
Implementation of a Routing Protocol for Ad Hoc
Networks in Search and Rescue Robotics

Filipe Araujo, José Santos
CISUC, Department of Informatics Engineering

University of Coimbra, Portugal
filipius@uc.pt, jsmp@student.dei.uc.pt

Rui P. Rocha
Institute of Systems and Robotics (ISR)

Dept. of Electrical and Computer Engineering
University of Coimbra, Portugal, rprocha@isr.uc.pt

Abstract—As robotics evolves, we expect to see increasing
numbers of search and rescue teams (SARTs) of humans and
autonomous mobile robots, especially in hazardous scenarios.
Under these conditions, a third party infrastructure network
might be unavailable, forcing the agents’ mobile devices to self-
organize in a wireless ad hoc network. Search and rescue actions
pose specific challenges to these networks, as they need large
communication bandwidths, and, at the same time, a very tight
connection to the Command Center (CC). Hence, SART ad hoc
networks are neither typical mobile ad hoc networks (MANETs),
nor wireless sensor networks with firm energy restrictions.

To respond to these requirements, we propose a routing
protocol, called CHOPIN, that defines a tree rooted at the CC,
while also allowing flooding within teams of nodes. We conceived,
implemented and integrated this protocol in the Robot Operating
System (ROS), using simple but proven methods, and open
standards for messages. The field benchmarking we did against
the Optimized Link State Routing Protocol (OLSR) shows the
ability of CHOPIN to assist SART agents in their communication.

I. INTRODUCTION

The use of mobile devices has grown at a very fast
rate for the past two decades. Advances in computing and
communication have greatly increased the spectrum of ap-
plications of these devices. The ability to dynamically form
a network to support collaborative work is increasingly im-
portant for military operations, environmental monitoring, or
vehicle communication. In this paper, we focus on emergency
scenarios, where human and robot teams collaborate under
the control of a Command Center (CC) for search and rescue
operations, building a map of the incident zone, sensing
hazardous materials or conditions, localizing victims, and
finding points of interest [24]. These tasks involve multiple
types of communication, either among agents, but also to
and from the CC. Mobile robot teams can contribute towards
improving the efficiency and effectiveness of operations in
emergency scenarios. They are presented as teams of mobile
agents operating with distributed communication capacity, to
reduce the risk of human agents and to automate some tasks.

To be effective, even in the worst scenarios, search and
rescue teams (SARTs) must not depend on the existence of
a high-bandwidth network infrastructure for their operations.
While this leaves mobile ad hoc networks (MANETs) as
the best option for the operational scenarios, the patterns of
communication involved require specific solutions departing
from previous ad hoc routing protocols. The leading role of

the CC is a distinctive feature of a SART, as it must be
the greater source of commands and the sink of most infor-
mation collected. Arbitrary point-to-point communication, as
supported in typical Mobile Ad Hoc Networks (MANETs) is
simply not needed. On the other hand, agents, either human or
robotic, must coordinate and have access to large bandwidth
communication within their teams, to move in coordination
and to build maps of their surroundings. This separates SARTs
from wireless sensor networks.

To create and maintain a dynamic communication infras-
tructure, we propose the CHOPIN1 routing protocol. Since
we need to build a single tree rooted at the CC, we manage to
escape the dilemma of proactive (more traffic) versus reactive
(slower on first delivery) protocols. Regular nodes can keep
their single-destination routing table always updated, whereas
the CC can learn the entire topology with limited effort —
proactivity does not come at a big cost.

We implemented CHOPIN in a real setting for the Robot
Operating System framework [4], and benchmarked it against
the very well-known OLSR protocol [10]. We made our
implementation publicly available on GitHub2. The results
we achieved are quite promising. We can say that by being
designed for a very focused problem, CHOPIN is extremely
simple and lightweight, being able to outperform OLSR in
most practical tasks for the network sizes we measured.
This, we believe, shows that CHOPIN is quite fit for SARTs
comprising both human and robotic agents.

The rest of the paper is organized as follows. In Section II
we overview related work. In Section III we design the
CHOPIN protocol. In Section IV we describe the implementa-
tion. In Section V we evaluate and discuss the implementation
and we conclude the paper in Section VI.

