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Abstract This article presents the full integration of
compact educational mobile robotic platforms built
around an Arduino controller board in the Robot
Operating System (ROS). To decrease the develop-
ment time, a driver interface in ROS was created
so as to provide hardware abstraction and intuitive
operation mode, thus allowing researchers to focus
essentially in their main research motivation, e.g.,
search and rescue, multi-robot surveillance or swarm
robotics. Moreover, the full integration in ROS pro-
vided by the driver enables the use of several tools
for data analysis, easiness of interaction between mul-
tiple robots, use of different sensors and teleopera-
tion devices, thereby targeting engineering education.
To validate the approach, diverse experimental tests
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A. Araújo · D. Portugal (�) · M. S. Couceiro · R. P. Rocha
Institute of Systems and Robotics, University of Coimbra,
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were conducted using different Arduino-based robotic
platforms.
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1 Introduction

Mobile robotics is a technological field and a research
area which has witnessed incredible advances for
the last decades [1]. It finds application in areas
like automatic cleaning, agriculture, support to medi-
cal services, hazard environments, space exploration,
military, intelligent transportation, social robotics,
and entertainment [2]. In robotics research, the
need for practical integration tools to implement
valuable scientific contributions is felt frequently.
However, roboticists end up spending an exces-
sive amount of time with engineering solutions
for their particular hardware setup, often “reinvent-
ing the wheel”. For that purpose, several different
mobile robotic platforms have emerged with the abil-
ity to support research work focusing on applica-
tions like search and rescue, security applications,
human interaction or robotics soccer and, nowa-
days, almost every major engineering institute has
one or more laboratories focusing on mobile robotics
research.

Earlier, the focus of research was especially on
large and medium systems. However, with recent
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advances in sensor miniaturization and the increas-
ing computational power and capability of microcon-
trollers in the past years, the emphasis has been put
on the development of smaller and lower cost robots.
Such low-cost platforms make affordable the exper-
imentation with a larger number of robots (e.g., in
cooperative robotics [3] and swarm robotics [4] tasks)
and are also ideal for educational purposes. With such
assumptions in mind, our group has been doing engi-
neering and research work with two Arduino-based
mobile platforms [5]: the TraxBot [6] and the Sting-
Bot.1 The choice fell upon Arduino solutions, since
it presents an easy-to-learn programming language
(derived from C++) that incorporates various com-
plex programming functions into simple commands
that are much easier for students to learn. More-
over, the simplicity of the Arduino to create, modify
and improve projects, as well as its open-source and
reduced cost makes it among the most used microcon-
troller solutions in the educational context [5].

Following this trend of research, this article focuses
on educational, open-source platforms that enable
researchers, students and robot enthusiasts to quickly
perform real world experimentation, having access to
the tools provided by the Robot Operating System
(ROS) [7]. ROS is currently the most trending and
popular robotic framework in the world, reaching crit-
ical mass and being the closest one to become the de
facto standard that the robotics community urgently
needed.

With the exponential growth of robotics, some dif-
ficulties have been found in terms of writing software
for robots. Different types of robots can have wildly
varying hardware, making code reuse nontrivial.
Opposing this tendency, ROS provides libraries and
tools to help software developers to create robot appli-
cations. ROS features hardware abstraction in low-
level device control, implementation of commonly-
used functionally, message-passing between processes
and package management. One of its gold marks is the
amount of tools available for the community like the
Stage simulator [8], navigation capabilities,2 visual

1http://www.isr.uc.pt/∼aaraujo/doc
2http://www.ros.org/wiki/navigation

SLAM [9] and 3D point cloud based object recogni-
tion [10], among others. Regular updates enable the
users to obtain, build, write and run ROS code across
multiple computers.

In the next section, general purpose and educa-
tional mobile robots are reviewed, with a focus on
those already integrated in ROS and on our Arduino-
based robot platforms. In Section 3, the main con-
tributions of this article are revealed and details on
the development of the ROS driver and its features
are presented. In the subsequent section, results with
physical Arduino-based robots and a team of mixed
real and virtual cooperating robots are presented and
discussed, to demonstrate the integration of Arduino-
based robots in ROS, as well as the easiness of extend-
ing the platforms with new sensors due to the ROS
driver. Finally, the article ends with conclusions and
future work.

2 Related Work

The following requirements, sorted by relevance, can
be expected from robots to be used for educational
purposes [11, 12]:

• Cost—Robots should be as cheap as possible to
overcome budget limitations and evaluate multi-
robot applications (e.g., swarm robotics);

• Energy Autonomy—Robots should have a long
battery life since they may have to operate long
enough during development and experimentation;

• Communication—Robots need to support wire-
less communication to increase the range of appli-
cations (e.g., multi-robot systems and networked
robotics);

• Sensory System—Robots should be equipped
with some form of sensing capability to allow
interaction between them and with their environ-
ment;

• Processing—Robots need to be able to process
information about other robots and the environ-
ment (e.g., sensing data).

The following subsection reviews popular educational
and research platforms available in the market, after
which we present the Arduino-based educational plat-
forms developed and evaluate them according to the
requirements presented above.

http://www.isr.uc.pt/~aaraujo/doc
http://www.ros.org/wiki/navigation
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Fig. 1 Some well-known educational and research mobile robotic platforms: from left to right, iRobot Create, Turtlebot, Mindstorm
NXT, e-puck, MarXbot, SRV-1 Blackfin and Pioneer 3-DX, respectively

2.1 Educational Robotic Platforms

Several off-the-shelf mobile robots with various sen-
sors and diverse capabilities are illustrated in Fig. 1.
We address their mobility within different ground
environments, capabilities, size, sensing/perception,
processing power, autonomous navigation and integra-
tion in ROS.

