapsed time
since the last visit from any agent in the team to a spe-
cific location. The idleness metric uses time units, which
is particularly intuitive, e.g. in the analysis of how long
vertices have not been visited for, or comparing different
patrolling strategies. In the following equations, we define
important variables used in the remaining sections of the
article.

The instantaneous idleness of a vertex vi ∈ V in time step
t is defined as:

Ivi (t) = t − tl , (1)

wherein tl corresponds to the last time instantwhen the vertex
vi was visited by any robot of the team. Consequently, the
average idleness of a vertex vi ∈ V in time step t is defined
as:

Ivi (t) = Ivi (tl) · Ci + Ivi (t)

Ci + 1
, (2)

where Ci represents the number of visits to vi . Considering
now IV as the set of the average idlenesses of all vi ∈ V ,
given by:

IV (t) = {Iv1(t), . . . , Ivi (t), . . . , Iv|V|(t)}, (3)

the maximum average idleness of all vertices max(IV ) in
time step t is defined as:

max(IV )(t) = max{Iv1(t), . . . , Ivi (t), . . . , Iv|V|(t)}. (4)

For simplicity of notation, let us omit (t) whenever timing is
not relevant. Finally, in order to obtain a generalizedmeasure,
the average idleness of the graph G (IG) is defined as:
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IG = 1

|V|
|V |∑

i=1

Ivi , (5)

A similar assumption to other works in the literature (cf.
Chevaleyre 2004; Almeida et al. 2004) is taken in the begin-
ning of the experiments, where for all vi ∈ V , Ivi (0) = 0, as
if every vertex had just been visited at the beginning of the
mission. Consequently, there is a transitory phase in which
the IG values tend to be low, not corresponding to the reality
in steady-state, as will be seen in the results section. For this
reason, the final IG value is measured only after convergence
in the stable phase.

Considering a patrol path as an array of vertices of G, the
multi-robot patrolling problem with an arbitrary team of R
robots can be described as the problem of finding a set of R
paths x that visit all vertices vi ∈ V of G, with the overall
team goal of minimizing IG :

f = argmin
x

(IG), (6)

By finding:

x = {x1, . . . , xr , . . . , xR}, (7)

Such that:

xr = {va, vb, . . .}, (8)

va, vb, . . . ∈ V,

1 ≤ r ≤ R, R ∈ N,

Subject to:

∀vi ∈ V, ∃xr ∈ x : vi ∈ xr . (9)

Note that xr represents the patrollingpath of robot r ,which
has an arbitrary dimension that depends on each robot’s
decisions and va, vb, . . . are vertices that are successively
connected in V . The union of all R paths should be equal to
the full set of vertices V , and different paths xr , xs may have
common vertices. In this work, the route xr of each robot
is computed online by each autonomous agents in order to
adapt to the system’s needs.

4 Bayesian model for multi-robot patrolling

In a previous work of the authors (Portugal and Rocha
2013b), simple preliminary Bayesian-based techniques to
tackle the MRPP were studied. Even though the results
obtained were satisfactory, two main drawbacks were iden-
tified: a uniform prior distribution was adopted, assuming

that all decisions were equiprobable; and the likelihood dis-
tributions were immutable, representing a fixed function of
random variables.

In this work, robots are endowed with increased intel-
ligence, since the previous Bayesian inspired models are
extended with likelihood reward-based learning and contin-
ued prior update. More specifically, the model represents
the decision of moving from one vertex of the graph to
another. For β neighbors of the current vertex v0, where
β = deg(v0),3 the model is applied β times. Each decision
is considered independent and the agents have the ability
to choose the action which has the greatest expectation of
utility, weighted by the effects of all possible actions. Con-
sequently, each robot’s patrol route is built progressively, at
each decision step, adapting to the system’s needs, i.e. aiming
at minimizing IG . In the following subsections, more details
on the Concurrent Bayesian Learning Strategy (CBLS) to
solve the MRPP are presented, and the pseudo-code of the
approach, running on each individual robot of the team, is
presented in Algorithm 1.

Algorithm 1: Concurrent Bayesian Learning Strategy
(CBLS).

//Initialization of variables
All Ivi (t0) ← 0;
All Ci ← 0;
All θi, j ← κ;

while true do
add(vk to xr); //current vertex vk

forall vi ∈ NG (vk ) and vi /∈ intended by teammate do
P(movei )∝ω · Ivi +(1−ω) · max(ING (vi )); //prior
P(θk,i |movei ) ∝ θk,i ; //likelihood
P(movei |θk,i ) ∝ P(movei ) · P(θk,i |movei ); //posterior

H(move|θ) ← −
|NG (vk )|∑

i=1
P(movei |θk,i ) log2(P(movei |θk,i ));

H(move|θ) ← H(move|θ)/log2(|NG (vk )|); //normalized entropy

//choose neighbor of vk with highest posterior probability
vk+1 ← argmax(P(movei |θk,i ));
send_msg(current: vk , next: vk+1);

while move_robot to vk+1 do
read_msg(arrivals, intentions);
update(IV (t));
update(CV);

//robot reached vk+1

forall vi ∈ NG (vk ) do
compute Si,k (Ci ,IV (t)); //eq. 19
γk,i ← Si,k · (1 − H(move|θ)); //reward
θk,i ← θk,i + γk,i ; //arc strength

vk ← vk+1 ;

3 The degree (or valency) of a vertex of a graph deg(vi ), is the number
of edges incident to the vertex.
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Fig. 1 Illustration of a patrolling decision instance. In this example,
the robotmay choose to visit one out of 4 neighbor vertices. Considering
a generic neighbor vx , Ivx is the instantaneous idleness of vx ; Ivx is the
average idleness of vx ; e0,x is the edge that connects the current vertex
v0 and vx , with an edge weight |e0,x |; Cx gives the number of visits to
vx and θ0,x represents the arc strength of traveling from v0 to vx

4.1 Distribution modeling

As stated before, when reaching a vertex v0 of the navigation
graph G, each robot is faced with a decision stage, where it
must decide the direction it should travel next (cf. Fig. 1). To
that end, two fundamental random variables are defined. The
first one is boolean and simply represents the act of moving
(or not) to a neighbor vertex:

movei = {true, f alse}, (10)

while the second one is called arc strength θ0,i , which rep-
resents the suitability of traveling to a neighbor vi using the
edge that connects v0 to vi :

θ0,i ∈ R; 0, i ∈ N0. (11)

Note that in G, an edge e j,k represents a connection from v j

to vk and vice versa. An edge e j,k has an edge cost or weight
|e j,k | = |ek, j | given by the distance between the two ver-
tices. Thus, by definition G is undirected, since e j,k = ek, j .
Nevertheless, the term“arc” in this newvariable is used inten-
tionally, since it is affected by the direction of traveling. In a
situationwhere an agent is at v j , it will look for the suitability
of traveling to vk , given by θ j,k . Under those circumstances,
the suitability of traveling in the opposite direction is not rel-
evant, and θ j,k �= θk, j . As a consequence, the set of all θi, j
variables, denoted as θ , has a population of 2|E |, where |E |
is the cardinality of the set of edges E of G, and informally,

higher values of arc strength lead to the edge being traversed
more often in the specified direction. Note that this variable is
chosen such that the collective patrolling strategy can adapt
to any environment topology.

In this work, agents compute the degree of belief (i.e. a
probability) of moving to a vertex vi , given the arc strengths,
by applying Bayes rule:

P(movei |θ0,i ) = P(movei )P(θ0,i |movei )

P(θ0,i )
. (12)

The posterior probability P(movei |θ0,i ) is estimated via
Bayesian inference from the prior P(movei ) and likeli-
hood P(θ0,i |movei ) distributions. The denominator term is
regarded as a normalization factor (Jansen andNielsen 2007),
being often omitted for the sake of simplicity.

The prior represents the belief obtained from analyzing
past data. Naturally, in the MRPP, prior information about
each vertex is encoded in the average idleness Ivi of a vertex
vi given by (2). Therefore, P(movei ) is defined as:

P(movei ) = Ivi

β∑
k=1

Ivk

, (13)

thus decisions of moving to vertices with higher values of
average idleness have intuitively higher probability. Dur-
ing the patrol mission, robots are continuously visiting new
places and the IV values change over time. Each agent com-
putes these values internally by tracking its own visits to
V and receiving messages from other teammates when they
arrive to a new vertex. In order tomake an informed decision,
at each decision step, the agent updates the prior information
through (13), just before adopting (12) to obtain a degree of
belief of moving to a neighbor vertex vi .