II. RELATED WORK

A. Routing Protocols for Wireless Ad Hoc Networks

A MANET is an infrastructure-less network of mobile nodes
that self-organize to communicate using wireless interfaces.
MANETs might be particularly helpful in disaster scenarios
where the infrastructure is usually absent or not working

1Cooperation between Human and rObotic teams in catastroPhic INcidents
(http://chopin.isr.uc.pt).

2https://github.com/jsmpereira/chopin-routing.

2014 IFIP Wireless Days (WD)

978-1-4799-6606-6/14/$31.00 ©2014 IEEE

properly. Wireless sensor networks are similar to MANETs,
but nodes do not need to be mobile. Moreover, communication
is usually directed to one or more sinks [11], [26], while saving
energy is extremely important to minimize maintenance [2].
These requirements promote the adoption of communication
protocols like ZigBee [15] that trade bandwidth for energy.

The effort of properly classifying and organizing wireless
ad hoc routing solutions is massive, given the solutions in-
volved. We do not start such effort here, because it was
done before [23], [1]. Nevertheless, it is worthwhile point-
ing out the classification of Dua et al. in the context of
vehicular networks [13]. They divide routing protocols into
geographic, topology-based, hybrid, clustered, and data-fusion.
Geographic-based protocols [25], [3] use the location of nodes,
typically the destination and the current forwarding node, to
select the next hop of the path. These protocols use a very
small amount of memory, as they only keep information of
their surroundings. However, in our case, networks have mod-
erate size, so we can opt for topology-based approaches, which
develop non-localized notions of the topology. A particular
geographic protocol similar to our own is TREBOL [17].
Like CHOPIN, TREBOL also builds a tree, but, since it uses
geographic information, nodes, including human agents, must
carry devices to determine their location.

Clustered algorithms are not very different from what we
do, although in a different way: we assume that nodes belong
to teams, thus being explicitly clustered. Inside these restricted
teams, nodes communicate by flooding. It is also inside these
teams that nodes exchange the largest amounts of data, e.g.,
to create maps of the scenes. Data-fusion algorithms are
appropriate to merge information, possibly on the way to the
sink [19], but they are of little interest to us, because nodes
consolidate their maps inside the teams they belong to. Hence,
we adopt a topology-based protocol, although, as we shall see,
in a way that is considerably dissimilar from more common
MANETs.

A main source of classification for wireless ad hoc routing
protocols is whether they are reactive or proactive. The latter
ones bear some similarities to wired protocols, because nodes
actively collect information of the network and keep routing
tables for each possible destination. In the former protocols,
nodes only collect paths to specific destinations as needed.
This approach conserves bandwidth and energy, but imposes
larger delays on routing. AODV [21] and DSR [18] are very
well-know examples of reactive protocols, but we can find a
very large number of these protocols in the literature [12],
[5]. DSDV [22], Babel [8] and OLSR [10] are two very well-
known protocols that build routing tables prior to the routing
function. In SART networks, the dilemma between reactive or
proactive is less important. Since we only have one remote
destination, the CC, using a proactive approach is not too
expensive, while having the network ready to send reduces
latency. In fact, we can create a tree proactively, as we see in
many wireless sensor networks. The main difference is that,
unlike wireless sensor networks, nodes do not need to engage
in periodically shutdown of radios, or any other aggressive

scheme, to conserve energy [2].
We could not find much work in the literature concerning

the need to create wireless ad hoc networks in SART with
robots. We mostly found starting research projects and position
documents. In particular, we could not find the specific re-
quirements of SART identified in any of these documents. We
are not aware of any other work that has tackled the specific
requirements of a SART team made of human and robotic
agents in a way so detailed as ours. The other papers we
mention, consider the adaptation of generic routing protocols
with point-to-point capabilities that do not seem particularly
useful for disaster scenarios. Overall, we realized that existing
MANETs are very generic, not suiting the specific needs of
the scenarios we tackle. Wireless sensor networks are also
not exactly up to search and rescue, as they mostly focus on
collecting data (without any maps) and saving energy. Hence,
we chose to develop an ad hoc network that fits our specific
needs.

