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Abstract
A new method for robotics camera calibration based on a linear computation and using a

coplanar group of calibration points is presented in this paper. This new method suppresses the

constraint presented by the RAC calibration model of having an incidence angle between the

optical axis and the calibration plane of at least 30 degrees. The parameters are obtained based on

a multi-step calculation, and the accuracy of the parameters is strongly increased when used on a

iterative calibration. Experimental and simulated analyses results are presented. A comparative

analysis between this new method and the RAC method is presented.

1. Introduction
From the mathematical point of view, an image is a projection of a three

dimensional space onto a two dimensional space. Geometric camera calibration is the
process of determining the 2D-3D mapping between the camera and the world
coordinate system.

Most of the camera calibration techniques are polarized between approaches
closely related to the classical Photogrammetry approach where accuracy is emphasized,
and the approaches geared for automation and robotics, where speed and autonomy are
emphasized.

The RAC calibration model presented by R. Tsai [9][10] was the first camera
calibration model that included radial geometric distortion, uses linear computation
methods and a coplanar group of points for calibration. However, the RAC model
requires that the angle of incidence between the optical axis and the calibration plane be
of at least 30 degrees.

The new method for robotics camera calibration presented in this paper, uses a
coplanar group of points, suppressing the constraint of having an incidence angle of at
least 30 degrees required by the RAC model. The computation of the calibration
parameters is linear, and can be decomposed into four steps: (1) rotation matrix
calculation, (2) translation over X and Y axis and horizontal uncertainty scale factor
Sx, (3) effective focal length, radial distortion coefficient and translation over Z, and (4)
image scale factors, image center coordinates and ortoghonality deviation of the image
referencial axis.

The major contribution for this new method relates with the computation of the
rotation matrix. The basic principle that leads to the rotation matrix calculation was
first presented by Haralick [8] and is based on the fact that there is sufficient
information on the 2D perspective projection of a rectangle of unknown size in 3D
space to determine the camera look angle parameters. With the knowledge of the
rotation matrix, the translation vector and some of the intrinsic parameters can be



obtained using the relationship that defines the same ratio between the image (u'',v'')
and camera (xc,yc) coordinates to obtain the translation in X and Y axis and the
horizontal uncertainty scale factor, followed by the relationship used in the RAC model
to obtain the Z component of the translation vector, and the distortion coefficient k1.
The procedure that we use for the computation of the effective focal length f is different
from the one presented by Tsai. In this new method we assume an initial value for the
focal length, and we update this value using the Gauss lens law and the perspective
transformation determined on the plane that includes the line of sight and the optical
axis of the lens.

With the knowledge of these parameters (Rot,Trans,f,k1), the image scale factors,
image center coordinates and ortoghonality deviation can be obtained by using the
perspective transformation and the transformation between real image coordinates to
pixels image coordinates.

2. Camera Model
In the following, the underlying camera model (fig. 1) is described briefly, making

note of the parameters that need to be calculated through the calibration procedure.
The overall transformation from the 3D object coordinates P(x,y,z) to the

computer image frame buffer coordinates p(uf,vf)  can be decomposed into the
following steps:

1) Rigid body transformation from the object world coordinates to the 3D camera
coordinates system

x y z x y zc c c
T T= ⋅ +Rot Trans       (2.1)

where Rot is the rotation matrix and Trans the translation vector.
2) Projection from 3D camera coordinate P(xc,yc,zc) to the ideal image coordinate

(u'',v''), using perspective projection with pin-hole camera geometry
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3) Transformation between ideal perspective projection coordinates and real
(distorted) perspective projection coordinates, using just one distortion coefficient
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where D=1+(1-4.k1

.Rideal
2)1/2, being Rideal

2=u''2+v''2 and k1 the radial distortion
coefficient.