The iRobot Create [13] was designed for students
and researchers, being very popular in the robotics
community due to its small size and low cost. It is
a circular platform based on the well-known vacuum
cleaner Roomba, with extra space for larger sensors
(e.g., 2D laser range finder or Kinect). Many choose
to utilize an external computer that supports serial
communication to control the Create robot, due to
troublesome limitations in storage space and process-
ing power. A ROS driver for the Roomba iCreate has
already been developed (irobot create 2 1 package3

in the brown drivers stack),4 as well as the origi-
nal vacuum cleaning Roomba (roomba robot stack).5

Among the low cost platforms, the iRobot Create is
one of the most typical robots used in laboratory con-
text. As a consequence, there is a large number of
known frameworks supporting it, such as ROS and
Player/Stage [8]. Besides those, the emss iRobot Cre-
ate Framework6 not only provides an interface with
the iRobot Create hardware, but also a completely
emulated interface which mimics the hardware in
every type of sensing information.

In fact, a popular off-the-shelf robot, developed
at Willow Garage, has been built upon an iRobot

3http://www.ros.org/wiki/irobot create 2 1
4http://www.ros.org/wiki/brown drivers
5http://www.ros.org/wiki/roomba robot
6http://emssframework.sourceforge.net

Create: the TurtleBot.7 This is a modular development
platform incorporating an Xbox Kinect and an ASUS
eeePC 1215N netbook. TurtleBot provides 3D func-
tionalities and ROS out-of-the-box (through the turtle-
bot stack),8 being fully open source and exploring all
combined capabilities of its components.

The Mindstorms NXT [14] from Lego is an edu-
cational, academic robot kit, ideal for beginners. The
robot is equipped with drive motors, encoders and a
good variety of cheap sensors, like an accelerometer,
light, sound, ultrasound and touch sensors. Support for
interfacing and controlling this robot with ROS is also
available, through the nxt stack.9 Besides ROS, and
being a commercial platform, there is a wide range
of frameworks that either fully or partially support
the Lego NXT, namely NXT-G,10 Microsoft Robotics
Developer Studio,11 and Carnegie Mellon Robotic’s
Academy ROBOTC.12

The e-puck [15] is an educational swarm platform
for beginners. It has tiny dimensions with only 80 mm
of diameter, equipped with a vast set of sensors, like
microphones, infrared sensors, 3D accelerometer and
a VGA camera. Similarly, the MarXbot [16] platform
has 170 mm of diameter, being fully equipped with
infrared range sensors, 3D accelerometer, gyroscope,
and an omnidirectional camera. It has a good process-
ing power with an ARM 11 processor at 533 MHz.
Both the e-puck and the MarXbot are programmed in a
user-friendly scripting language, which uses ASEBA,
an event-based low level control architecture. In order
to interface it with ROS, a ROS/ASEBA Bridge has

7http://www.willowgarage.com/turtlebot
8http://www.ros.org/wiki/Robots/TurtleBot
9http://www.ros.org/wiki/Robots/NXT
10http://www.legoengineering.com/program/nxt-g
11http://www.microsoft.com/robotics
12http://www.robotc.net

http://www.ros.org/wiki/irobot_create_2_1
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http://www.microsoft.com/robotics
http://www.robotc.net
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been released (ethzasl aseba stack).13 Despite being
supported in ROS, and more recently in the Vir-
tual Experimentation Platform Coppelia Robotics (V-
REP),14 e-puck’s most compatible framework is still
Cyberbotics Webots.15

Additionally, the SRV-1 Blackfin [17] from Sur-
veyor is a small-sized robot equipped with tracks.
This robot has a good processing power with a
1000 MIPS at 500 MHz CPU, capable of running
Linux Kernel 2.6. It is equipped with two IR rangers
or optional ultrasonic ranging and a 1.3 MP camera.
It also supports Wireless 802.11 b/g communication
and various I2C sensors. Unlike the previous plat-
forms, SRV-1 Blackfin can be driven in rough terrains
due to its tracking system. At the time of writing,
only partial support for ROS is available through the
ros-surveyor16 stack, which offers a driver for the
Surveyor Vision System in ROS. According to the
manufacturer, the SRV-1 can also run onboard inter-
preted C programs or be remotely managed from a
base station with Python or Java-based console soft-
ware. Additional support is also available for Robo-
Realm machine vision software,17 Microsoft Robotics
Developer Studio, and Cyberbotics Webots.

Another educational robot is the SAR’s Bot’n Roll
ONE C.18 It has a differential configuration, supported
in a black acrylic base with 22 cm of length and a
weight of 1300 g. It provides two infrared obstacle
detection sensors with possibility to add extra mod-
ules as a line follower component, a LCD for interface
with the user (e.g., print program variables) and a
RGB color sensor. A USB-Serial (RS232) converter
allows the programming of the robot using an exter-
nal computer. In general, it is an excellent starting
kit for beginners. The ROS driver for this platform
is currently under development. Basic programming
is available using PICAXE editor,19 as well as C
programming through MICROCHIP’s MPLAB.20

The Hemisson from K-Team [18] is an aluminium
platform with 120 mm of diameter. The basic kit only

13http://www.ros.org/wiki/ethzasl aseba
14http://www.coppeliarobotics.com
15http://www.cyberbotics.com
16http://github.com/rene0/ros-surveyor
17http://www.roborealm.com
18http://botnroll.com/onec/
19http://www.picaxe.com/Software
20http://www.microchip.com/mplab

provides limited computational power and a few sen-
sors like 8 infrared light sensors, 6 of them for obstacle
detection and 2 facing the ground. It also provides
four SMD LEDs and a buzzer that emits sounds at a
unique frequency, used to assign the robot different
internal behaviors. This platform is extensible pro-
viding a front connector for I2C bus communication,
a left-side connector that allows flash-memory pro-
gramming and a right side connector that provides
serial port communication. It also supports cameras
and ultrasonic sensors beyond others. These exten-
sions may increase both computational power and
sensing capabilities. Despite not being integrated in
ROS, Hemisson is supported by Cyberbotics Webots.
Also, K-Team provides a PIC compiler that allows
users to program the robot in C, as well as software to
upload cross-compiled files.21

Among the larger, more equipped and more pow-
erful mobile robots, a reference platform for research
and education is the Pioneer 3-DX from Adept
MobileRobots [19]. This is a robust differential drive
platform with 8 sonars in a ring disposition, a high-
performance onboard microcontroller based on a 32-
bit Renesas SH2-7144 RISC microprocessor, offering
great reliability and easiness of use. Compared to
the previously referred robots, this robot has greater
weight and less affordability. Two different drivers are
available to interface the Pioneer 3-DX with ROS:
ROSARIA22 and p2os.23 Furthermore, MobileRobots
provides the Pioneer SDK,24 a set of robotics appli-
cations and libraries for the development of robotics
projects. The mobile robot base platform can also be
used through interfaces with several other third party
software systems, including Player,25 Matlab26 and
the Python and Java programming languages.

2.2 Arduino-Based Robotic Platforms

Even though most platforms referred in section II-
A provide open source software, they usually require
a slow learning curve and the hardware has lim-
ited expandability. Arduino solutions have recently

21http://www.k-team.com/mobile-robotics-products/hemisson
22http://www.ros.org/wiki/ROSARIA
23http://www.ros.org/wiki/p2os
24http://www.mobilerobots.com/Software.aspx
25http://playerstage.sourceforge.net
26http://www.mathworks.com
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Arduino board OMNI-3MD board

Fig. 2 Main hardware parts of TraxBot

appeared in the market to work around such issues.
For this reason, our platforms were built around an
Arduino control board [6] (Fig. 2), which accesses
the motor encoders and other information from the
power motor driver, like temperature and battery
state, being also able to send commands to the
motors, read sonar information and exchange mes-
sages natively through Zigbee. Although this sec-
tion briefly describes the platforms assembled in our
research laboratory, the proposed driver could be
applied to any other Arduino-based platform such as
the eSwarBot [11], the Bot’n Roll OMNI27 and several
others (cf., [2]).

The Arduino-based platforms under consideration,
namely the TraxBot v1 and v2 and the Stingbot are
depicted in Fig. 3. All these platforms’ processing
units consist of Arduino Uno boards, which include a
microcontroller ATmega 328p that controls the plat-
forms motion through the use of the Bot’n Roll
OMNI-3MD motor driver.27

As for power source, two packs of 12 V 2300 mAh
Ni-MH batteries ensure good energy autonomy to the
robots (around 2–3 h with a netbook atop). For dis-
tance sensing, three Maxbotix Sonars MB1300 with
a range of approximately 6 m were used. However,
and as experimental results depict in Section 4, the
sensing capabilities of the platforms can be easily

27http://botnroll.com/omni3md

upgraded with other sensors, e.g., laser range find-
ers, RGB depth sensors (e.g., Kinect), temperature,
dust and alcohol sensors, etc. Moreover, the platforms
have the ability to also include a netbook on top of an
acrylic support, which extends the processing power
and provides more flexibility. In our case, the ASUS
eeePC 1025C has been used due to its reduced price
and size.

The netbook provides Wireless Wi-Fi 802.11 b/g/n
communication to the robot and is dedicated to run
ROS onboard, providing the tools and means for
enhanced control of the robot. Additionally, the plat-
forms are also equipped with an Xbee Shield from
Maxstream, consisting on a ZigBee communication
module with an antenna attached on top of the Arduino
Uno board as an expansion module. This Xbee Series
2 module is powered at 2 mW having a range between
40 m and 120 m, for indoor and outdoor operation,
respectively.

Having specified the hardware and the platform
electronics, the modular control architecture of these
robots is summarized in Fig. 4. As Fig. 4 depicts,
the Arduino Uno board is used as the central compo-
nent of the system. The sonars range finders connect
to the Arduino board using its analog inputs. As for
the connection to the Bot’n Roll OMNI-3MD motor
driver, the pins A4 and A5 are used as I2C peripheral.
The Bot’n Roll motor driver has the ability to con-
trol the motion of the platform by benefiting from a

http://botnroll.com/omni3md
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Fig. 3 Arduino-based robotic platforms, a TraxBot v1; b TraxBot v2; c StingBot

PID controller for both velocity (linear and angular)
and position of the motors. The feedback is given by
the motors integrated encoders. The other analog and
digital ports available can be used to integrate more
sensors. The USB port of the Arduino board connects
to the netbook, receiving (RX) and transmiting (TX)
TTL serial data, which is decoded using a USB-to-
TTL serial chip. It is also possible to send and receive
information wirelessly, by benefiting from a ZigBee

shield, or other shields that can be mounted on top of

the Arduino board, providing a wireless interface.

2.3 Summary

Both Arduino-based platforms, the TraxBot and Sting-

Bot, meet all the requirements previously pointed out,

being ideal for multi-robot applications. Our platforms

have a similar price to the Mindstorms NXT, being

Fig. 4 Control architecture of the robotic platform
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more affordable than the Turtlebot, e-puck, MarXbot
or the Pioneer. In terms of energy autonomy, both
the TraxBot and the Stingbot can operate continu-
ously around 3 h, which is a common operation time
for compact platforms. As for communication, unlike
the iRobot Create and the Pioneer, which do not
offer multi-point communication out-of-the-box, our
platforms support Zigbee communication, which can
be extended with WiFi when using a netbook atop.
Having distance sensors and wheel encoders with
high resolution, these platforms have the flexibility to
incorporate even more custom sensors, as opposed to
the SRV-1 Blackfin or the Mindstorms NXT. Further-
more, its hybrid design enables not only to make use
of the 24 MIPS at 26 MhZ Atmega 328 microcon-
troller, but also the Intel Atom N2800 Dual Core at
1.86 GhZ processor of a typical netbook, similarly to
the Turtlebot and outperforming smaller platforms.

Additionally, when developing our educational
robots, other requirements were taken into account:
all hardware is either made of aluminium or stain-
less steel, being extremely robust; their dimensions
are adequate for both indoor and outdoor experiments;
and they have the ability to run ROS, thanks to the
driver described in the next section.

3 ROS Driver for Arduino-Based Robots

The key contribution of this work is the development
of an open source driver that enables the integration of
Arduino-based custom educational robotic platforms
in ROS, which can be used as a starting point and eas-
ily generalized to a wide variety of other robots also
based on Arduino controller boards.

3.1 Driver Description

The mrl robots28 driver herein presented was devel-
oped for integration and control of the platform
using ROS Fuerte version running on any Operat-
ing System that supports ROS. ROS provides tools to
interface with the Arduino family of boards through
the rosserial stack.29 However, rosserial does not
suit the requirements of this work due to the high

28http://www.ros.org/wiki/mrl robots
29http://www.ros.org/wiki/rosserial

overhead imposed by its data acquisition and com-
mands, which results in an excessive workload to the
Arduino microcontroller Atmel 328p SRAM. In fact,
the microcontroller presents limited SRAM memory
(only 2 Kbytes) and for standard ROS topics (float32
messages + message headers). Stress tests have shown
that only a maximum of 15 ROS topics can be used
in parallel and the message buffer is limited to 70
standard messages.

The most important feature in rosserial is to add
libraries to the Arduino source code, in order to emu-
late ROS language directly in Arduino code. This
results in high overhead in communication between
the PC running ROS and the Arduino board, due
to the structures used, for example when publish-
ing messages from the Arduino side. For this reason,
an alternative way of interfacing with the Arduino
board was adopted, and a custom driver was cre-
ated to communicate faster and transparently with
any Arduino board. We propose a solution based on
the serial communication stack,30 wherein messages
sent from the Arduino only consist of a simple data
packet sent through a standard serial communica-
tion protocol. The data packet comprises an array of
characters that are parsed to integer variables on the
PC/ROS side, decreasing significantly the communi-
cation load, thus overcoming the rosserial drawback.
This enables robust and fast communication in more
complex applications, such as teleoperation, cross-
ing of sensory information and the integration of the
navigation stack, among others. It also has the ver-
satility of using different protocols to exchange data
between the Arduino and the PC/ROS side, which
enables the creation of a customized and transparent
serial communication.

The Arduino firmware code was developed tak-
ing into account all components and their features,
which are required for the robots’ operation. In
Fig. 5 the architecture of the ROS Driver is illus-
trated. The power motor driver OMNI-3MD provides
libraries to control the motors (i.e., velocity or posi-
tion control), read encoders and temperature, as well
as setting the parameters for the initial configura-
tions of the PID controller, among others. The motor
driver is connected to the Arduino Uno through I2C

30http://www.ros.org/wiki/serial communication

http://www.ros.org/wiki/mrl_robots
http://www.ros.org/wiki/rosserial
http://www.ros.org/wiki/serial_communication
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communication. C/C++ language was used as
the programming language for the ATmega328p
microcontroller. Algorithm 1 illustrates the resident
Robot/Arduino Firmware code.

Algorithm 1. Robot/Arduino Resident Firmware
1:
2:
3:
4:
5:

#Omni3MD library  // main motor driver command functions 
#EEPROM library     // storage robot particular specifications: robot ID,…  
#Robot library    // range sonars acquisition, calibration, PID gains
#RobotSerialComm library    // protocol serial communication
#Standard libraries  

6:
7:

Setup Functions(); // PID motor gains, used ports, encoders scale, set I2C 
connection,…

8: Streaming Functions(): 
9: sendEncodersReads()

10:
11:

Read encoder 1 and 2 pulses;
Serial reply encoder data;

12: sendEncodersSonarsReads()
13:
15:
16:

Read encoder 1 and 2 pulses;
Read sonars 1, 2 and 3 ranges;
Serial reply encoder and sonar data;

17: sendRobotInfo()
18:
19:
20:
21:
22:
23:

Read from EEPROM robot ID;
Read internal board temperature;
Read Omni-3MD driver firmware version;
Read TraxBot battery voltage;
Read firmware version;
Serial reply info data;

24: Main loop(): 
25: Switch (action):
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

sendEncodersReads;
sendEncodersSonarsReads;
sendRobotInfo;
Omni-3MD auto-calibration motors for controller purposes;
Set PID gains;
Receive Xbee message;
Send Xbee message;
Xbee node discovery;
Set prescaler from encoders;
Set desire encoders values;
Robot info;
Single encoders reading;
Single sonars reading;
Linear motors move with PID controller;
Linear motors move;
Stop motors;
Reset encoders;
Debug action;                 // (Des)Activate debug option  
Start streaming data;   // Activate data streaming
Stop streaming data;

The protocol developed to interface ROS with the
Arduino board consists on sending a frame with the
configuration shown in Fig. 6. The character ‘@’ is
used at the beginning of every frame, and commas are
used to separate the different parameters. Character ‘e
identifies the end of the frame. Regarding the con-
tents of the protocol, the first parameter corresponds
to the action command; like move motors, and others
(Algorithm 1). Following the action command, com-
mas separate the arguments of the designated com-
mands, which have been defined as signed integers.

Let us suppose, for instance, that we want the plat-
form to move with a linear velocity of 0.5 m/s and
an angular velocity of -0.8 rad/s, the frame would be,

“@11,500,-800e” representing “@command,(lin vel
× 103),(ang vel × 103)e”.

In the ROS side, a computation process (robot
node) has been programmed, which starts the
serial connection using the cereal port library of
serial communication stack and receives streams of
information from the Arduino board, in the robot.
Whenever a data frame is received from the serial
channel (line 21 of algorithm 2), a callback is trig-
gered, publishing the corresponding message into
appropriate ROS topics, thus providing updated infor-
mation to the rest of ROS ecosystem. Algorithm 2
shows how the driver works.

Algorithm 2. PC/ROS Driver.

1:
2:

#ROS_msgs library      // ROS type messages
#Cereal_port library //  protocol serial communication  

3: Robot data callback(): 
4: UpdateOdometry()
5:
6:
7:
8:

Read encoder pulses;
Pulses converted to cartesian pose ( );
Publish updated pose in a ROS topic;
Publish tf: odom      base_link

9: DriveRobot()
10:
11:

Callback to subscribed ROS topic with differential velocity commands ;
Send to robot angular and linear speed;

12: RangeUltrasonicSonars()
13: Publish the range of the ultrasonic sonars in ROS topics;
14: XbeeMsgs()
15:
16:

Publish ROS topic with Xbee message received by the robot;
Callback to subscribed ROS topic with message to send to other robots;

17: UpdateRobotInfo()
18: Publish ROS topic with robot information;
19: Main loop(): 
20: Establish a serial connection;
21: Receive serial data from robot (activating ROS callbacks)

In Fig. 7, it is shown how a ROS user applica-
tion node (e.g., a mapping algorithm) can interact with
robot node by sending velocity commands to the base
and receiving information like sonar range, odome-
try, transforms, etc. One of many ROS tools, rxgraph,
has been used to allow real time monitoring of the
available nodes, as well as topics exchanged by each
node. Note also the interaction with other existing
nodes in ROS like the wiimote node,31 used for tele-
operating the robot through a Nintendo’s Wii remote
controller (WiiMote), and the hokuyo node,32 which
provides sensor readings from an Hokuyo laser range
finder to the robot. ROS also provides many different
built-in sensor message types, which are appropriately
assigned to the topics of each component of the driver.

The ability to stream data from the Arduino board
is an interesting feature of the driver because it does

31http://www.ros.org/wiki/wiimote node
32http://www.ros.org/wiki/hokuyo node

http://www.ros.org/wiki/wiimote_node
http://www.ros.org/wiki/hokuyo_node
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Fig. 5 Diagram of the ROS driver architecture

Fig. 6 Frame protocol to receive/send data from/to the Arduino Uno

not require a synchronous communication involving

requests and responses between ROS and the Arduino

board. Hence, it frees the serial communication chan-

nel since it only needs a starting request and can be

stopped at any time. Furthermore the mrl robots driver

has the ability to enable and disable debugging options

to track eventual errors.

3.2 Driver Features and Potential

The driver presented in the last subsection offers sev-
eral features, many of which are inherited by the direct
integration with the ROS middleware. The driver
enables the robot interface with ROS tools for data
processing and analysis, like 3D visualization (rviz),
logging real-time robot experiments and playing them

Fig. 7 rxgraph nodes and topics provided by the mrl robots driver
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offline with (rosbag/rxbag), plotting data (rxplot) and
visualizing the entire ROS network structure (rxgraph,
e.g. Fig. 7).

Beyond the easiness of using the available tools,
ROS also provides effortlessly integration of new
sensors in the robot without needing high hardware
expertise, as will be demonstrated in Section 4. This
opens a new range of possibilities since several well-
known stacks from the ROS community comprise
algorithms for robotics development such as the navi-
gation2 and slam gmapping33 stacks. These are useful
since they free users from programming low-level and
basic behaviors for their robots by reusing the code
that is available in ROS, thus staying more focused
in the main aspects of their scientific experimenta-
tion thanks to fast prototyping. Moreover, they enable
users who are beginners in robotics to easily deploy
a robot running with basic low-level and navigation
behaviors, thus being an excellent tool for educational
robotics. The interaction between high-level programs
and the available resources in Arduino-based plat-
forms enables hardware abstraction. This brings the
possibility of using standard interfaces of any other
mobile robotic platforms also integrated in ROS.

Another interesting feature of the driver is the sim-
plicity for enabling heterogeneous multi-robot coordi-
nation and cooperation. Running the same hardware
abstraction layer in the team of robots, ROS takes
care of the communication messaging system using
a publish/subscribe method, which enables all kinds
of interaction between members of the same team,
as seen in Fig. 8 where an example of a ROS net-
work is depicted. It is also shown how the network
has the flexibility to work with a large variety of
integrated solutions, which enables the assignment of
particular tasks for specific members of the team.
Robots of the same team may have different purposes
and perform different tasks, meaning that heteroge-
neous teams with different capabilities can coexist.
For example, in a search and rescue scenario, the
cooperation of a multi-robot team may arise from per-
forming different tasks with hundreds or thousands of
heterogeneous robots. In a scenario where a swarm of
flying scouts are deployed [4], these scouts may search
and mark objective points to pass them on, in real time,
to ground robot surveillance teams [3].

33http://www.ros.org/wiki/slam gmapping

Although ROS is not the only framework that has
the potential to integrate homogenous and heteroge-
neous robotic teams, it also allows integrating mixed
real and virtual robot teams sharing the same sce-
nario and mission. Using the driver herein presented
together with Stage [8] or Gazebo [20], the same
code can be used in both physical robots and virtual
simulated robots coexisting in the same network. In
addition, the communication between real and virtual
robots is completely transparent since they are both
running ROS. This major feature is ideal to perform
multi-robot tasks, allowing the use of a large popu-
lation of robots, when no extra physical robots are
available, being cheaper and promoting safer test sce-
narios, by making interactions between physical and
virtual world objects [21].

Multi-robot simulation is available for ROS
through wrappers of Stage and Gazebo, which support
a high number of interacting robots depending on the
computational complexity of the algorithm. However,
the opportunity to execute nodes on multiple CPUs
in the same network turns the upper bound of the
team size arbitrarily high, removing the overloading
processing of a single machine.

Finally, another particularity of using the ROS
driver developed is a means to improve security in
multi-robot tasks, for example in a military opera-
tion, where it is possible to create a specific encrypted
node for a robot of the team [22], making the sys-
tem more robust to attacks. Additionally, it is always
possible to monitor, log and debug at any time all
exchanged information and specific nodes running in
the network.

4 Results and Discussion

In order to experimentally evaluate the ROS driver
developed to Arduino-based mobile robots, some tests
were conducted using physical robots and simulated
robots in Stage. Besides running virtual agents, the
simulator allows to compare physical robots’ odom-
etry and pose estimation with the ground truth infor-
mation. We present experimental tests that validate the
aforementioned claims and we also show cooperative
behaviors with real multi-robot systems, as well as
mixed teams of real and virtual robots.34 The aim is

34A video of the experiments is available at: http://www.isr.
uc.pt/∼aaraujo/videos/JINT2013

http://www.ros.org/wiki/slam_gmapping
http://www.isr.uc.pt/~aaraujo/videos/JINT2013
http://www.isr.uc.pt/~aaraujo/videos/JINT2013
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Fig. 8 Network topology example with multiple robots, sensors, tele-operation devices and applications

to evaluate the driver flexibility when interacting with
different sensors, the ability to easily integrate new
sensors in the Arduino-based robot, update the ROS
driver, the driver portability to different robotic plat-
forms, and the driver integration with the existent ROS
tools.

4.1 Driver Flexibility to Interact with other Nodes
in ROS Network

The first experiment aims to demonstrate the driver
flexibility to interact with different sensors (Fig. 8).
The TraxBot v1 platform was equipped with a laser
range finder (LRF) and its performance was compared
against the native ultrasonic range sonars on a simple
mapping task [23]. The Hokuyo URG-04LX is a LRF
classified as an Amplitude Modulated Continuous
Wave (AMCW) sensor [24].

In order to test the sonars performance, an L-shaped
scenario of 2 m by 1.6 m was set up, with a 1 m
width (Fig. 9). To perform this test, two lateral sonars

placed at ±45◦ were used (see Fig. 10a). The front
sonar was used for reactive obstacle avoidance, given
that in mapping situations, due to the low resolution
of the sonar sensor, the projection of walls and obsta-
cles detected by the cone of the front sonar is placed in
front of the robot, which is highly unreliable in most
situations as shown in Fig. 10b.

In this test, the robot movement relies solely on
odometry. In Fig. 9a, it can be seen in the first recti-
linear motion that the sonars readings are stable (red
dots) and coincident with the ground truth scenario
limits (blue line). Green dots represent the midpoint of
sonars acoustic beam while turning. Some issues arise
during the 90◦ rotation, since the sonar beam cone has
an opening of approximately 36◦, thus presenting a
loss of resolution (see Fig. 9a). In the case of Fig. 9b,
the Hokuyo LRF was used to perform the same test.
The laser field of view was set to 180◦ with a rate
of 512 samples per reading. It is possible to observe
some discrepancy in some readings especially at the
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Fig. 9 Evaluation of the ROS driver in Traxbot v1 with different sensors. a Ultrassound Range Sensors integration; b Hokuyo URG-
04LX Laser Range Finder integration

end of the movement, due the odometry position error

accumulated during motion.

As can be observed, the ROS driver presents a high

flexibility on interacting with other nodes in the ROS

network. In this particular case, a simple mapping task

was considered by comparing the performance of the

TraxBot when equipped either with sonars or LRF,

showing that both sensors communicate seamlessly

with the ROS driver. The trajectory of the robot was

also followed successfully due to the motor control

component of the driver developed.