III. DESIGN OF THE ROUTING PROTOCOL

A. CHOPIN Requirements
Most data will travel from human and robotic agents into the

CC, whereas communication in the reverse direction generally
takes the form of commands. We assume the existence of
teams of robots that, according to their responsibilities, search
points of interest, build maps, and collect sensory data for the
CC, after reconciling information within the team. Arbitrary
point-to-point communication does not seem important for
SART. Overall, we identified the following requirements:

1) All nodes have routing responsibilities;
2) The CC communicates with individual nodes or with all

nodes;
3) Individual nodes communicate with the CC;
4) Individual nodes communicate inside the same team;
5) Nodes know to which team they belong.
From this list of requirements, we can see that none of the

big families of protocols is entirely suited for SARTs.

B. Network Creation (the Tree)
In the CHOPIN routing protocol, we consider three main

forms of communication: 1) flooding within the boundaries of
a team, initiated by any node; 2) flooding initiated by the CC;
and 3) point-to-point communication from particular nodes to
the CC, and vice-versa. To ensure communication with the
CC, in cases 2 and 3, we create a tree rooted there.

We define two types of messages to build the tree: the Base
Station Beacon and the Node Beacon. As names say,
the first type of message comes from the CC3. Nodes spread
information of where the CC is, by flooding these beacons.
These messages carry the hops they travelled so far and a
version number, thus being very lightweight. Nodes will re-
broadcast the message if its version number is higher, or if
it announces a better distance. This ensures that the Base

3We adopted the name Base Station Beacon because the CC is
similar to a Base Station.

2014 IFIP Wireless Days (WD)

CC 4

1

3

6

5

2

7

Base Station Beacon
Node Beacon

Fig. 1. The flow of CHOPIN messages.

Station Beacon reaches the entire network. To send a
message to the CC, nodes must use the reverse path, i.e., they
use the node that announced the shortest path (for the latest
version number).

This mechanism ensures that all nodes know the next hop in
direction to the CC. Communication in the reverse direction
is necessary to ensure that the CC can send commands to
specific nodes. To inform the CC of their presence, the other
nodes use Node Beacon messages. On retransmission of
the Node Beacons, nodes attach their own addresses to the
message. This gives the CC complete information of topology.
The Node Beacon messages also provide neighborhood
information to the nodes. We show the flow of these messages
in Figure 1. Although we do not ensure the bidirectionally
of links in this version of the protocol, these messages can
help to ensure that nodes only use bidirectional links to
reach the CC4. However, we did not find this possibility very
important, because nodes are expected to move frequently, thus
making quick changes to the connectivity of the network. This
will overcome possible blind spots originated by the lack of
bidirectionally.

C. Routing Components
One way of implementing routing protocols is to divide their

functionality into user space, to maintain routing information
and compute paths, and into kernel address space, to forward
packets accordingly. Running the processing in user space
simplifies deployment and reduces kernel complexity, at the
cost of requiring communication between privileged and non-
privileged spaces. Based on this idea and following an OLSR
implementation5, we keep a program running as a service
of the operating system, to exchange information with the
network neighborhood and compute routes, before populating
the kernel routing table.

To exchange routing information between peer nodes, we
opted for the UDP protocol. UDP is connectionless and best-
effort, thus lightweight. CHOPIN receives UDP messages on
port 269 [7] and floods messages using the network broadcast
address. One should notice that the CHOPIN protocol does
not interfere with other application-level services. These may

4If nodes announce the list of their neighbors, they can determine whether
their neighbors hear them.

5http://www.olsr.org/?q=download.

ROS
Node

ROS
Node

Routing
Algorithm

Routing
Algorithm

Kernel
Routing Table

Kernel
Routing Table

Pub/Sub Pub/Sub

IPCIPC

User-space

Kernel-space

.

Robot A - ROS Core Robot B - ROS Core

.
ROS Topics

802.11 TCP/IP

802.11 UDP/IP

Fig. 2. The architecture of CHOPIN nodes.

still use the TCP/IP stack and the 802.11 wireless network
to communicate. However, since the network is ad hoc, the
possibility of delivering messages depends on the presence
(and accessibility) of the destination in the kernel routing table.

D. The Application Layer

To map the environment and gather sensor data, robotic
agents take full advantage of the ROS framework [4]. The
communication between different agents occurs through ROS
topics, in a publish/subscriber model [14]. To exchange
information between different robotic agents we used the
foreign_relay [16] and the wifi_comm [6] packages.
Figure 2 shows the overall architecture of robotic agents
making use of the ROS platform for distributed commu-
nication. The “ROS Topics” field represents the group of
topics shared between the nodes of the network, through the
foreign_relay package. The routing protocol provides the
knowledge of the neighborhood and network infrastructure,
which are necessary for remote authoring in topics.