4) Real image coordinate (ud
'',vd

'') to computer frame buffer image coordinate
(uf,vf) transformation

u u vf d d= ⋅ + ⋅a b +cx x x
'' '' v u vf d d= ⋅ + ⋅ +a b cy y y

'' ''
(2.4)

where cx and cy represent the image center coordinates (cu,cv) and the remaining
parameters relate indirectly to the image scale factors (kx,ky) and the orthogonality
deviation of the image frame buffer referencial axis (θ1,θ2) [6].

Assuming the geometry between the image axis and the frame buffer axis
presented in fig 1, the transformation between these coordinate systems can be
represented by
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Fig.1 - The camera model

3.Rotation Matrix Calculation
For the rotation matrix calculation we assume the existence of two tridimensional

coordinate systems both located at the camera lens center and defined as follows: 1) the
world coordinate system Wr defined orthoghonal and direct; 2) the camera coordinate
system Cr is also defined orthoghonal and direct, and the lens views down the Z axis.

The image plane is located at a distance f in front of the lens and is ortoghonal to
the optical lens axis. The axis of the image coordinate system Ir are parallel to the axis
of the camera coordinate system Cr.

The rotation matrix defines the transformation between the coordinate systems Wr
and Cr through the relationship Pworld= R.Pcamera, where R is an orthoghonal rotation
matrix defined as R=R(x,φ)*R(y,θ)*R(z,ψ), resulting
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With respect to the world coordinate system Wr, let (x,y,z) be the coordinates of
the image point (u'',v'',f) defined in Cr and obtained from

x y z u vT T
= ⋅R '' '' f

          (3.2)
Since the lens center is the origin of both coordinate systems, a line passing

through the lens and the point (x,y,z) consists of all multiples of (x,y,z). Hence, the line
whose perspective projection in the image is (u'',v'') consists of all the points

x y z x y zl l l l l l
T T Tx y z= ⋅λ

 for some constant λ.      (3.3)

In order to simplify this relationship, we assume that the swing angle ψ over the Z
axis is zero, so we define without loss of generality the relationship that follows:

x
y
z

x
y
z

f
f
f

l

l

l

l

l

l

L
N
MM

O
Q
PP
L
N
MM

O
Q
PP= ⋅

⋅ − ⋅
⋅ ⋅ + ⋅ + ⋅ ⋅
⋅ ⋅ − ⋅ + ⋅ ⋅

L

N
MMM

O

Q
PPP

λ
θ θ

θ φ φ θ φ
φ θ φ θ φ

cos
cos
sin

'

'

'

u
v
v

sin
sin sin u cos sin
cos sin u cos cos

'

'
          (3.4)

This relationship is valid, since if (u'',v'') is the point on an image whose ui-vi
plane is rotated by a swing angle ψ, then (u',v') are the coordinates of the corresponding
image point whose ui-vi plane is rotated by a zero swing angle (ψ=0), and they are
related by the relationship
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The basic observation that leads to the rotation matrix calculation, was first
presented by Haralick [8] and is based on the fact that there is enough information on
the 2D perspective projection of a rectangle's corners to determine the camera look
angles. Based on this, let us consider the existence of a rectangle of unknown size
located perpendicular to the Xw axis of  the Wr coordinate system (fig.2).
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Fig. 2 - Orientation of the rectangle for the rotation matrix calculation

 The corners of this rectangle are given by
P x y z

T
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T
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where x1>f, and the corresponding perspective projection in the image are
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Since the pixels coordinates of these points can only be obtained by means of the

image, we need to know in advance the image scale factors and the image center
coordinates. We solve this problem assuming some predefined values for these
parameters, using the same relationships that Tsai uses in the RAC calibration model
[9]. We assume an image center located at the center of the image frame buffer (256,
256), and scale factors given by the relationships kx=(Sx

.Nfx).(dx.Ncx)-1 and ky=dy
-1,

where Nfx is the number of frame buffer pixels, Ncx is the number of  CCD sensors in a
row, dx is the distance between CCD sensors in a row, dy that is the distance between
CCD sensors in a column and finally Sx that represents the horizontal uncertainty scale
factor. We assume in a first stage an unitary uncertainty scale factor.

Let us begin the calculation of the rotation matrix assuming a swing rotation angle
equal to zero (ψ=0), which defines the perspective projection points pi' based on the
relationship 3.5. With this assumption, we assume a predefined known swing angle ψ.
We also assume a predefined known focal distance f.

Using the relationship 3.4 in order to define the four projective lines of the
rectangle's corners, we obtain the next matricial equation, which is the basis of this
computation.
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with i=1..4 (3.6)
The equations 3.5 and 3.6 are sufficient to obtain the three Euler angles (ψ,θ,φ),

with all the λi, i=1..4, and the 3D coordinates of the corners as unknowns.



Through the analysis of these matricial relationships, we observe that the first and
third row of equation 3.6 for P1 and P2 are identical in order to x1 and z1. Conjugating
these two equations we establish that

f f⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ − =sin sin v cos u2 1θ φ θ φ φ' ' ' ' ' ' ' 'cos sinv u v u v u1 2 1 1 2 2 0d i d i d i   (3.7)
In an identical manner, the first and third row of equations 3.6 for P3 and P4 are

identical in order to x1 and z1+L, which establishes
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Multiplying 3.7 by (u3
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') and 3.8 by (u1
' - u2
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which by solving for θ yields
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The solution for φ is obtained through the same procedure used for θ, multiplying
equation 3.7 by (v4

' - v3
') and equation 3.8 by (v2

' - v1
') and subtracting, resulting
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Observing these last two equations, it is apparent that once ψ is known, then φ and

θ can be solved. The equation that leads to the solution for θ is not unique, since we
obtain a new expression based on the fact that the first and second row of equation 3.6
for P1 and P3 are similar in order to x1 and y1, and the first and second row of equation
3.6 for P2 and P4 are similar in order to x1 and y1+W. Using the same procedure as
before, we obtain an alternate and independent expression for θ, which is
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Combining these two expressions for θ we establish the relationship that together
with the equation 3.5 defines the expression that allows the calculation of the last Euler
angle ψ. Many of the terms included in these equations are ψ rotationally invariant.

Therefore the swing angle ψ is given by
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The values obtained for ψ present an ambiguity of 180 degrees, whereas the values
for θ and φ present an ambiguity of 90 degrees. Values outside this range for the pan
and tilt angles correspond to the camera looking into the hemisphere behind itself.



4. Translation over X and Y and uncertainty scale factor Sx
Until now, we assumed that the two coordinate systems Wr and Cr are located at

the same origin, and that there is no translation between them. This was not a problem,
as the computation of the rotation matrix does not require the knowledge of the
coordinates of the rectangle's corners.

Let us now suppose the existence of a translation vector T between both coordinate
systems. Once the rotation matrix is known, points defined in the coordinate system Wr
can be converted to  the  camera coordinate  system  Cr, based on  the relationship
Pcamera=Rot. Pworld (with Rot=R-1). From the ratio between the x and y coordinates of a
point  P(xc,yc,zc) defined in Cr and its perspective projection u'' and v'' coordinates on
the image, we establish the relationship

u y v x u y v xc c d c d c
'' '' '' ''⋅ = ⋅ ≡ ⋅ = ⋅ (4.1)

Up to now, we have assumed an unitary uncertainty horizontal scale factor, since
the rotation matrix calculation was not considerably affected by this assumption. This is
not the case for the translation vector. Since we assumed in a first stage a perfect pin-
hole camera geometry with a perfectly ortoghonal image and frame buffer coordinate
systems, and the relationship 4.1 remains valid even for image points radially distorted,
we obtain the following equation

S T k v c T k u c S k v c X k u c Yx x x f x y y f y x x f y rot y f x rot⋅ ⋅ ⋅ − − ⋅ ⋅ − + ⋅ ⋅ − ⋅ = ⋅ − ⋅b g d i d i b g
     (4.2)

by  combining  equation  4.1 with  the  referencial relationship Pcamera= R-1. Pworld
(with R-1=RT since R is orthogonal) and the relationships uf=Sx

.kx
.u''+cx, vf=ky

.v''+cy,
being Xrot= r11

.x+ r21
.y+ r31

.z, and Yrot= r12
.x+ r22

.y+ r32
.z.

With the knowledge of the uncertainty scale factor, the value assumed in the
beginning for the horizontal scale factor can be updated to be used in the remaining
calculations. If this value obtained for Sx is accurate enough, then its value will be one
if we obtain new  values for the rotation matrix and for Tx, Ty and Sx , using the
updated horizontal scale factor. We observed that this conclusion is not valid in the next
iteration, but we converge to it after a few iterations.

It is important to make note that the iterative computation of these calibration
parameters is performed assuming a perfectly orthogonal image and frame buffer
coordinate systems. In order to include the computation of this new parameter, new
values for Tx and Ty will be obtained, this time using equations 2.4 combined with
equation 4.1, and using the values obtained with the iterative computation for the
rotation matrix, Tx, Ty and radial distortion coefficient.

5. Translation over Z, Focal length f and Radial distortion
coefficient k1

The basic model that we use in this new methodology for camera calibration
follows the one presented by Tsai [9], but with a different focal length calculation. In
that model, in order to integrate the radial distortion, it is assumed the existence of two
conjugate points, one representing the ideal image point projection while the other point
corresponds to the distorted projection point in the image. The relationship between
these points is defined in equations 2.3 of the camera model.

Combining equations 2.3 and the perspective projection relationship yields
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1 d
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A more detailed study related with these last equations can be found in [9]. Both
equations include the effective focal length f. However, if we are using a calibration
plane that is ortoghonal to the optical axis, the focal length must be considered has a
predefined known parameter, since these equations can't find a correct minimum. We
solve this problem, using new equations for the calculation of the effective focal length
f. We obtain in a first stage the translation over Z and the radial distortion coefficient
using equations 5.1 assuming a known focal length value, followed by the calculation of
the effective focal length of the lens f.
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Fig. 3 - The Gauss lens model

We consider the existence of two different focal lengths, being one the effective
focal length f and the other the lens focal length f obtained through the lens
specifications (fig.3). The effective focal length results from the addition of the lens

focal length and the focusing distance foc (f=f+foc). Combining this observation with
the Gauss lens law, we establish the relationship
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resulting respectively for the focusing distance foc and for the effective focal length f
the relationships
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In order to obtain a more precise value for the effective focal length, we use this
last equation together with the equation that results from the coordinate ratio defined on
the plane that includes the line of sight and the optical axis of the lens, as show in
figure 4. From this coordinate ratio we obtain the relationship
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(5.6)
that together with the equation 5.5 defines the equations that we use to obtain the
effective focal length f.

6. Scale factors, Image center and Orthogonality deviation
of the image referencial axis

We have just described a procedure for the calculation of all the extrinsic
parameters as well as some of the intrinsic parameters. This set of parameters together
with the parameters whose values were assumed characterize the calibration model.
However the values of the parameters calculated are affected by errors due to the fact
that the values of the intrinsic parameters were assumed at the beginning.

Based on the knowledge of these parameters and using the relationships
u u vf d d= ⋅ + ⋅a b +cx x x

'' '' v u vf d d= ⋅ + ⋅ +a b cy y y
'' ''

(6.1)
we can compute a new solution to the intrinsic parameters ax, ay, bx, by, cx and cy.
The new values calculated for these parameters are much more accurate than the ones
initially assumed.

7. Iterative Calibration
Once we have calculated more accurate values for the intrinsic parameters

(ax,ay,bx,by,cx,cy.), more accurate calibration parameters can be expected if they are
used in an interactive calibration process. Based on that, we can recalibrate, using now
equations 6.1, instead of the relationships of the RAC calibration model.