In addition to the prior distribution, it is also necessary
to define the likelihood through a statistical distribution to
model the arc strength θ0,i . In the patrolling problem, agents
must visit all vi ∈ G, thus, theoretically, assigning a uniform
value for every arc would not be unreasonable. However, in
such a dynamic system, where the number of visits to dif-
ferent locations in the environment is permanently evolving,
it is usually advantageous to avoid traversing certain edges
at a given time and favoring the use of others, in order to
improve performance. For example, it is highly undesirable
that robots move along the same edges, as this is inefficient
from the collective patrolling point of view. Also, moving in
the same regions causes inter-robot interference (e.g. taking
longer to reach their goals if they have to avoid collisions
between them). Therefore, robots should coordinate them-
selves properly. Furthermore, task effectiveness is strongly
related to the environment topology.
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Hence, in the next subsection, a reward-based learning
strategy to model and continually update the likelihood dis-
tribution is proposed in order to adapt to the system’s state
according to previous decisions, having a high impact on the
behavior of robots and aiming at optimizing the collective
performance.

4.2 Multi-agent reward-based learning

In general, reward-based learning methods are quite attrac-
tive since agents are programmed through reward and pun-
ishments without explicitly specifying how the task is to be
achieved (Panait and Luke 2005). In this work, Bayesian
Learning is employed to estimate the likelihood functions.
Being a cooperative multi-robot task with lack of centralized
control, with decentralized and distributed information and
asynchronous computation, multiple simultaneous learners
(one per patrolling agent) are involved.

The concept of delayed reward with a 1-step horizon
model is explored. Each agent chooses an action of moving
from v0 to a neighbor vi , based on (12). After reaching vi ,
the information on its neighborhood has changed, namely the
instantaneous idlenesses have been updated, i.e. Ivi (t) = 0
and Iv0(t) > 0. Through information observed after making
the move, a reward-based mechanism is used to punish or
benefit the arcs involved in the decision tomove from v0 to vi .
This influences upcoming moves starting in v0, by introduc-
ing a bias towards arcs which ought to be visited in the future.

Henceforth, the reward-based learning method is expla-
ined. When the robot decides which one of the β neighbor
vertices of v0 is going to be visited next, each neighbor vi
will have an associated degree of belief given by the pos-
terior probability. Therefore, it is possible to calculate the
entropy4:

H(move|θ) = −
β∑

i=1

P(movei |θ0,i ) log2(P(movei |θ0,i )),

(14)

which measures the degree of uncertainty involved in the
decision taken, being chosen for this reason as the basis for
the punish/reward mechanism. The confidence on the deci-
sion taken is inversely proportional to the entropy H . There-
fore, we use the entropy to quantify the rewards and penalties
to assign. In this way, larger rewards and penalties are
awarded to decisionswith higher confidence (lower entropy).
Note, however, that distinct vi have different deg(vi ) and, as
a result, β varies for each decision instant. Therefore, the
entropy is normalized to assume values in [0, 1]:
4 Entropy is a general measure for the uncertainty of a belief. When
applied to a discrete random variable, it evaluates to its shortest descrip-
tion, being as high as the variable’s uncertainty (Rocha et al. 2005).

H(move|θ) = H(move|θ)

log2(β)
. (15)

After deciding and moving to a given vk , the robot computes
rewards for each arc between v0 and its neighbor vertices vi
(including vk) involved in the previous decision, using:

γ0,i = Si,0(Ci , IV (t)) · (1 − H(move|θ)), (16)

with:

Si,0 ∈ {−1, 0, 1}. (17)

Si,0 gives the reward sign, providing a quality assessment
which determines whether a penalty (S = −1), a reward
(S = 1) or a neutral reward (S = 0) should be given. As can
be seen, this piecewise function uses up-to-date information,
namely the number of visits to vi , given by Ci , and the set
of current instantaneous idlenesses IV (t). The sign of S is
obtained using the set of heuristic rules defined below, which
are checked as soon as the agent reaches vk . For that matter, it
is necessary to define firstly the normalized number of visits
to any neighbor vertex vi :

ζi = Ci

deg(vi )
. (18)

This is used in the punish/reward procedure given that ver-
tices with higher degree are naturally more visited than
vertices with lower degree, being often traversed to reach
isolated vertices that tend to have a lower number of visits.
The rules for assigning the sign Si,0 of the rewards are given
by the following piecewise function definition:

Si,0(Ci ,IV (t))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if (β > 1) ∧ (argmax j∈NG(v0)ζ j = i) ∧
(|argmax j∈NG(v0)ζ j | = 1)

−1, if (β > 1) ∧ (argmax j∈NG(v0)ζ j = i) ∧
(∀k, |argmax j∈NG(v0)ζ j | = k → Ivi (t) ≤ Ivk (t))

1, if (β > 1) ∧ (argmin j∈NG(v0)ζ j = i) ∧
(|argmin j∈NG(v0)ζ j | = 1)

1, if (β > 1) ∧ (argmin j∈NG(v0)ζ j = i) ∧
(∀k, |argmin j∈NG(v0)ζ j | = k → Ivi (t) ≥ Ivk (t))

0, otherwise.

(19)

with:

β = deg(v0) = |NG(v0)|, (20)

NG(v0) represents the open neighborhood of v0, i.e. the set
of adjacent vertices of v0. As such, the assignment of the sign
Si,0 respects the following criteria:
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• Si,0 = −1, when the degree of v0 is higher than one
(β > 1) and the normalized number of visits to vi (ζi ) is
maximal in the neighborhood of v0. In case there is more
than one vertex with maximal ζ , a negative reward is
given to the one with lower instantaneous idleness Iv j (t)
between those.

• Si,0 = 1,when the degree of v0 is higher than one (β > 1)
and the normalized number of visits to vi (ζi ) is minimal
in the neighborhood of v0. In case there is more than one
vertex with minimal ζ , a positive reward is given to the
one with higher instantaneous idleness Iv j (t) between
those.

• Si,0 = 0, in every other situation that differs from the
above.

These rules guarantee that when there is more than one
vertex involved in the decision, strictly one reward and one
penalty are assigned.

In the beginning of the mission, when t = t0, all arcs
strength θ0,i are equal to a real positive number κ:

∀θ0,i ∈ θ, θ0,i (t0) = κ. (21)

As the mission evolves, the agent updates θ0,i every time it
visits a new vertex through:

θ0,i (t) = θ0,i (t − 1) + γ0,i (t). (22)

Note that the larger the value of κ is set in (21), the less
immediate influence the rewards received will have on θ0,i .
In all experimental tests conducted in this work, κ = 1.0 was
used. This reward-based procedure is expected to make the
values of θ0,i fluctuate as time goes by, informing robots of
moves which are potentially more effective, but keeping in
mind that robots must visit all vertices vi in the patrolling
mission.

Finally, the learnt likelihood distribution is obtained
through normalization of θ0,i :

P(θ0,i |movei ) = θ0,i

|E |∑
j

|E |∑
k

θ j,k

, (23)

being updated at each decision step and making use of expe-
rience acquired in the past for future decisions.

4.3 Decision-making and multi-agent coordination

Having described how agents learn their likelihood dis-
tribution, it is necessary to address agent coordination to
completely characterize the CBLS solution for patrolling
tasks presented in this article. Being a concurrent learning
approach, each agent is adapting its behavior via its own

learning process and has no control or knowledge of how
other agents behave nor their internal state, i.e. they do not
know their teammates’ likelihood distribution P(θ0,i |movei )
and do not predict their teammates’ moves. This allows the
reduction of complexity of the problem, however it is neces-
sary to guarantee the coordination of robots.

In collective missions with a common goal, multi-agent
coordination plays a fundamental role in the success of the
mission. Particularly in this context, it is highly undesirable
that agents move to the same positions. Thereby, the asyn-
chronous and distributed communication system that is used
to inform teammates of the current vertex v0 is augmented
with the information of the vertex vi chosen for the next
move.