IV. IMPLEMENTATION

We developed the CHOPIN protocol using the Common
Lisp language, more specifically the implementation Steel
Bank Common Lisp (SBCL)6. Our implementation runs on
the Ubuntu operating system, Linux Kernel version 3.9. Our
implementation follows a generic message format for mobile
ad hoc networks [9]. To take care of the messages, CHOPIN
runs two main threads. One for reading and processing, the
other for sending the messages. Through a configuration file,
one can set some parameters, like the network interface, the
IP address, the broadcast address of the network or the port.

A. Data Structures

B. Messages

The protocol maintains information in three main struc-
tures: the DUPLICATE-SET, the LINK-SET, and the

6http://www.sbcl.org.

2014 IFIP Wireless Days (WD)

<packet> := <pkt-header>
<message>*

<pkt-header> := <version>
<pkt-flags>
<pkt-seq-num>?
<tlv-block>?

<message> := <msg-header>
<tlv-block>
(<addr-block><tlv-blocks>)*

<msg-header> := <msg-type>
<msg-flags>
<msg-addr-length>
<msg-size>
<msg-orig-addr>?
<msg-hop-limit>?
<msg-hop-count>?
<msg-seq-num>?

<tlv-block> := <tlvs-length>
<tlv>*

<tlv> := <tlv-type>
<tlv-flags>
<tlv-type-ext>?
(<index-start><index-stop>?)?
(<length><value>?)?

Fig. 3. Structure of a packet in RFC 5444.

TABLE I
STRUCTURE OF AN ENTRY IN THE HASH TABLE DUPLICATE-SET.

orig%addr(msg%type(seq%num(exp%time(
(

TABLE II
STRUCTURE OF AN ENTRY IN THE LINK-SET HASH TABLE.

local%addr(neighbor%addr(l%time(
(

ROUTING-TABLE. For efficiency, we use dictionaries (hash
tables) to implement these structures.

The DUPLICATE-SET keeps track of received messages,
to avoid processing duplicates. It maintains the following
fields (see Table I): the originating address, the type of
message, and the sequence number. These also serve as the
key to access data, whereas the expiry time determines when
to delete the entries. As in OLSR, the LINK-SET keeps
associations between local interfaces and remote addresses of
nodes (neighbors and CC). This information has a limited
duration in time. We show the format of this structure in
Table II. The ROUTING-TABLE structure, in Table III, keeps
the next hop to reach a given destination (if available). The
key to access this storage is the destination. CHOPIN first
stores paths in this table, before copying them to the kernel
routing table. This interaction between kernel and user space
takes place through the NETLINK socket family.

A fourth structure, the OUT-BUFFER, stores messages
waiting to be written to the socket. OUT-BUFFER is a first-
in-first-out (FIFO) queue, where messages await to enter the
UDP socket. The two threads of CHOPIN share the access to
this queue: one reads messages to send them to the socket, the
other writes messages related to the protocol, often in response
to timers. This latter thread is also responsible for receiving
the messages from peers. We use a semaphore to synchronize
the threads.

We followed the Request For Comments (RFC) 5444 [9] for
the message format. The adoption of RFC 5444 brings several
advantages, including ease of processing, extensibility and the
ability to reduce the number and size of packets, due to the
inclusion of various messages and a compact representation of
addresses. The design is also suited to enable certain decisions
based on partial header information, to reduce the processing

TABLE III
STRUCTURE OF AN ENTRY IN THE ROUTING-TABLE HASH TABLE.

destination) next+hop) hop+count)
)

0

4

8

12

16

20

1 20 3
Byte

Offset

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 10 1 2 3 4 5 6 7 8 9

Nibble Byte Word

Version Rsv Packet Sequence Number Message Type

1 cation Orig Addr

Originator Address (cont) Hop Limit

Value

Bit

Message Size

 Base Station Beacon

01

1 1 1 MAL

Hop Count LengthMessage Sequence Number

Length (cont) TLV Type Length0 0 0 1 0 0 0 0

24
Bytes

Fig. 4. Structure of a Base Station Beacon message according to the
RFC 5444 specification.

effort. The basic structure of a packet that conforms to the
RFC 5444 specification is shown in Figure 3.

In this figure, the * means zero or more times, the ? means
optional. It is worth mentioning the concept of type-length-
value (TLV) and TLV block. A block aggregates zero or more
TLVs associated with a packet, message or address block. In
the current implementation, only the message has an associated
tlv-block. The first field indicates the size of the TLVs
included in the block. The adopted TLV uses the field for the
type — tlv-type. The parameters specified in tlv-flags
indicate how to interpret the following fields. In our case, they
tell that the TLV comprises a length field and a value field.

1) The Base Station Beacon: Base Station
Beacons (Figure 4) have a two-second interval. Its TLV
block transports as a single attribute the IP address of the
Base Station. As the message is broadcast over the network
and through intermediate nodes, the content of this TLV is
changed to the IP of the node forwarding the message. The
field with the originator address never changes and always
displays the message source. When the message goes through
an intermediate node 1) the TLV value is changed to the
current IP node, 2) the hop-count is incremented and 3) the
hop-limit is decremented. Each intermediate node adds or
updates the entry for the Base Station in its routing table,
indicating the value it finds in the TLV block as the next hop
(see Figure 5).

2014 IFIP Wireless Days (WD)

CC 2 3 4 5

TLV
<value>+:=+1

Message+Header
<msg6orig6addr>+:=+1
<msg6hop6count>+:=+0

Base%Station%Beacon

TLV
<value>+:=+2

Message+Header
<msg6orig6addr>+:=+1
<msg6hop6count>+:=+1

Base%Station%Beacon

TLV
<value>+:=+3

Message+Header
<msg6orig6addr>+:=+1
<msg6hop6count>+:=+2

Base%Station%Beacon

TLV
<value>+:=+4

Message+Header
<msg6orig6addr>+:=+1
<msg6hop6count>+:=+3

Base%Station%Beacon

Fig. 5. Example of the contents of a message Base Station Beacon
during its path.

0

4

8

12

16

20

1 20 3
Byte

Offset

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 10 1 2 3 4 5 6 7 8 9

Nibble Byte Word

Version Rsv Packet Sequence Number Message Type

1 cation Orig Addr

Originator Address (cont) Hop Limit

Value

Bit

Message Size

Node Beacon

01

1 1 1 MAL

Hop Count LengthMessage Sequence Number

Length (cont) TLV Type TLV Length0 0 0 1 0 0 0 0

17 + Length
Bytes

Fig. 6. Structure of a Node Beacon message, according to the RFC 5444
specification.

2) The Node Beacon: The Node Beacon message ini-
tially carries the address of the originator node. Along its
reverse path to the Base Station, it accumulates the addresses
of intermediate nodes. This lets the CC determine the entire
network topology. Intermediate nodes change this message as
follows (refer to Figures 6 and 7): 1) the IP address of the
current node is added to the value of the TLV; 2) the hop-
count is incremented; and 3) the hop-limit is decremented.

When a message is considered for processing, the
LINK-SET table is updated. If there is already an entry in the
table for the node that originated the message, its lifetime is
extended; otherwise, a new entry is created. Similarly, an entry
is added in the table DUPLICATE-SET with the structure
shown in Table I. Then, the message can be written in the
output buffer for forwarding. One should notice that the CC
does not forward messages.

C. Timers
CHOPIN needs timers to send periodical messages and to

verify whether routing information on its tables is out of date.
We used the following timers and assign them the following
default values: 1) new-beacon, with an interval of 2s, serves
to generate a new (Base Station) Beacon Message; 2)
check-duplicate-holding, with a 30s interval serves
to delete old entries from the DUPLICATE-SET key-value
store; and 3) check-link-set-validity, with three
times the interval of new-beacon serves to delete old entries
from the LINK-SET key-value store. Given that OLSR is
a protocol with several years of development and widely
tested, whenever possible we adopted similar values for our
own timers. Nevertheless, we let users of the protocol specify
different values for the timers using a configuration file.

CC 2 3 4 5

TLV
<value>+:=+2,+3,+4,+5

Message+Header
<msg:orig:addr>+:=+5
<msg:hop:count>+:=+3

Node%Beacon

TLV
<value>+:=+3,+4,+5

Message+Header
<msg:orig:addr>+:=+5
<msg:hop:count>+:=+2

Node%Beacon

TLV
<value>+:=+4,+5+

Message+Header
<msg:orig:addr>+:=+5
<msg:hop:count>+:=+1

Node%Beacon

TLV
<value>+:=+5

Message+Header
<msg:orig:addr>+:=+5
<msg:hop:count>+:=+0

Node%Beacon

Fig. 7. Example of the contents of a message Node Beacon during its
path.

Number of Nodes
Ti

m
e

(s
)

3 4 5 6 7

12

14

16

18

20

22

24

●

●

● ●

●

●

CHOPIN
OLSR

Fig. 10. Convergence speed in the Test Scenario 1 for 3 to 7 nodes.

V. EXPERIMENTAL EVALUATION

In our evaluation, we compare OLSR and CHOPIN using
real nodes. The tests measure the convergence time of the
network, the throughput, and the number of messages used in
networks of up to 7 nodes. These nodes were laptop computers
with the Ubuntu operating system, WiFi 802.11 network
interfaces, and static IP addresses. We ran the CHOPIN and
the OLSR protocol using the 802.11 ad hoc mode of operation,
where one participant creates a network in ad hoc mode and
the remaining nodes join in.

We used the sysstat tool7 to gather data for the evalua-
tion. This set of tools provides system statistics, by querying
information from the Linux proc file system. We used the
sar tool, available on sysstat, to collect a large spectrum
of data from the network, including UDP, TCP and errors. We
also used other tools, like ping, to send ICMP ECHO requests
and Secure Copy (SCP), to transfer files between nodes.

A. Topology Generation

We considered the topologies of Figures 8 and 9 for our field
tests. In Topology 1, we have up to 7 nodes and 6 hops, while
in Topology 2 we consider an unstable path, where the last
node jumps from one branch to the next. Since all nodes were
in the range of each other, we used the Iptables application
to enforce the desired topologies.

2014 IFIP Wireless Days (WD)

CC 1 2 3 4

Fig. 8. Topology 1.

CC

1

3

2

4

5

Fig. 9. Topology 2.

Number of Nodes

Th
ro

ug
hp

ut
 (M

iB
/s

)

2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●
●

●

CHOPIN
OLSR

Fig. 11. Throughput in MiB/s from 2 to 6 nodes.

B. Convergence Speed

In this test, we observe the time since node starts running
CHOPIN until the information in the protocol data structures
stabilizes. We used Iptables rules and the ping tool.
As soon as the protocol converges, and a multi-hop path is
established to the destination node, the CC starts receiving
responses to its ping requests. The process was repeated
for an increasing number of nodes, reaching a maximum
of 7. In Figure 10, we show the convergence times for
different network sizes. We can see that the CHOPIN protocol
converges faster (we show averages of five measurements).
The main cause for this increased speed is simplicity. The
CHOPIN protocol maintains only three data structures, more
specifically hash tables. Unlike this, OLSR requires eight
repositories of information and needs additional processing
for the MPR functionality. Furthermore, it requires a shortest
path algorithm to calculate the paths.

C. Throughput

We must also consider the bandwidth available to applica-
tions. The throughput test puts load on the network and checks
the average transfer rate achieved. We performed ten transfers
of a 50 MiB file from one to three nodes, using the Secure
Copy (SCP) program. From four to six nodes, nodes transfer a
file of 6 MiB. The transfer is initiated on the first node and sent
to the farthest node of the network. We kept using Topology
1 in this test. Note that the information for six nodes has to
go through four intermediate nodes to reach its destination. In

7http://sebastien.godard.pagesperso-orange.fr/.

Measurement Number

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10

20

40

60

80

●

● ● ●

●

●

●

●

●

●

●

CHOPIN
OLSR

Fig. 12. Convergence time with forwarding in s.

Figure 11, we can observe that the protocols reach a similar
level of utilization of the network (we show average values for
the 10 transfers). As the number of nodes increases, throughput
decreases due to multi-hop operation and interference.

D. Convergence Time with Topology Changes

In addition to the characteristics of the environment, mobil-
ity will often cause communication failures and reconstruction
of paths. We use Topology 2 to evaluate this case. The path
between node marked with 5 in the figure, sometimes goes
through the lower branch (node 4), other times through the
upper one (node 2). During our tests, we initiated a transfer
of a 700 MiB file from the CC to node 5. This transfer puts the
network under load for a considerable amount of time. During
this time, at intervals of 20 to 40s, we change the Iptables
rules to switch topology. In Figure 12, we can observe that
OLSR shows a slower convergence than CHOPIN. Again,
this is due to the higher complexity of OLSR, because OLSR
must recompute and rebroadcast the entire topology on every
change. In particular, mobility may force a recalculation of the
MPRs, with the corresponding impact on convergence time.
Unlike this, the CHOPIN protocol shows a faster convergence
because it needs fewer communication interactions.

E. Number of Messages

In the same experiment, we measured the number of trans-
mitted and received UDP datagrams, i.e., the control messages
exchanged by the protocols. In Figure 13, we can see that
OLSR uses about 50% fewer control messages. This result is
due to the optimization of resources promoted by the MPRs,

2014 IFIP Wireless Days (WD)

IN.1 OUT.1 IN.2 OUT.2 IN.3 OUT.3

U
D

P
D

at
ag

ra
m

s

0
1

2
3

4 CHOPIN
OLSR

Fig. 13. Average number of UDP datagrams sent/received for 3 nodes.

whereas the CHOPIN protocol, so far, does not have any
comparable approach. In a future version, we intend to adopt
simple techniques to improve this result without significantly
changing the protocol. For example, Lim and Kim [20] explore
1-hop and 2-hop neighborhood information to drastically cut
network traffic (packet forwarding and arrival). In fact, this is
pretty much what OLSR does with the MPRs. Their results
show that savings in the range 1.5~10 times are possible.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This document proposes the CHOPIN protocol to maintain
an operational ad hoc network in search and rescue scenarios.
Given the list of requirements for these scenarios, we found
that existing MANET solutions, like OLSR, presented generic
approaches that were not entirely fit to our needs. The same
could be said about wireless sensor networks, which focus
on energy consumption, while we need high bandwidth com-
munication to transport images and robotic maps from the
hazard scenes. The resulting CHOPIN protocol is conceptually
simple, taking inspiration from multiple sources currently
available on the field. While the design is inspired on the
trees of wireless sensor networks, for the implementation we
followed the best practices of OLSR.

Compared to the much more mature OLSR, we achieved
very promising results and some interesting perspectives for
future developments. CHOPIN was able to beat OLSR in most
metrics we evaluated. However, one of the points for future
improvement is the reduction of signaling costs, e.g., by using
MPRs, as these may bring significant savings.

ACKNOWLEDGMENT

This work has been supported by the CHOPIN research
project (PTDC/EEA-CRO/119000/2010) funded by “Fundação
para a Ciência e a Tecnologia” (FCT).

REFERENCES

[1] E. Alotaibi and B. Mukherjee. A survey on routing algorithms for
wireless ad-hoc and mesh networks. Computer Networks, 56(2):940 –
965, 2012.

[2] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella. Energy
conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7(3):537 – 568, 2009.

[3] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. Chr: A
distributed hash table for wireless ad hoc networks. In Proceedings of
the Fourth International Workshop on Distributed Event-Based Systems
(DEBS) (ICDCSW’05) - Volume 04, ICDCSW ’05, pages 407–413,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] R. Barraquand and A. Negre. The ROS Framework
at a Glance, 2012. From online slides available at
http://barraq.github.io/fOSSa2012/slides.html.

[5] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. In Proceedings of
the 3rd International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, DIALM ’99, pages 48–55,
New York, NY, USA, 1999. ACM.

[6] G. Cabrita and P. Sousa. wifi comm - ROS Wiki., 2011.
[7] I. Chakeres. IANA Allocations for Mobile Ad Hoc Network (MANET)

Protocols. RFC 5498 (Proposed Standard), Mar. 2009.
[8] J. Chroboczek. The Babel Routing Protocol. RFC 6126 (Experimental),

Apr. 2011.
[9] T. Clausen, C. Dearlove, J. Dean, and C. Adjih. Generalized Mobile Ad

Hoc Network (MANET) Packet/Message Format. RFC 5444 (Proposed
Standard), Feb. 2009.

[10] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626 (Experimental), October 2003.

[11] D. Culler, D. Estrin, and M. Srivastava. Guest editors’ introduction:
Overview of sensor networks. Computer, 37(8):41–49, Aug 2004.

[12] D. Djenouri and N. Badache. On eliminating packet droppers in manet:
A modular solution. Ad Hoc Networks, 7(6):1243 – 1258, 2009.

[13] A. