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Abstract— Urban search and rescue (USAR) missions can
benefit a great deal from teams of mobile robots endowed
with advanced perception capabilities. To effectively collaborate
with humans, these robots should have situation awareness
about their robotic and human teammates, for intuitive de-
cision making. Moreover, robots should be able to contextually
share information so that humans can benefit from augmented
situation awareness provided by robots, and at the same time,
actions taken by the robots be transparent to humans.

In this paper, a knowledge-based framework for human-
robots collaborative context awareness in USAR missions is
proposed. The main contributions are: an ontological repre-
sentation of contexts at mission, agent, scenario, and team
levels of the mission; a knowledge base integrating different
tools required for such scenario; and an efficient and robust
knowledge sharing strategy. The framework is efficient in terms
of communication delay, capable to cope with communication
failures and different event frequencies, and scalable in terms
of team size.

I. INTRODUCTION

Mobile robots can help humans in urban search and
rescue (USAR) missions with their perception, actuation, and
communication capabilities. Mobile robots can, for example,
help firefighters in finding victims and fire sources, floor-
mapping, and providing tele-presence in an urban fire sce-
nario. In addition to these capabilities, they are redundant and
stress-proof [1]. However, unstructured and unpredictable
environments present a new set of challenges for mobility,
perception and communication [2], [3], therefore humans are
are also required in the loop, in addition to robots autonomy.

Previous collaboration efforts between robots and humans
in USAR scenarios demonstrated the need for representing
robot’s perception in a human comprehensible format and
developing intuitive reasoning methods, so that robots actions
should seem plausible to a human operator [4]. Moreover,
the robot teams should also compensate for the absence of
a reliable communication infrastructure, as communication
has a significant effect on the performance of multi-robot
systems in search and rescue missions [5].

In this paper, we report research that has been done in
order to address this problem of human-robot collaboration
by devising: a knowledge representation framework, homo-
geneous to all the robots, and capable of reasoning based
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on rules provided by humans; and an efficient and robust
knowledge sharing strategy that can aid robots in sharing
their knowledge for better decision making. The knowledge
concepts are based on those contextual information that can
influence the decision making at individual and team levels.

The rest of the paper is organized as follows. In section II,
we discuss related work and background. Section III presents
the collaborative context awareness framework. Section IV
presents and discusses experimental results obtained both in
simulations and with real robots in a firefighting simulated
scenario. In section V, conclusions are summarized.

II. RELATED WORK

The use of robots in USAR scenarios has gained impor-
tance for the last decade with their participation in important
disasters and crisis management [2], [6]. Moreover, robot
teams have proven to be faster in search and rescue missions
in an indoor scenario as compared to a single robot [7]. The
pioneering deployments of robots in USAR scenarios used
teleoperation, wherein human operators were easily stressed
and fatigued due to the lack of situation awareness [2], [6].
This has led to the rise in demand for autonomous robots.
Hence, a lot of work has been done to improve mobility,
mapping, localization, deployment and connectivity [1], and
has also been applied to control robot teams in USAR
missions [8]. However, the increase in robots’ autonomy
creates the need for trust and transparency, leading to the
requirement of contextual information and feedback [9].

These past experiences emphasized the need for intuitive
human-robot collaboration in USAR missions, in order to
decrease the cognitive workload on humans. In [10], three
functions were identified for effective collaboration with
robots: collaborative control, effective communication, and
adaptive attitude. The authors stressed the importance of
context awareness to implement these functions and stated
that robot should have situation awareness for effective
collaboration, not only about its own situation but also
about the user’s situation. There has been a recent shift
from teleoperation and situation-based human intervention,
to higher level knowledge abstraction and knowledge-based
human-robot collaboration [11].

Collaborative context awareness and its definition in on-
tological form can help in seamless interaction between
robots and humans, and also for adapting robot behavior
as the situation evolves, because situation awareness is inti-
mately related with the notions of context, context awareness
and collaborative context awareness [12] from ubiquitous
systems [13]. In [14], collaborative context is defined as
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the “summary of the situation of the other devices in the
local range corrected by the local context”. A collaborative
context-aware system is defined in [12] as one that comprises
a group of entities capable of sensing, inferring and actuating,
which share information through communication to achieve
a common goal.

The fundamental requirement for context awareness is a
formal context model that is needed to represent the notion
of context in a way computers can interpret it. Context
modeling deals with how contexts are collected, organized,
represented, stored and presented. In [15], an ontological
knowledge representation is proposed for capturing relevant
information about robots and their capabilities in search and
rescue missions, which we have adapted for developing and
representing an ontology, narrowed down to the use case
described in Fig. 1, and enhanced with a reasoning module.