Therefore, by exchanging simple messages with team-
mates that only contain the robot ID r , the current vertex
v0, and the next chosen vertex vi , each robot can update
the information about the state of the system, namely the
idleness values, and decide its moves taking that information
into account, aswell as its progressively acquired experience.
When agents are close by, they can coordinate by inspecting
if a teammate has already expressed intention to move to a
given vertex vi in its local neighborhood and if so, remove it
from its decision.

Finally, the decision-making process of the agent consists
of choosing the move from v0 to the neighbor vertex v j with
the maximum probability among all possible decisions:

move j = true : j = argmax
i∈NG(v0)

P(movei |θ0,i ) (24)

4.4 Incorporating vertex look-ahead

Up to now, we have only mentioned agents that decide their
moves upon knowledge of the local 1-step neighborhood.
While it is true that expanding the search horizon increases
the complexity of the problem, it is also true that itmay lead to
a higher number of correct decisions, since agents deliberate
with additional information.

Therefore, we also propose to study a variation of the
model presented before, by incorporating vertex look-ahead.
Note however that, in this context, each agent is an inde-
pendent concurrent learner and does not exchange its local
beliefs about the system, only its current vertex and the
intended vertex to visit in its immediate neighborhood. As
a consequence, if agents plan too far ahead, their intentions
may come into conflict, i.e. theymay be planning their moves
to inadvertently reach the same sites, which would be highly
inefficient from the standpoint of the patrolling mission. The
probability of such conflicts increases with the number of
steps in the planning horizon. For this reason, and to manage
the complexity of the system, we explore the concept of 2-

123



Auton Robot

vj 

vk 

vi 

…

…

…

…

V|NG(vi)| 

1-step  
neighborhood 

2-step  
neighborhood 

va vb 

Fig. 2 Illustration of the 2-step look-ahead in the navigation graph

step look-ahead, aiming to further improve the performance
of the CBLS approach.

Prior to making a decision, agents will now look not
only for the average idleness of the vertices vi in its imme-
diate neighborhood, but also for the neighbors of these
(v j , vk, . . . , v|NG(vi )|) to find the maximum average idleness
among them, as shown in Fig. 2.

Accordingly, vertex look-ahead is incorporated in the prior
distribution, by modifying (13):

P(movei ) = ω · Ivi + (1 − ω) · max(ING(vi ))

|V |∑
k=1

ω · Ivk + (1 − ω) · max(ING(vk ))

, (25)

where:

ω ∈ [0, 1], (26)

max(ING(vi )) = max{Iv j , Ivk , . . . , Iv|NG(vi )|}, (27)

v j , vk, . . . , v|NG(vi )| ∈ NG(vi ). (28)

The factorω assignsweights to the observations on the imme-
diate neighborhood and on the 2-step neighborhood. When
ω = 1.0, no look-ahead is considered and (25) is equivalent
to (13). The lower the ω value is, the higher the weight of
observations beyond the 1-step neighborhood are. However,
intuitively we should set ω for values above 0.5 (and below
1.0), because the information on the immediate 1-step neigh-
borhood is always reliable and up-to-date when the decision
is made, while the information on the 2-step neighborhood
may change when the robot reaches vi . Note also, that when
reaching vi , the robot has another decision instance and in
rare cases may deliberate contrarily to the initial plan, in case
the settings in its surroundings have changed in themeantime.
The influence of the ω factor is analyzed in the preliminary
simulation results presented in the next section, so as to estab-
lish an appropriate value to use in experiments with physical
robots.

5 Results and discussion

In this section, experimental results to assess the performance
of CBLS are presented and discussed. Section 5.1 reveals
the outcome of simulations experiments in three environ-
ments with distinct graph connectivity, enabling to analyze
the effect of ω in the mission and comparing our approach
with other state of the art multi-robot patrolling strategies.

In the following subsection, experimental results with
teams of physical robots in a large indoor scenario are dis-
cussed. CBLS is compared to the TSP cyclic algorithm,
which finds the shortest closed walk on a graph by solving
the TSP (Fazli et al. 2013), in non-complete graphs as the
one presented in the experiments. This benchmarking algo-
rithm is optimal for the single robot case and near optimal
for multi-robot scenarios, being perfectly suited for a com-
parative analysis.

5.1 Simulation results

In the preliminary simulation experiments, the main goal is
to study the effect of theω parameter in the vertex look-ahead
method and to enable comparisonswith other strategies in the
literature. To that end, the three environments illustrated in
Fig. 3 have been used to test the approach with different team
sizes of R = {1, 2, 4, 6, 8, 12} robots. The three illustrated
topologies present different algebraic connectivity or Fiedler
value λ (Fiedler 1973), a well-known metric of the connec-
tivity of a graph given by the smallest non-zero eigenvalue
of the graph’s Normalized Laplacian matrix. These topolo-
gies were used in Portugal and Rocha (2013a), where they
were classified as: lowly (A), mildly (B) and highly (C) con-
nected, having a Fiedler value of λA = 0.0080, λB = 0.0317
and λC = 0.1313, respectively. In this work, these are again
adopted to enable comparative analysis against other MRPP
strategies. Note, for example, that the graph of environment
A (GA) has several dead-ends, i.e. vertices with degree 1. On
the other hand GC is the most connected of the three, with
several vertices with degree 4.

While collecting results in different scenarios, the same
simulation setup was used for all strategies.

A recognized simulator with realistic modeling was cho-
sen: the Stage 2D multi-robot simulator (Vaughan 2008).
Stage considers the robot’s dynamics and together with ROS
(Quigley et al. 2009), adopted to program the robots, was
used to implement the experiments.

The graph information of the environment is loaded by
every robot in the beginning of each simulation, which then
runs the described algorithm. Robots navigate safely in the
environment by heading towards their goals while avoiding
collisions through the use of ROS navigation stack and an
adaptiveMonteCarlo localization approach.Additionally, all
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(a) Environment A.

(b) Environment B. (c) Environment C.

Fig. 3 Environments used in the experiments with respective topolog-
ical map

robots have non-holonomic constraints andmove at the same
nominal speed, traveling at a maximum velocity of 0.2 m/s.

All the experiments conducted in this articlewere repeated
three times for each setting, and they all respect the same stop-
ping condition determined by 4 complete patrolling cycles
i.e. after every vi ∈ G has been visited at least four times. This
stopping condition proved to be adequate since IG always
converged, i.e. all results were obtained in the steady-state
phase of the patrolling mission, as shown by the marginal
mean difference in IG values between the third and fourth
cycle of all experiments, which was around 2.5 %.

Tables 1, 2 and 3 present the mean performance results
of the distributed patrolling strategy CBLS, described in this
article, given by IG in seconds, and using the environments
of Fig. 3 with ω = 1.0, ω = 3/4 and ω = 2/3. The same
results are presented inmore detail for each individual case in
Tables 13, 14, 15, 16, 17, 18, 19, 20, 21, in Appendix. Results
prove the intuition that superior performance can be obtained
with 0.5 < ω < 1.0, seeing as, in general, the best results
were obtained for ω = 3/4. It is also interesting to verify that
the results without look-ahead (ω = 1.0) are always infe-
rior to those obtained with vertex look-ahead. This confirms
that looking further beyond the local neighborhood has the
potential to increase the number of correct decisions of each
agent and improve teamperformance. Being a complex prob-

Table 1 Final IG values (in seconds) using CBLS in environment A
with different ω

R CBLS (map A)

ω = 1.0 ω = 3/4 ω = 2/3

1 1445.45 ± 656.81 1432.21 ± 572.17 1323.55 ± 485.91

2 707.92 ± 270.61 686.23 ± 239.67 701.73 ± 242.13

4 402.28 ± 170.81 357.94 ± 124.54 371.55 ± 135.92

6 261.36 ± 123.78 231.32 ± 84.76 251.07 ± 89.83

8 188.11 ± 91.77 167.45 ± 69.00 181.53 ± 74.48

12 168.85 ± 77.41 120.91 ± 47.61 133.92 ± 68.54

Bold values represent the best values in each row

Table 2 Final IG values (in seconds) using CBLS in Environment B
with different ω

R CBLS (map B)

ω = 1.0 ω = 3/4 ω = 2/3

1 1249.45 ± 481.85 1110.66 ± 280.69 1199.97 ± 375.05

2 575.06 ± 166.58 557.00 ± 131.75 554.00 ± 130.22

4 284.88 ± 63.40 275.96 ± 65.25 283.35 ± 66.21

6 197.33 ± 53.83 192.77 ± 40.56 194.25 ± 44.14

8 143.36 ± 30.69 142.74 ± 30.49 142.50 ± 33.52

12 108.22 ± 39.85 96.48 ± 29.69 94.16 ± 41.22

Bold values represent the best values in each row

Table 3 Final IG values (in seconds) using CBLS in Environment C
with different ω

R CBLS (map C)

ω = 1.0 ω = 3/4 ω = 2/3

1 701.98 ± 63.96 684.42 ± 63.23 688.79 ± 61.61

2 359.09 ± 44.09 355.65 ± 38.09 359.38 ± 30.33

4 183.91 ± 18.76 175.40 ± 18.54 182.55 ± 17.25

6 126.62 ± 14.42 121.36 ± 10.33 125.68 ± 11.97

8 96.81 ± 12.68 90.25 ± 7.90 91.84 ± 8.13

12 75.43 ± 15.58 63.00 ± 12.27 64.19 ± 13.14

Bold values represent the best values in each row

lem, variables such as graph connectivity and team size have
an important impact on the performance of every patrolling
strategy. Thus, it was plainly anticipated that a certain fixed
value of ω would not be better for all configurations. Never-
theless, in the experiments conducted, ω = 3/4 was superior
in 14 configurations out of 18. In view of this, we shall con-
sider ω = 3/4 in the experiments with physical robots.

Using findings from our previous works, Tables 4, 5 and 6
were built. Therein, tests in the same three environments
and benchmarking with several state of the art patrolling
approaches were conducted, and we were able to compare
the performance of CBLS against 7 other state of the art
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Table 4 Final IG values (in
seconds) using different state of
the art strategies on
Environment A

R Map A

CR HCR HPCC CGG MSP GBS SEBS CBLS

1 1734.09 1962.42 1740.37 1717.36 1704.36 1718.93 1703.68 1432.21

2 843.93 1146.27 791.20 845.49 930.04 836.05 812.68 686.23

4 433.38 652.84 434.11 451.70 476.92 464.18 438.16 357.94

6 367.11 506.90 377.73 348.46 381.97 353.15 329.18 231.32

8 271.70 442.39 361.62 288.72 253.19 295.58 251.91 167.45

12 287.14 412.65 352.79 265.47 183.74 253.89 226.90 120.91

Table 5 Final IG values (in
seconds) using different state of
the art strategies on
Environment B

R Map B

CR HCR HPCC CGG MSP GBS SEBS CBLS

1 1315.79 1283.59 1235.67 1347.30 1401.80 1267.26 1277.16 1110.66

2 675.44 654.61 670.44 675.64 749.42 708.82 671.18 557.00

4 363.46 373.45 298.77 335.45 375.15 351.19 339.93 275.96

6 238.57 273.60 254.96 234.18 248.92 275.98 230.39 192.77

8 198.90 217.38 225.44 172.39 185.28 206.19 197.03 142.74

12 172.40 255.62 212.30 143.94 – 145.89 118.73 96.48

Table 6 Final IG values (in
seconds) using different state of
the art strategies on
Environment C

R Map C

CR HCR HPCC CGG MSP GBS SEBS CBLS

1 715.30 714.23 737.93 767.25 766.41 670.29 676.30 684.42

2 353.06 351.15 358.45 385.09 423.60 343.89 338.97 355.65

4 193.30 186.59 188.03 200.53 209.82 182.89 167.16 175.40

6 141.68 138.64 135.74 142.94 148.09 147.66 125.06 121.36

8 104.00 108.45 118.75 113.71 95.22 116.14 103.45 90.25

12 101.82 105.64 118.36 94.35 – 90.42 70.33 63.00

approaches,5 using the IG metric. For each different strategy,
all the robots started in the same positions when execut-
ing a patrolling mission in a given environment and with
a given team size. This was carried out to promote a fair
comparison between all strategies. For further details on the
various strategies and tests previously conducted, the inter-
ested reader should refer to Portugal and Rocha (2013a, b).

In general, CBLS clearly outperforms the other 7 state of
the art approaches. This is the case even when no look-ahead
is considered. The difference is apparent especially for lowly
(environmentA) andmildly (environmentB) connected envi-
ronments. In the highly connected grid environment (mapC),
vertices have, in general, greater degree and there are usually
many alternative routes to reach a given goal. This fact makes
other state of the art strategies perform better in this case than
in less connected (more typical) environments. Nevertheless,
CBLS presents a strong performance for smaller team sizes
of 1, 2 and 4 robots; and outperforms the other strategies for

5 The source code of the patrolling approaches tested are available at:
https://github.com/davidbsp/patrolling_sim.

larger team sizes of 6, 8 and 12 robots, which suggests that
CBLS scales better than the rest of the strategies. In fact,
CBLS is superior to all other approaches in 83.33 % of the
configurations tested. Additionally, these results prove that
CBLS is able to adapt to all kinds of environment topologies
independently of team size.

A factorial Analysis ofVariance (ANOVA)was conducted
aiming to examine the main effects and interactions between
environments (environment A, B and C), team size (1, 2, 4,
6, 8 and 12 robots) and algorithm (CR, HCR, HPCC, CGG,
MSP,GBS,SEBSandCBLS) on the performance value given
by IG . A confidence level of 95 % was used to identify
significant differences between factor levels. Prior analysis
revealed that there were no significant outliers, i.e. no major
data stood below the first quartile or above the third quartile
in the dataset, and the data were normally distributed across
all groups, as revealed by the Shapiro-Wilk’s test (p < 0.05).

The analysis revealed that there is amain effect of the envi-
ronment on the idleness values (F(2, 426) = 12308.678,
p < 0.001, partial η2 = 0.989), given that these values
are significantly higher in environment A when compared
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Table 7 Cases where the IG values of CBLS algorithm were statistically significant different to the other algorithms (bold), and not statistically
significant different (italic)

Environment A Environment B Environment C

1 2 4 6 8 12 1 2 4 6 8 12 1 2 4 6 8 12

CR CR CR CR CR CR CR CR CR CR CR CR CR CR CR CR CR CR

HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR HCR

HP HP HP HP HP HP HP HP HP HP HP HP HP HP HP HP HP HP

CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG

MSP MSP MSP MSP MSP MSP MSP MSP MSP MSP MSP – MSP MSP MSP MSP MSP –

GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS GBS

SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE

BS BS BS BS BS BS BS BS BS BS BS BS BS BS BS BS BS BS

Note that even in the italic cases„ CBLS resulted in lower values most of the times (see Tables 4, 5, 6)
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Fig. 4 Evolution of the likelihood distribution in a mission with 2
robots in Environment A, with ω = 0.75. a robot 1 after 200 decisions;
b robot 1 at the end of the mission; c robot 2 after 200 decisions; d robot

2 at the end of themission. The red line represents the initial distribution
when the mission started (Color figure online)

to environment B and C. Furthermore, the team size has a
main effect on the idleness value (F(5, 426) = 27051.872,
p < 0.001, partial η2 = 0.998), since the idleness val-
ues decreased as more robots were used. More importantly,
there was also a clear effect of the algorithm towards the
idleness values (F(7, 426) = 244.655, p < 0.001, par-
tial η2 = 0.858), which explains the differences obtained
with each of the patrolling strategy tested. Pairwise com-
parisons between all algorithms across all combinations of
team size and environment revealed that in the case of the
CBLS algorithm, the idleness valueswere significantly lower
(p < 0.001) than all the other algorithms, except specific
cases in Environment B and C, as shown in Table 7. In spe-
cific cases, especially in Environment C, the differences were
not significant. However, descriptive statistics still show that
the idleness values in CBLSwas lower inmost of these cases.