4.2 Driver Portability to Different Robots
and Integration in ROS

In the second experiment, the goal was to demonstrate
the portability of the driver to different Arduino-based
robots using other sensors, which i) enables testing the
driver in different variants of Arduino-based robots;
and ii) illustrates the integration of these robots and
the corresponding ROS driver with hardware devices
and diverse algorithms that are already available in
ROS. Hence, a mapping task, which includes the inter-
action with a laser range finder (LRF) and a joystick

Fig. 10 Noisy range situations: a issue during rotations using lateral sonars; b the front sonar was not used for mapping
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Fig. 11 Map generated by the Traxbot v2 with hector mapping in rviz

controller was performed. This time, the Traxbot v2
platform was equipped with an Hokuyo LRF and tele-
operated with a WiiMote for a mapping task using
Hector Mapping [25], which is available in the hec-
tor slam stack.35

The teleoperation node runs on the eeePC netbook,
which connects to the ROS network. The node sub-
scribes a ROS topic with the information about the
Wiimote state, and assigns functions for each pressed
button, publishing then velocity commands that are
interpreted by the ROS driver, which in turn generates
motor commands sent to the robot. The wiimote driver
uses Bluetooth to pair the joystick with the netbook.

Additionally, the hector mapping node subscribes
to the scans provided by the hokuyo node and pub-
lishes the estimate of the robot’s pose within the
map, while generating the map. Figure 11 presents the
resulting map in rviz, and corresponding robot trajec-
tory, which was obtained with hector mapping on our
experimental lab arena.

In a related experiment, we show not only the possi-
bility to have coordinated behaviors with two physical
robots, but also the possibility to include a third simu-
lated robot running in stage, forming a mixed team of
two real robots and one virtual robot, as described in
section III-B. In addition, we also integrate navigation
capabilities in our robots, by running the navigation
stack2 with a known map, in this case, the map of an
experimental area in our lab (Fig. 12).

35http://www.ros.org/wiki/hector slam

Fig. 12 Experimental arena with a Traxbot v2 and a Stingbot
cooperating with a virtual robot, running on stage

The robots were commanded to navigate cyclically
between a set of waypoints in the arena, as shown
in the video of the experiment34. To further demon-
strate their coordination, a new trial was considered,
wherein each robot ran an independent roscore and
a common waypoint for all three robots was defined.
The robots had to exchange messages through a shared
ROS topic using the wifi comm36 package, in order
to avoid going to a common point at the same time:
robots waited before starting to move to the point at
the center of the arena; and priority was given to the
robot that firstly expressed intention to move to it.
All three robots were able to coordinate themselves in
the environment without colliding to each other, due

36http://wiki.ros.org/wifi comm

http://www.ros.org/wiki/hector_slam
http://wiki.ros.org/wifi_comm
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Fig. 13 The three robots coordinating their behaviors by exchanging ROS messages (rviz)

to the integration of the navigation stack2. Figure 13
presents a snapshot of rviz, illustrating the three robots
moving in the arena.

In this section, it was possible to verify the full
integration of the ROS driver developed, by running
a generic SLAM approach and the navigation stack
available in the ROS community in our robots and
apply them to cooperative algorithms. Moreover, it
was possible to evaluate the portability of the driver
to other Arduino-based robotic platforms. With only
minor adjustments in the kinematics parameteriza-
tion caused by the different physical properties of the
robots, it was possible to use the same ROS driver in
similar robotic platforms: TraxBot v2 and StingBot.

4.3 Adding other Sensors to the Arduino-Based
Robots

In this experiment, we demonstrate the simplicity of
extending the driver of the Arduino-based robots. This
is done through the physical connection of sensors to
the Arduino and their integration in the ROS driver.
Three new sensors were assembled in the TraxBot
v2 plataform. These sensors have been used in the
scope of the CHOPIN (Cooperation between Human
and rObotic teams in catastroPhic INcidents) R&D
Project37 to measure variables related with the occur-
rence of hazards situations in urban search and rescue

37http://chopin.isr.uc.pt/

(USAR) missions, more specifically fire outbreaks,
leakage of toxic gases and detection of victims [26].

To add this three new sensors, one only needs to
add the corresponding sensor data acquisition in the
firmware illustrated in Algorithm 1 (section III.A),
more precisely in the Streaming Functions. Conse-
quently, in the ROS side (Algorithm 2), only the
corresponding callback functions are necessary to add
in order to interpret the new sensor data.

The dust sensor (model PPD42NS) is illustrated
in Fig. 14a. Being manufactured by Grove, this sen-
sor returns a modulated digital output based on the

a

cb

Fig. 14 Sensors setup in the TraxBot v2. a Dust sensor; b
Thermopile array sensor; c Gas sensor

http://chopin.isr.uc.pt/
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a

Fig. 15 Points of interest in testing scenario: a alcohol contain-
ers; b spotlights with 500 W which produce high temperature; c
dusty air flow area

detected Particulate Matters (PM), which can be used
to measure smoke density near a fire outbreak. The
output responds to PM whose size is around 1 micro
meter or larger. Considering D as the number of
particles with at least 1µm diameter, the output of the
dust sensor is defined as:

0 ≤ D ≤ 40000[pcs/liter]. (1)

The sensor depicted in Fig. 14b, is the thermopile
Array sensor (model TPA81). This sensor is character-
ized by its ability to output an array of 8 elements of 8
bits each. The analog value corresponds directly to the

temperature. Hence, one may define the thermopile
output as:

10 ≤ Ti ≤ 100 [◦C],
(Ti, i = 1, . . . , 8. Ti 8 bits entry T = maxivi ).

(2)

The last sensor (Fig. 14c), is the Alcohol Sensor
(model MQ303A). This sensor has the feature to out-
put (A) a voltage inversely proportional to the alcohol
concentration in the air:

0 ≤ A ≤ 700 mV . (3)

The three sensors were assembled in a plastic sup-
port and mounted in the front part of the robot as
depicted in Fig. 14. This configuration was chosen
for a better analysis of the natural air flow gen-
erated by the robot movement during the scenario
exploration. Moreover, this configuration took into
consideration a better positioning of the field of view
for the thermopile array sensor, due to its horizontal
array configuration. The dust sensor was connected
to a digital port, the alcohol sensor to an analogic
port and the thermopile array sensor via I2C Arduino
ports.

As previously stated, the choice of these sensors
took into account the requirements of the CHOPIN
project. Therefore, the dust sensor was chosen to work
with the thermopile to detect fire or victims, and with
the alcohol sensor to detect air contamination, like gas
leaks and different sources of fire.
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Fig. 16 Map of environmental variables during the experimental test



296 J Intell Robot Syst (2015) 77:281–298

The experiment with the TraxBot v2 (Fig. 14) was
conducted in the same area of the laboratory from
section V-B, with a size of 4.0 × 4.6 m and sev-
eral obstacles placed on it (see Fig. 15). Four points
of interest were introduced to simulate critical con-
ditions. More specifically, gas air contamination was
simulated with liquid alcohol in containers (Fig. 15a);
a fire outbreak was emulated using a 500 watts spot-
light able to produce a hot spot of high temperature

(Fig. 15b); and a small dusty area was simulated with
a 120 mm fan creating disturbance in the air, lifting
up dust particles on the floor and thus increasing the
concentration of dust particles in the air (Fig. 15c).

In the experiment carried out in this scenario, it was
possible to map the 3 environmental variables mea-
sured by the aforementioned small sensors. The data
provided by the three sensors is represented on top of
the map with circles of different colors: red circles for

Threshold:
39 ºC

Threshold:
120 ppm

Threshold:
5500 pcs/liter

a

b

c

Fig. 17 Sensors output during the experiment. a Temperature; b Alcohol; c Dust concentration
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temperature, green circles for dust and blue circles for
air contamination (see Fig. 16).

Comparing Fig. 15 and the output map based on
sensor readings in Fig. 16, we can observe that this
map matches with the real scenario. The red circles
represent points in the environment where the ther-
mopile array measures values above 39 ◦C (near the
spotlights). This was predictable due to the high sens-
ing capability of the thermopile sensor for distances of
up to one meter. The blue circles represent the air con-
tamination variable. This allows retrieving the spread
of the contamination caused by the natural air flow
along the arena. The green circles, represent points
(Fig. 15c) where dust particles density are higher than
5500 pcs/liter.

A netbook using Ubuntu 11.10 and ROS [7]
Fuerte38 was placed on top of the TraxBot v2. To
explore the scenario, the robot was teleoperated using
the Wiimote controller. The ROS driver was updated
to support the new sensors, thus making their informa-
tion available on the ROS network. TraxBot odometry
data provided by the ROS driver was used in this
experiment, resulting in the path depicted in Fig. 16.

Figure 17 shows the data acquired from the three
small sensors by the TraxBot v2 robot during the
experimental test.

In this last result section, it was possible to ver-
ify the possibility to easily add new sensors in the
Arduino-based robot using ROS, which can be used in
a wide range of applications. In this case, it was used
to perform a trial to validate an approach for envi-
ronmental monitoring based on thresholds, e.g., for a
search and rescue application.

5 Conclusions and Future Work

In this article, a solution for integrating Arduino-based
robotic platforms in ROS through the development
of a ROS driver was presented. The advantages of
integrating these platforms with ROS middleware,
enabling the usage of a wide range of tools and
reducing the development time through code reuse,
were shown and discussed. The robots, alongside with
Arduino and ROS open-source development tools,
present themselves as ideal platforms for educational
robotics. Beyond providing access to all ROS tools,

38http://ros.org/wiki/fuerte

the driver also simplifies the robotic development by:
i) supporting hardware abstraction to easily control the
platform; ii) allowing for the extension and integration
of all kinds of sensors; and iii) enabling multi-robot
cooperation and coordination through the operation in
a ROS network, both for real teams of homogeneous
and heterogeneous robots, as well as hybrid teams of
physical robots and simulated robots running the same
code.

Results from experiments that were conducted
demonstrate all these features. Moreover, the negligi-
ble overhead imposed by the driver did not restrict any
of the experiments conducted. Finally, as open-source
development tools were used throughout the work pre-
sented in this article, all the source code developed
is available online39 in the hope of being useful for
robotic developers worldwide.

These results open new perspectives into apply-
ing the proposed solutions at the hardware, firmware
and software levels, as an innovative education tool
for engineering in a broad sense. The low cost, open-
source, and highly flexible nature of the proposed
approach make these mobile robotic platforms and
corresponding algorithms accessible for both educa-
tional and research purposes, which one can exploit
to teach a wide range of topics in Mobile Robotics,
and also to pursue research on relevant topics, such
as autonomous robots, cooperative robotics, artifi-
cial perception, and robots interaction with human,
leveraging from hardware abstraction.
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