III. COLLABORATIVE CONTEXT-AWARE SYSTEM

In order to implement a collaborative context-aware sys-
tem, we studied the requirements of USAR missions in
basement fire scenarios and the expectations of firefighting
teams from assistive robot teams. A simplified use case
was developed, which includes some probable situations
and desired behavior from the robot team under those
circumstances. This use case is presented in Fig. 1. For
decision making and information sharing, the robot team
should be able to comprehend and take firefighters’ context
into account, in addition to the context of individual robots
and environment. Many of these features require the fusion
of knowledge from distributed robots, therefore representing
the collective understanding of the team is also required.

A. Architecture

As discussed in section II, the main requirements for
implementing context-aware collaboration with humans are:
(i) a framework for the collection of all the concepts related
to the mission; (ii) a knowledge acquisition and sharing
module that acquires information from the environment and
other agents, updates the states of concepts as required, and
shares them among teammates; (iii) a collection of rules
required for efficient registration of new information and
reasoning on the existing one; and (iv) an event management
strategy to share events and related information among
robots and humans, such as time of detection, location, etc.
The architecture of the proposed system, along with the
aforementioned modules, is presented in Fig. 2 and Fig. 5.
Each one of these modules is detailed below.

1) Ontology: It is a knowledge representation method
to represent key concepts, their properties and constraints,
and relation between these concepts. Based on previous
studies related to the study of USAR missions [15], and
our discussions with firefighters/crisis management teams,
we summed up the contextual concepts and divided them
into four top-level classes, as depicted in Fig. 3.

Team Based Context class is incorporated to include in-
formation that can help us take advantage from multi-robot
cooperation. Some examples of these advantages are: repre-

An incident had been reported to the Fire Fighting Command
Center (CC) about a fire outbreak in the basement of a
residential apartment. The Firefighters (FFs) team arrived near
the incident and has started planning its response. For the
reconnaissance phase, some FFs aided by a team of mobile
robots entered in the apartment with the task of finding events,
such as victims, fire outbreaks and other hazards, such as
structural collapse, or inflammable materials near fire. The
team was divided into smaller groups, where a FF led a team of
robots and exchanged information using an handheld Android
device. This device served as wireless router for the team, and
it also provided information about FF location and mobility
status to the robot team and the robot team sent a map to the
FF with events location. The robot team started exploring the
area and each robot could find victims using face detection
and sound source localization features [16], and could detect
fire using classification methods [17]. These events were au-
tomatically propagated to other connected teammates (robots
and humans), along with their representation on a complete
map, built by fusing its local map with the maps obtained
from other robots [18], [19]. All the robots maintained a list
of active teammates and in case any teammate was lost or out
of range (out of network coverage), then this information was
reflected in the reduction in size of active teammates and the
same was also conveyed to the FF. When robots joined back,
all the robots shared their complete list of unattended events.

Fig. 1: Use case – fire outbreak in a basement garage.

Fig. 2: Collaborative context-aware system architecture.

senting teammates’ poses on a global map, known and shared
by all teammates; selecting the best candidate to perform
tele-presence; compensating for a teammate’s immobility,
etc. These top-level classes were further classified in an hier-
archical form and the ontology hence developed is depicted
in Fig. 3. The Thing class in the figure is the root class of
our ontology and it represents the set of instances from all
the classes. This ontology will serve as the entry point to
the knowledge base of robots. Along with the classes shown
in the figure, this ontology also covers object properties
(relations between instances of the classes), and data-type
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Fig. 3: USAR ontology.

Fig. 4: Rule base.

properties (relations between instances and data values). The
proposed ontology comprises 323 triplets, wherein a triplet
is composed of a subject, a predicate, and an object [20]. A
triplet on a 64-bit system takes 144 bytes of memory.

2) Rule base: It is a collection of facts and rules. The
rules are provided as conditional statements to assert facts
and derive new facts from the existing ones. Facts are
stored in the fact base as a declarative predicate expressions
(relation between concepts), whereas rules are stored in
the form of predicates with logical implications to describe
relations between facts. The rule base together with ontology
is stored in the knowledge base.

In our implementation, the rules are divided into three
categories based on their complexity: basic, class-relation,
and convenience rules. Basic rules are used to assert basic
facts, such as instantiation or initialization with data-type
properties initialization. Class-relation rules are used to
assert relation between classes. Convenience rules are more

complex rules built upon the previous two categories, and
are used for advanced assertions and reasoning, such as
instantiating an event with all the background information, or
checking duplications in the knowledge base, etc. A snippet
of the three types of rules definition is given in Fig. 4. The
size of the fact database, in terms of triplets, can be found
by calculating the number of new instances and relations.
For example, creating an instance of Fire Detected uses one
triplet, whereas creating a relation between two classes re-
quires 3 triplets, one for each instance of their corresponding
class and one for the relation between instances.