Moreover, there was a statistically significant interaction
effect between team size and algorithm towards the idle-
ness values (F(14, 426) = 43151.575, p < 0.001, partial
η2 = 0.827). As expected, pairwise comparisons between
team size groups revealed that in all algorithms the idle-
ness value significantly decreased as the team size increased.
There was also a statistically significant interaction effect
between the environment and algorithm towards the idle-
ness values (F(35, 426) = 13.665, p < 0.001, partial
η2 = 0.627). Pairwise comparisons between environments
revealed that in all algorithms the idleness value significantly
decreased in environment C compared to environment A.

Looking now at the CBLS results in more detail, the evo-
lution of the likelihood function of a patrolling mission with
two robots in environment A and ω = 3/4 is illustrated in
Fig. 4. Note that each robot apprehends a different distribu-
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(c) Environment C.

Fig. 5 Overall results running CBLS with ω = 3/4 and different team sizes

tion depending on its acquired experience, and has no control
or knowledge on the internal state of its teammates. As
expected, peaks in the histograms emerge with the increasing
number of decisions. Despite that, it is also clear that values
fluctuate around the initial uniform value (represented by the
red line in each chart), which comes as a consequence of
robots having to visit every vertex vi ∈ G.

Moving on to the performance of the algorithm, the box-
plot charts in Fig. 5 represent the IV values, in seconds, for
each tested team size on all three maps. The average value is
represented by a black cross, providing a generalized mea-
sure: the average graph idleness, IG (cf. Eq. 5). The ends of
the blue boxes and the horizontal red line in between corre-
spond to the first and third quartiles and the median values
of IV , respectively.

As expected, the idleness values decrease when the num-
ber of robots grow. Despite the increasing performance
displayed by the CBLS approach, the individual contribu-
tion of adding more robots gradually reduces with team size.
Group productivity will eventually converge with a large R.

In theory, productivity should grow during size scale-up;
however, spatial limitations increase the number of times
the robots meet and beyond a given R, it is argued that they
will spend more time avoiding each other than effectively
patrolling on their own.

Another interesting aspect illustrated in the boxplots of
Fig. 5 is the fact that the median ĨG is close to the mean IG
in all configurations, being usually lower. Thismeans that the
IV values are positively skewed, i.e. most of the values are
below the average, IG , and as a consequence, most outliers
are above the third quartile.

On a more general note, visual inspection of the trajecto-
ries of robots using CBLS showed that the patrolling routes
change over time so as to adapt to the system’s needs, mak-
ing it difficult to predict the robot’s behavior, as opposed to
most strategies presented in Portugal and Rocha (2013a, b).
This is in fact one of the key advantages of using a distrib-
uted online approach, as the system will continuously adapt
even to simple events that occur during the course of the mis-
sion, e.g. taking longer for a robot to reach a vertex due to
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Fig. 6 Topological map of the “ISR-Floor0” environment

an unexpected obstacle, eventual navigation recovery behav-
iors that delay visits to the following vertices, robots traveling
at different speeds (cf. Sect. 5.2.2), robot failures (cf. Sect.
5.2.3), etc. The paths of each patrolling unitwill continuously
change, as robots have no physical restriction to move within
the whole navigation graph, in order to maintain a minimum
graph idleness according to the model presented.

This phenomenon, together with the promising results
obtained, proves the effectiveness of the approach and the
potential to be applied in actual security systems with phys-
ical teams of robots.

5.2 Experiments with physical robots

Multi-Robot Patrol ismainly a practical problemand, in order
for distributed intelligence systems to be useful in the real
world, it is essential to go beyond simulation experiments
and validate convincing solutions that prove the reliability of
the proposed strategy in more demanding scenarios. In this
section, the implementation of a system formulti-robot patrol
in a large indoor environment is presented. Fully autonomous
agents decide locally and sequentially their patrol routes
according to the state of the system, as previously described,
validating the CBLS distributed approach. Beyond the coor-
dination which arises from the distributed communication of
agents, it is also shown that the approach is scalable, robust to
robot failures, i.e. fault-tolerant, and supports heterogeneous
agents with different speed profiles.

Experiments were performed in a large indoor scenario,
namely the floor 0 of the Institute of System and Robot-
ics (ISR), in the University of Coimbra. Figure 6 shows

Fig. 7 Robots used in the experiments with the CBLS algorithm at
ISR

the extracted topological map on top of the 67.85 × 26.15
m environment, which was obtained using the algorithm in
Portugal and Rocha (2013c). The resulting topology is a non-
complete, connected and sparse graph, like most real world
environments.

When conducting experiments in the real world, one must
overcome noisy sensor readings, localization issues and even
robot failures, which are usually ignored or not precisely
modeled in simulation experiments. Therefore, a team of
six Pioneer-3DX robots (Robotics 2006), equipped with an
Hokuyo URG-04LX-UG01 laser with 5.6 m of maximum
scanning range, and a laptop on top was used, as seen in
Fig. 7. Each laptop runs the ROS navigation stack using the
Adaptive Monte Carlo (AMCL) algorithm for Localization
as done previously in Stage simulations (cf. Sect. 5.1), being
responsible for controlling the robot’s motion, which reaches
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Table 8 Experiments with 1 to 6 robots using CBLS (all values in
seconds)

CBLS

R IG max(IV ) ĨG σ

1 377.10 562.49 414.80 103.31

383.98 526.14 425.22 98.97

392.05 580.43 431.52 106.70

2 170.16 298.77 175.33 45.52

175.51 331.85 180.45 49.99

183.56 343.25 185.55 50.81

3 108.71 173.24 102.94 29.72

110.59 163.69 106.35 31.79

122.04 240.90 118.54 39.44

4 85.37 140.68 77.31 26.26

87.43 153.58 90.06 27.31

90.34 168.27 83.73 29.67

5 65.79 121.86 56.62 24.25

68.40 114.93 68.84 20.73

69.12 136.32 63.26 23.71

6 54.67 82.03 52.14 15.10

55.60 87.50 56.25 14.88

60.09 116.08 54.70 21.41

speeds of up to 1 m/s. As for communication, a distributed
publish/subscribe mechanism has been used, due to its built-
in integration in ROS. Moreover, each robot runs its own
ROS master node (roscore), and multimaster communica-
tion is provided using the wifi_comm6 package. This means
that there is no central point of failure in the system. While
communication using a mobile ad hoc network deployed by
the robot themselves would be possible, in these experiments
we leveraged the existingWiFi infrastructure in the building.

We examine not only the average graph idleness along
time, IG , but also the median ĨG , standard deviation σ ,
and the maximum average idleness of a vertex along time,
max(IV ). In the beginning of each test, the graph of the
environment is loaded by every robot. A ROS node (i.e. a
ROS application) is responsible for advertising the start of the
mission and collecting results during the experiments. These
results are examined in the next sections.Note that this “mon-
itor” node does not centralize the approach nor does it give
feedback to the robots whatsoever. In fact, it is merely used
in this work to allow the extraction of experimental results.

Firstly, we conducted experiments with teams from one
to six robots using the proposed strategy and comparing it
with the TSP Cyclic Strategy. After this comparative analy-
sis, CBLS was tested by adding one, and then, two agents to
the patrolling mission with different speed profile, in order

6 Available at http://wiki.ros.org/wifi_comm.

Table 9 Experiments with 1 to 6 robots using TSP cycle (all values in
seconds)

TSP cycle

R IG max(IV ) ĨG σ

1 334.64 416.08 351.65 79.50

351.89 417.60 374.47 81.53

357.15 440.85 376.07 84.42

2 170.50 211.71 182.18 40.32

174.76 216.65 186.67 41.17

201.83 316.26 210.02 54.92

3 115.01 159.76 123.43 27.64

115.60 158.21 123.22 27.78

118.69 173.66 124.33 29.95

4 83.15 102.55 88.92 19.35

83.87 103.51 88.95 19.46

89.88 148.79 94.69 22.48

5 67.48 84.37 71.42 15.88

68.88 91.50 72.57 15.64

74.07 104.22 76.49 20.30

6 56.83 71.31 59.56 13.23

56.86 72.41 59.33 13.43

58.68 85.20 64.93 14.26

to prove that the approach adapts well even when hetero-
geneous teams of robots are used. In addition, to prove its
robustness, experiments which included failures in the robots
at different time instants were analyzed. Finally, we carried
out additional simulation experiments under the same con-
ditions of the experiments with physical robots conducted
in order to evaluate how realistic the simulation framework
used throughout this work is. Whenever CBLS is adopted
in these experiments, ω = 3/4 is considered. The total esti-
mated distance traveled by the robots during the course of all
experiments was 50 kms (� 31 miles).