This iterative procedure is controlled by the accuracy of the image disparity of the
projected calibration points. If the mean value of the image disparity converge to a
minimum then the iteration is stopped.

8. Accuracy Analysis
In order to obtain high accuracy ground truth for the behaviour of this new camera

calibration procedure we simulated the camera calibration setup, taking predefined
values for all the calibration parameters and using these values to obtain noise-free
homologue 2D-3D test and calibration points. Basically, our goal with these simulated
accuracy analyses is to see how much the values obtained for the calibration parameters
with the calibration process, miss the predefined values from which the calibration
points were obtained. We also analized the behaviour of this new method against to the
behaviour of the RAC calibration method, in special, its behaviour with increasing
radial distortion and with increasing non-orthogonal image and frame buffer coordinate
systems.

The results obtained with these simulated accuracy analysis are presented on
graphic I on which we can observe that the accuracy of this new method is considerably
better then the accuracy of the RAC method. However, we observed that this new
method decreases its performance when the radial distortion increases, while the RAC
model doesn't have its performance considerably change. This results from the fact that
in this new method we assume in the beginning the existence of non radial distortion. If
the radial distortion is considerably large, this assumption affects the initial values of
the iterative process in such a manner, that the convergence of the iterative procedure is
not so good as in the cases of relatively small radial distortion.



In the RAC method, if the calibration setup presents an orthogonality deviation of
the image frame-buffer referencial axis, which results on a calibration points distortion
rather than the radial distortion, its performance decreases considerably. This results
from the fact that the RAC model doesn't take into account this type of distortion. Yet
from the analysis performed with real images, this type of distortion affects the
calibration points, and is one of the reasons why the RAC model presents relatively
poor accuracy when compared with this new method (graph. II).

  
 Graph I - Comparative performance analysis between RAC method and Multi-Step method,

 using simulated images 1;orthogonal geometry : f=25mm , non-orthogonal geometry : f=16mm

(I):k1= -0.000567, θ1-θ2= -0.0627o;  (II):k1= -0.000786, θ1-θ2= -0.00601o

The behaviour of these two methods is independent of the focal length, and the
angle of incidence only affects the performance of the RAC model. As we can see, the
accuracy of the RAC model has better results if the calibration setup presents a non-
orthogonal geometry for the optical axis incidence.

Finally, the accuracy of the calibration parameters obtained with this new method
is extremely good, but it's slightly affected for situations of considerably large radial
distortion. In the case of the RAC model, the accuracy of the calibration parameters
changes considerably in the presence of ortoghonality deviation.

In  the analysis realized with real images, the performance of this new method was
always better than the performance of the RAC calibration model, confirming the
results obtained from the simulated analysis. However, we observed that this new
method is considerably dependant on the accuracy of the corners coordinates of the
rectangle. This dependence results from the fact that the calculation of the rotation
matrix is done using only the 2D coordinates of the rectangles corners, and no
minimum error computation is used. As a result, care must be taken in the selecction of
the rectangle corners, and with the accuracy of the 2D coordinates of the calibration
points.

9. Conclusion
A new methodology for robotics camera calibration based on a linear computation

and using a coplanar group of calibration points was presented. The main advantage of

                                                       1 One way of measuring the camera calibration accuracy is to see how much the projective line, that is the ray
starting from the lens center passing through the image point, misses the correspondent 3D object point. The
minimum distance between this projective line and the 3D object point is used as an accuracy camera calibration
measurement.



this new method for camera calibration  over  the RAC method, is that  it doesn't
require an angle of incidence between the optical axis and the calibration plane over 30
degrees, and the uncertainty factor  Sx is calculated during the calibration procedure.
This method is based on an  iterative multi-step approach, and the results obtained
through simulated calibrations and real calibrations prove that it is an improvement of
the RAC method.

  

Graph II - Comparative performance analysis between RAC method and
Multi-Step method, using real images in the calibration procedure (f=16mm).
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