B. Knowledge acquisition and sharing

Since a USAR scenario is highly dynamic, a software
framework is needed to perceive these changes and reflect
them in the knowledge base. The knowledge acquisition and
sharing strategy with respect to a given robot is depicted in
Fig. 5. The robot obtains information about the environment
using its own sensors, as well as from other agents (both
humans and robots) and Command Center via wireless com-
munication. After pre-processing, the information is classi-
fied and the following entities are derived: context classes
defined in the ontology; relation between these classes; and
the data-type properties of the classes. These information
is then updated to the knowledge base. For instance, map
meta-data obtained using a simultaneous localization and
mapping (SLAM) technique has to be merged with other
robots’ maps to estimate agents’ poses in a global reference
frame. These poses are the instances of Location class given
in Fig. 3, besides being spatial data-type properties of the
agents. The same information is also used to obtain object
relations (e.g., vicinity) between different agents or between
agents and landmarks. The information, as illustrated in
Fig. 5, is exchanged in two ways: using a service for on-
demand queries, and using advertisement/subscription for
broadcasting periodic and special information (e.g. events).

Event management system: In addition to the knowledge
acquisition and classification module, an event management

Fig. 5: Knowledge acquisition and sharing strategy.
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system is required, which can not only store information but
also propagate the same to other agents.

All the events that are detected by a robotic agent are
shared with its teammates after storing the information in
local knowledge base. The events are moved to a list of
events that have not been attended yet (unattended events).
In order to compensate for communication loss or teammates
isolation from the network, when teammates join again, all
robots share their list of unattended events with them.

IV. RESULTS AND DISCUSSION

In this section, tests in simulations as well as with real
robots in a firefighting simulated scenario are presented. The
system was simulated in terms of communication delay, as
efficient context sharing with variable team size is an impor-
tant aspect of collaborative context awareness in scenarios
without a reliable communication infrastructure. Then the
system was validated with real robots in a representative
firefighting scenario along with the underlying knowledge
acquisition tools and reasoning capability.

A. Simulations

The proposed framework was tested for the delay in
knowledge sharing for different frequencies of event occur-
rence and different team sizes.

1) Effect of frequency of event occurrence: We conducted
experiments with 3 teammates for different frequencies rang-
ing from 2 Hz to 10 Hz. Even though events are expected
to be detected at much lower frequencies in a real scenario,
the rationale for testing such high frequencies was that the
same strategy of sharing events can be applied for sharing
dense sensor data, which can be more useful for noise
removal and statistical analysis. The team size chosen for
frequency analysis was 3 as this is the least number of robots
required for firefighter’s handheld device localization using
RSSI of Wi-Fi adapter and trilateration. Stochastic events
were generated based on the cumulative Poisson distribution,

pλ (r) =
λre−λ

r!
, λ = 2, 3, . . . .10, (1)

wherein λ indicates the average number of events per second.
The delay ∆j for a given event instance j was defined as

∆j = max
1≤q≤n

T j
q − T j

d, (2)

wherein T j
d is time of detection of event by agent d, n is

the team size and T j
q is the time of event registration by

another agent q receiving the event.
We simulated 100 events for each frequency and the

results obtained are depicted in Fig. 6. The average delay, ∆̄,
increases with the frequency of events generation, because
more messages sent through the network leads to higher
communication latency. However, even for the frequencies
simulated, which are larger than usually found in a real
scenario, the delay observed can be considered negligible
for sharing events.

2) Effect of team size: The performance in terms of
information sharing delay (∆̄) was also assessed through
simulations for different team sizes varying from 2 to 5 and
a fixed average frequency of event occurrence equal to 10
Hz. It can be observed from the results depicted in Fig. 7
that there is a steady increase in ∆̄ with team size. As all the
teammates generate events at a frequency of 10 Hz, sharing
and instantiating these events leads naturally to an increase
of the system delay. Nevertheless, these results show that the
system is able to share knowledge with a negligible delay for
frequencies of event occurrence commonly found in a real
scenario, e.g., 10 or 100 times lower than the ones simulated,
and with an acceptable delay for higher frequencies and
larger teams.

B. Real robots

In order to implement the use case (see Fig. 1), we
integrated other sub-modules developed by our research team
with the knowledge extractor, as depicted in Fig. 8. The
MRSLAM node [18], [19] is built on top of GMapping
SLAM algorithm [21] and provides relative transformations
between different robots’ frames. It is used to obtain a
complete map and also to represent various features of
the mission on a common map shared by all the robots.
Fire, temperature, visibility and smoke detection nodes are
based on the multi-sensor fusion and classification technique
described in [17], while the victim detection node is based on
the work described in [16]. Protégé [20] was used to define
the ontology for our system. KnowRob [22] was employed
for knowledge processing, i.e. for rule base implementation,
interaction with ontology, and query processing.