5.2.1 Scalability and benchmarking

In this subsection, we focus on the scalability of the approach
and analyze its performance when compared to the TSP
Cyclic Strategy. As mentioned before, the latter is a recog-
nized classical approach for multi-robot patrolling which
finds the minimal tour that visits every vertex of the graph.
This can be obtained using heuristic methods like the
Chained Lin-Kernighan algorithm (Applegate et al. 2003).
The approach is theoretically optimal for the single robot
case, while in the multi-robot case, robots are equally spaced
along the tour, and the approach provides a near optimal
solution. Note also, that the deterministic route is computed
a priori and offline, in contrast to our approach, where agents
have the autonomy to decide their own moves online; and
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Fig. 8 Robots positions during
an experiment with 6 robots
using CBLS. Implicit formation
of dynamic regions
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Fig. 9 Evolution of the absolute reward values along three experiments with different team size

it assumes strictly homogeneous robots without support-
ing different speed profiles or robot failures, as opposed to
CBLS. In the particular case of the environment used in the
experiments (cf. Fig. 6), the TSP cycle tour is composed
of the clear rectangular cycle pattern that exists in the map,
with short detours to vertices with deg(vi ) = 1, namely
vi = {0, 1, 13, 16, 25, 29, 30}.

Using the team of Pioneer-3DX robots, experiments with
different team size from 1 to 6 robots were performed in
the “ISR-Floor0” scenario. Each experiment was repeated 3
times and the results are presented in Tables 8 and 9.

An initial analysis shows that the performance values
given by IG of both approaches are generally close in the
configurations tested. As expected for the single robot case,
the optimalTSP cycle outperformsCBLS (by� 9.5%).Nev-
ertheless, considering that CBLS is running with a single
learning agent limited to knowledge of its 2-step neighbor-
hood, the result obtained is optimistic. Theoretically, having
a larger horizon for the particular single robot case would
improve CBLS results, as there would not be any other con-
current teammate learner in the system and, consequently,
no interference with the agent’s long term plans would exist,
enabling it to look further ahead without the risk of regretting
its decisions.

Perhaps the most interesting aspect of these results is
the performance attained by the proposed strategy with
multi-robot teams. In the experiments conducted, the results

obtained with CBLS were slightly better than TSP cycle,
achieving differences in performance of up to� 3.5%.How-
ever, one cannot say that CBLS is superior to TSP for MRS
without conducting more tests. In general, both strategies
perform similarly in the collected results, with TSP present-
ing even superior results of around � 2.5% in the 4 robots
situation.

The tests in teams of growing number of robots show
that the approach is able to scale well, performing simi-
larly to TSP cycle in a near optimal way. This is remarkable,
considering the distributed and non-deterministic nature of
the approach, as opposed to TSP cycle. A careful look at
the behavior of the robots shows us that they tend to cre-
ate dynamic regions where each agent patrols more often.
Robots do not have any physical boundaries to restrict them.
However, the fact that our model takes into consideration the
teammates’ decisions results in the robots avoiding the areas
of their teammates. Thus, the patrolling strategy will tend to
implicitly create these regions, especially in lowly connected
environments, as clearly shown in Fig. 8. As a result, there is
little interference between agents.7 In addition, since robots
only share their current and future immediate goals, the band-
width requirements are negligible even with larger teams.

It is clear in Table 9 that by making the robots follow the
same global route, TSP cycle always presents lower values of

7 A video of an experiment with 6 robots running CBLS is available at:
https://sites.google.com/site/davidbsp2014/videos/auro.
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Table 10 Experiments with a team of 6 physical robots using CBLS
extended with one and two virtual agents (all values in seconds)

R IG max(IV ) ĨG σ

6 + 1 51.65 88.35 48.22 15.06

52.26 89.51 52.62 15.31

54.23 112.08 46.40 21.36

6+2 46.00 75.78 44.96 12.91

50.87 70.76 53.12 12.35

43.31 71.16 46.29 12.21
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Fig. 10 Overview of the results with teams of physical robots and
mixed teams of real and virtual robots, using CBLS

standard deviation, σ , when compared to CBLS, promoting
more uniform visits to vertices. This is also suggested by the
maximum average idleness of the vertices, max(IV ), which
are smaller than in CBLS.

Another interesting aspect observed in the experiments is
the median value, ĨG , being usually lower than the mean IG
for CBLS, especially with greater team size, thus confirming
the simulation results. As opposed, for TSP cycle, all ĨG val-
ues are higher than IG , meaning that the distribution is neg-
atively skewed and most of the values are above the average.

It is also worth referring another important disadvantage
of TSP in general, which is the fact that the computation of a
TSP cycle may become intensive or even prohibitive in large
graphs.

Looking more closely at CBLS in the experiments with
physical robots, a descending trend is shown by the absolute

reward values, given by the (1 − H) factor in (16), along
the experiments with different configurations. Figure 9 illus-
trates how these values evolve inmissionswith three different
team sizes. Despite the occasional peaks, such values tend to
decrease with the number of decisions. This is because, in
general, as the system progresses, the IV values of different
vertices become more balanced and, as a consequence, the
degree of belief inmoving to distinct neighbors comes closer.
In such situations, the closer the posterior probabilities are,
the higher the entropy becomes, therefore the reward val-
ues descend gradually. The peaks observed are justified by
situations where agents share nearby areas, temporarily per-
turbing the IV values in the neighborhood of other agents.
For that reason, peaks are more observable in larger teams.

5.2.2 Heterogeneous teams

In the previous section, the number of robots R was lim-
ited to the physical robots available. However, the distributed
patrolling method used supports an arbitrary high team size.
In this section, the aim is to further explore the scalability of
the approach and test it with teams of heterogeneous robots.

Being a distributed strategy composedof concurrent learn-
ing agents, the team should not only adapt to the system’s
state but also to different robot profiles. Hence, virtual agents,
running in the stage simulator, were added to the physical
team, resulting in a mixed and interacting team of real and
simulated robots, which communicate seamlessly. It is note-
worthy that adding virtual simulated agents to the physical
teams of robots was only made possible by the hardware
abstraction layer of ROS and its modular structure.

Virtual agents have the same properties of the ones used
in the simulation experiments. Thus, they travel slower than
the physical robots. Three trials were conducted with a total
of 7 agents composed by 6 physical robots and 1 simulated
robot; and three more trials were performed with a team size
of 8, composed by 6 physical robots and 2 simulated ones.
Similarly to (Iocchi et al. 2011), the software layer is used
unchanged both on real robots and in simulation.

Results in Table 10 show that the overall values of IG ,
max(IV ), ĨG and σ are within the expected, following the
trend shown in Table 8. The additional virtual agents are
integrated into the remaining team and are able to interact
with teammates. In addition, their contribution to the global
performance is minor, as expected. This happens not only
because of the progressive decrease of individual contribu-

Table 11 Experiments with a
team of 6 physical robots with
one and two failures during the
mission (all values in seconds)

Team size R IG max(IV ) ĨG σ Mission time (τ )

6 (failure at 300s) 65.46 101.38 59.79 19.41 608.28

6 (failure at 150s) 68.00 107.16 68.10 17.43 642.98

6 (failure at 150s and 250s) 70.02 132.35 67.65 22.96 661.76
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(b) Failure at 150 s.
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(c) Failure at 150 s and 250 s.
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Fig. 11 Evolution of the idleness along time using CBLS with teams of six physical robots with failures. a Failure at 300 s. b Failure at 150 s. c
Failure at 150 and 250 s. d Without failure (for reference)

tion of each robot as team size grows, but also due to lower
speed at which these robots travel. The boxplot of Fig. 10
illustrates this trend.

It is noteworthy that incorporating robots that travel at
different speeds with strategies that solve the MRPP with
predefined routes, such as TSP cycle, would not be suitable
because maintaining a uniform distance between each robot
would not be possible unless all robots were limited to travel
at the speed of the slowest robot.

5.2.3 Robustness/fault-tolerance

One of the main advantages of providing the patrol robots
withmeans for deciding theirmoves in the environment is the
absence of a centralized coordinator, which would represent
a critical point of failure. A distributed autonomous robotic
system, such as the herein presented, enables redundancy,
remaining functional if some of the agents fail.

To demonstrate the robustness of the approach, three
experiments using the Pioneer 3-DX robots were planned. In
these experiments a robot is shut down at different instants

of time, aiming at studying the effect of the failures in the
overall performance, as well as how the system evolves.

In all three tests, the team starts with six robots. In the first
test, a robot is shut down 300 s into the experiment. Similarly,
in the second experiment, a robot is shut down after 150 s.
Finally, in the third experiment, one robot is shut down after
150 s and a second robot is shut down after 250 s. The other
robots assume that a teammate has failed when no message
has been received from it within 2 min.

Table 11 indicates that the results obtained in the first
two experiments resemble those obtained with five robots.
In these experiments, the average idleness values converged
after the failure occurs. Figure 11 shows the evolution of the
average vertex idleness in the three experiments. For refer-
ence, the evolution of the average vertex idleness without
failure was also added (cf. Fig. 11d). In the first experiment,
since approximately half of the mission was spent with six
robots, the final performancewas slightly better and the over-
all mission time τ was shorter than in the second experience,
i.e. it took longer in the second test to fulfill the mission
because the failure occurred earlier.
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Table 12 Additional simulation experiments with 1 to 6 robots using
CBLS in the “ISR-Floor0” environment (all values in seconds)

CBLS

R IG max(IV ) ĨG σ

1 382.92 552.84 399.75 103.16

383.31 553.49 400.05 103.28

383.81 554.15 400.69 103.41

2 166.20 291.34 170.35 46.10

177.13 332.76 177.83 45.06

179.51 291.15 174.15 48.66

3 109.18 203.13 108.08 30.09

111.68 192.94 111.53 28.38

116.36 236.34 114.05 38.82

4 86.40 137.84 78.01 27.24

87.75 134.10 75.64 29.00

88.85 162.99 89.71 28.07

5 62.48 105.63 60.02 19.49

66.31 111.70 61.92 24.83

67.97 113.18 66.53 18.80

6 51.88 84.79 50.17 12.53

54.30 91.50 56.41 13.32

58.49 110.46 52.53 22.16

The two failures in the third experiment greatly influenced
the final performance results in the test. However, it is also
clear that extra time would be needed in order to converge to
higher values, as the final average graph idleness IG was
much lower than the 4 robot case. Nevertheless, one can
verify that in all three cases, when the failure occurs, the
values of IG and ĨG tend to increase after a while.

The evidences taken from these results show the robust-
ness of the system, proving that it enables graceful degrada-
tion, as long as at least one robot remains operational.

Discussing now the hypothetical event of communication
failures, when a message is not received by a robot, it does
not update the instantaneous idleness time values and, conse-
quently, it maintains incomplete information about the state
of the system. This information becomes more incomplete
with the increasing number of undelivered messages. Addi-
tionally, when robots are close to each other, if messages
are not received, they may decide to patrol nearby locations
and interfere with their teammates’ plans. The success of
resolving such situations hugely depends on each robot’s
local planner and the ability to avoid dynamic obstacles. In
our work, this is taken care of by the ROS navigation stack.
Therefore, we expect CBLS to be robust to communication
failures and only slightly degrade its performance when the
communication errors rate is moderate.

If the robots cannot communicate at all, the performance
of the algorithm will drop strongly. This will occur espe-

cially in larger teams, which are much more influenced by
the lack of coordination in the multi-robot system, as robots
will constantly interfere with one another. In this case, robots
will act greedily, will not share their intentions and will often
compete for the same vertices. Performance is expected to
gracefully degrade if only communication with neighbors
is allowed. In this situation, robots will be able to coordi-
nate themselves by not competing to the same goals and
not interfering with teammates. Despite that, they will not
have contact with agents that are further away and as a con-
sequence they will make uninformed decisions quite often.
We have conducted a similar analysis in our past work (Por-
tugal and Rocha 2013b), where we employed an identical
distributed communication protocol, despite using a different
patrol strategy. Therein, wewere able to verify the robustness
of the multi-robot patrolling algorithm to communication
failures.

5.2.4 Additional simulations in the environment used in the
real world experiments

In this section, we discuss additional simulations by employ-
ing the CBLS approach described in this paper with varying
team sizes in the same map used for the real world experi-
ments. Our goal here is to verify the realism of the simulator
using the same software layer thatwas used in themulti-robot
experiments.

Similarly to Sect. 5.2.1, we have deployed teams of robots
with R = {1, 2, 3, 4, 5, 6} in the “ISR-Floor0” environment
and under the same conditions described therein. However,
this timewehave used the stagemulti-robot simulator instead
of the real robots hardware. Once again, we have run three tri-
als for each configuration. The results obtained are depicted
in Table 12.

Comparing Table 12 with Table 8, it can be seen that the
results drawn from simulation tests are very close to those
obtained with the real robots. This resemblance translates
into an average difference of 1.55 % in IG values, 5.49 % in
max(IV ) values, 2.75% in ĨG values, and 4.05% inσ values.
These values are remarkably low, which suggest that these
simulations can be used with a high degree of confidence to
estimate the actual results with physical robots.

Nevertheless, the results extracted from the additional
simulations tend to be marginally lower to those obtained
with the real robots, and the variance between each different
trial within the same configuration is inferior. Thus, it is our
belief that multi-robot simulations in stage can provide an
accurate yet slightly optimistic approximation of real world
results, and the lower variance is possibly linked to real phe-
nomena that are not fully modeled in simulations such as
wheel slip, robot assembly properties or delays in process-
ing sensor data and producing actuator commands.
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Fig. 12 A Simulation in the
“ISR-Floor0” environment with
a team of 6 robots

Figure 12 illustrates a snapshot of a simulation with 6 vir-
tual pioneer robots in the environment. The results reported
demonstrate how realistic the simulations are in the realm of
multi-robot applications such as patrolling.

6 Conclusions

In this work, cooperative multi-agent learning has been
addressed in order to solve the patrolling problem in a dis-
tributed way. Each robot decides its local patrolling moves
online, without requiring any central planner. Decision-
making is based upon Bayesian reasoning on the state of
the system, considering the history of visits and teammates’
actions, so as to promote effective coordination in the behav-
ior of patrolling agents. Concurrent reward-based learning
has been adopted given that, in this domain, the decompo-
sition of the problem reduces the complexity of the general
mission by distributing computational load among each inde-
pendent learner.

Experimental results have shown that the method is able
to effectively tackle the problem, since it can deal with uncer-
tainty and the actions are selected according not only to
prior knowledge about the problem, but also the state of the
system at the time, resulting in adaptive, effective and dis-
tributed cooperative patrolling. Moreover, it was shown that
our Bayesian update method can be applied in different types
of environments, independent of their topology, withstands
failures in robotic patrol units, and accomplishes exceeding
performance. In fact, when compared with other state of the
art approaches through simulations, CBLS generally outper-
forms them independently of team size, and in the real world
experiments conducted, the approach was able to obtain near
optimal results, which is particularly remarkable given the
limited search space considered and distributed nature of the

approach. Thus, this proves the potential of the proposed
multi-robot patrolling strategy for real world applications.