For mapping and event detection, each of the Pioneer R©

P3-DX robots used in the experiments was equipped with
a Hokuyo R© laser range finder, and two of the robots either
had a thermopile array (TPA81) or a Microsoft Kinect R©.
The firefighter (FF) was assumed to wear an Android smart-
phone as a simulated handheld device. This device was used
to interact with the system and estimate the FF’s motion
status (standing, walking, and running) by processing data
from the embedded inertial sensors. It was also used as a
mobile hotspot to connect all the teammates. A RSSI-based
localization module was implemented for estimating the FF’s
pose in the robots’ map using trilateration.

1) System integration results: The framework was verified
by simulating a fire and victim scenario in a 5x5 m2 test
area, as depicted in Fig. 9. The arena, even though small
compared to a real scenario, was targeted to demonstrate all
the features of the system. Two fire events were simulated
using tungsten halogen bulbs and a mannequin was used to
represent a victim. The event agent down was identified if
the FF stayed in status standing for more that 30 secs. Any
of these events, when recognized by a given robot, were
successfully propagated to other teammates after storing the
information in its knowledge base.

Three robots were deployed to autonomously navigate in
the scenario and each one of the robots was responsible for
identifying one of the three kinds of events considered in the
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Fig. 6: Delay for different frequencies of occurrence.
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Fig. 7: Delay for different team sizes.

Fig. 8: Knowledge extraction for reasoning and efficient
communication.

Event No. of events No. of detections Final Count
fire 2 28 1

agent down 1 10 1
victim 1 4 1

TABLE I: Comparison of actual number of events present in
scenario, number of events detected, and number of events
left after removing duplicates.

experiments (see Table I). The information gathered by the
3 robots were merged for a global representation using data
from the MRSLAM module. Their individual detections as
well as the global representation are depicted in Fig. 10.

Even though the real events were limited to two for fire,
one for victim and one for agent down, the experiments
demonstrated that the actual sensing resulted in multiple
detection instances of the same events, and which were
spatially dispersed, because of the robots’ movement during
sensing. The comparison of the count of the actual events
in the scenario and the detected events in given in Table I.

Fig. 9: Firefighting simulated scenario and event sites: fire
outbreaks are indicated by red ellipses, the handheld device
by the blue ellipse, and the victim with the green ellipse.

These results are further discussed in the next subsection.1

2) Reasoning and resiliency against communication fail-
ures: The system herein proposed was designed to detect the
inclusion of new teammates, or reduction and re-addition of
teammates. This is important because, for instance, a robot
might become temporarily out of range and join again the
team later. In these situations, all the events stored in the local
knowledge base are re-propagated within the team, so as to
synchronize the knowledge of all the teammates. In order
to cope with the problem of overloading the network with
redundant information, the reasoning aspect of the system is
employed.

A decentralised duplication removal routine was designed,
which goes through all the stored events, self-detected and
shared by the teammates, before sharing the knowledge with
a new teammate. Events located within a distance of 4 m
were assumed to be the same. The result after the use of the
duplication removal module for one of the robots is shown
in the last column of Table I. The 28 instances of fire present
in the scenario were reduced to a single event after removing
duplicates.

1A video presenting the system and one of the experiments can be
downloaded from: https://goo.gl/JKVZf4.
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Fig. 10: Local event detections: fire (a), agent down (b), and
victim (c). In the global representation (d), these events are
also represented: fire (red ellipse), agent down (blue ellipse),
and victim (green ellipse).

V. CONCLUSION

The knowledge-based system for collaborative context
awareness was proposed along with the development of an
ontology that covers high-level aspects of USAR missions.
By taking a firefighting scenario as example, the framework
was integrated with knowledge acquisition tools for fire,
firefighter-in-danger and victim detection events. A decen-
tralized map-merging tool was used to represent these events
and teammates’ pose on a global map.

The framework was found to be advantageous for efficient
knowledge sharing and for incorporating user-defined rules.
The use of an ontology helped in representing and correlating
different concepts of the mission, which otherwise would
have been a daunting task. The results presented in this paper
for a simulated scenario allowed to successfully validate
the system’s main features, which are context sharing and
context-based reasoning.

The applicability of the framework can be enhanced by
providing human rescuers with an intuitive representation
of the scenario and events on a semantically annotated
global map, e.g. providing humans with the list of events in
their vicinity through the firefighters’ handheld device. The
real power of the proposed knowledge-based system can be
tapped by incorporating rules for robots’ decision making
that take into account the prevailing situation, thus invoking
context-sensitive behaviours.
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