In the future, it would be interesting to relax the assump-
tion of perfect communication, testing the performance of
CBLS under communication failures or allowing only local
interactions between robots within a certain range. In fact,
we would expect to obtain similar results as those tested in
Portugal and Rocha (2013b), which showed that distributed
patrolling approaches are robust to communication failures,
performance degrades with increased ratio of failures, and
limited communication range allows the team to coordinate
and not compete to visit the same vertices of the graph,
although keeping incomplete information about the state of
the system. Finally, addressing the issue of scalability, we
intend to work on estimation methods for dimensioning the
size of the team of robots in a given patrolling task according
to the environment topology and temporal constraints.
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7 Appendix: Extended details of the simulations
with CBLS with different ω

See Tables 13, 14, 15, 16, 17, 18, 19, 20, 21.
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Table 13 Experiments using CBLS in Environment A with ω = 1.0
(Extended version of Table 1)

CBLS, ω = 1.0

R IG max(IV ) ĨG σ

1 1409.80 4064.31 1748.41 652.75

1438.08 4109.37 1769.69 651.19

1488.47 4129.36 1803.30 666.48

2 679.83 1694.14 800.66 265.30

686.26 1682.06 803.57 271.16

757.67 1753.50 852.23 275.37

4 366.86 882.43 437.92 163.37

400.51 889.05 458.52 174.76

439.48 931.07 485.30 174.30

6 240.54 1328.39 300.35 121.31

267.66 1375.58 325.23 125.26

275.87 1399.79 319.15 124.77

8 172.51 541.57 201.94 88.31

191.95 549.59 212.86 93.91

199.88 562.83 217.96 93.09

12 159.81 488.03 199.66 77.72

170.32 488.54 202.42 77.56

176.42 484.81 202.39 76.95

Table 14 Experiments using CBLS in Environment A with ω = 3/4

(Extended version of Table 1)

CBLS, ω = 1.0

R IG max(IV ) ĨG σ

1 1408.98 3096.21 1711.80 568.39

1431.33 3136.20 1752.78 572.40

1456.31 3158.46 1769.98 575.72

2 667.86 1402.55 866.45 239.24

689.36 1387.68 840.66 237.29

701.47 1428.39 903.10 242.48

4 325.78 726.43 435.49 124.32

366.02 713.29 415.59 123.99

382.02 745.25 460.85 125.31

6 218.21 467.63 197.02 82.43

236.43 511.42 232.39 86.67

239.32 506.76 233.20 85.18

8 159.69 390.02 156.83 67.46

165.36 398.74 161.13 68.84

177.30 420.30 178.12 70.69

12 117.47 269.19 153.57 49.81

119.62 271.06 157.63 45.61

125.64 262.38 145.01 47.41

Table 15 Experiments using CBLS in Environment A with ω = 2/3

(Extended version of Table 1)

CBLS, ω = 2/3

R IG max(IV ) ĨG σ

1 1260.44 2856.95 1709.81 476.38

1345.07 2912.23 1788.10 487.89

1365.13 2916.27 1773.84 493.46

2 678.40 1663.71 807.96 239.29

690.69 1661.83 794.35 232.78

736.11 1751.91 889.34 254.32

4 369.59 806.64 441.57 133.91

371.22 811.65 448.51 135.88

373.83 817.76 456.50 137.97

6 249.28 531.77 242.99 89.94

250.62 532.01 242.36 89.44

253.30 535.53 245.33 90.11

8 180.38 474.79 231.62 73.83

182.09 478.97 236.24 75.04

182.12 478.06 234.86 74.56

12 126.82 410.10 168.42 67.26

134.53 423.72 178.26 69.30

140.41 430.74 181.47 69.06

Table 16 Experiments using CBLS in Environment B with ω = 1.0
(Extended version of Table 2)

CBLS, ω = 1.0

R IG max(IV ) ĨG σ

1 1122.90 2044.08 1018.16 457.70

1249.11 2065.41 1076.69 493.75

1376.34 2170.45 1142.87 494.10

2 553.82 1286.68 558.61 165.76

563.73 1206.82 563.61 162.73

607.63 1316.28 588.17 171.25

4 263.99 448.00 259.19 61.57

285.59 476.20 280.81 62.10

305.05 478.35 293.22 66.53

6 170.98 381.55 167.94 51.97

198.31 401.16 182.54 53.96

222.70 419.39 195.62 55.56

8 132.59 220.06 133.52 30.78

144.44 217.15 134.21 29.64

153.06 233.74 148.90 31.65

12 101.80 233.21 102.04 38.83

108.82 236.44 102.28 37.84

114.03 256.90 121.09 42.88
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Table 17 Experiments using CBLS in Environment B with ω = 3/4

(Extended version of Table 2)

CBLS, ω = 3/4

R IG max(IV ) ĨG σ

1 1069.64 1795.61 1027.41 271.18

1105.76 1821.11 1154.11 281.00

1156.57 1837.88 1271.98 289.89

2 534.43 916.10 557.74 132.26

540.65 911.42 560.57 130.78

595.91 936.18 592.55 132.21

4 247.48 451.45 275.25 64.92

284.90 478.55 313.92 66.06

295.50 457.61 287.12 64.77

6 172.82 301.91 182.31 39.94

202.49 317.15 199.40 41.07

203.00 315.29 199.47 40.67

8 128.01 229.38 135.00 29.70

137.86 236.41 140.86 30.44

162.35 249.12 154.95 31.33

12 86.85 174.99 92.48 28.95

100.96 185.89 100.93 30.35

101.63 183.82 101.10 29.77

Table 18 Experiments using CBLS in Environment B with ω = 2/3

(Extended version of Table 2)

CBLS, ω = 2/3

R IG max(IV ) ĨG σ

1 1174.01 2120.82 1062.78 371.03

1201.13 2126.26 1075.88 377.12

1224.77 2147.52 1088.69 376.99

2 524.36 816.96 589.95 132.85

554.68 792.60 563.56 130.61

582.96 764.89 531.46 127.20

4 272.41 430.71 273.76 65.82

280.73 439.63 278.03 64.71

296.91 462.76 304.25 68.10

6 181.68 327.67 188.65 41.99

199.51 351.73 213.95 45.00

201.57 346.75 211.44 45.43

8 138.08 229.10 140.14 32.95

142.92 234.02 145.80 33.76

146.50 236.58 147.95 33.85

12 89.40 183.76 92.21 40.48

94.06 188.40 95.90 41.11

99.02 193.74 100.46 42.06

Table 19 Experiments using CBLS in Environment C with ω = 1.0
(Extended version of Table 3)

CBLS, ω = 1.0

R IG max(IV ) ĨG σ

1 666.09 799.52 673.18 63.14

712.50 804.82 709.72 60.61

727.35 839.55 698.41 68.13

2 349.34 517.75 346.91 43.86

351.84 510.28 342.40 43.50

376.08 535.08 367.44 44.91

4 171.51 210.56 170.33 17.78

182.24 214.17 178.76 18.66

197.98 222.87 194.01 19.84

6 122.75 159.38 122.03 14.20

127.84 161.40 125.24 14.47

129.27 160.77 125.18 14.58

8 90.22 133.57 84.95 11.93

99.50 142.91 97.59 13.16

100.71 144.77 98.23 12.95

12 70.66 102.38 69.80 15.15

75.66 103.90 69.97 14.74

79.98 113.51 83.77 16.85

Table 20 Experiments using CBLS in Environment C with ω = 3/4

(Extended version of Table 3)

CBLS, ω = 3/4

R IG max(IV ) ĨG σ

1 662.66 816.26 658.82 63.03

694.51 812.54 662.17 62.38

696.09 857.30 729.51 64.28

2 342.27 470.40 336.87 38.02

350.22 468.29 338.92 37.74

374.46 484.96 362.90 38.51

4 163.58 230.44 166.70 17.03

179.46 236.46 179.22 18.62

183.17 228.86 167.54 19.97

6 118.34 149.03 117.21 9.92

119.92 149.93 117.39 10.31

125.82 155.39 126.26 10.76

8 85.86 108.84 91.81 7.78

87.03 105.59 83.15 7.85

97.86 112.22 94.06 8.07

12 62.55 94.62 60.87 12.25

62.92 94.93 61.09 12.29

63.53 95.05 61.41 12.28
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Table 21 Experiments using CBLS in Environment C with ω = 2/3

(Extended version of Table 3)

CBLS, ω = 2/3

R IG max(IV ) ĨG σ

1 676.24 784.01 671.57 61.26

683.51 801.12 630.69 59.98

706.62 849.22 726.69 63.59

2 345.47 422.23 341.38 29.23

364.69 433.50 369.60 31.86

367.98 414.72 338.12 29.90

4 176.77 201.32 158.10 15.83

183.43 218.17 185.09 17.54

187.45 219.61 191.46 18.39

6 118.23 159.20 117.87 11.42

128.31 166.27 128.68 12.15

130.50 162.68 126.44 12.34

8 87.84 100.73 83.66 7.87

93.54 107.79 94.87 8.50

94.14 108.09 92.18 8.02

12 59.92 91.54 62.85 12.83

62.75 92.31 62.32 12.42

69.90 100.44 74.22 14.17
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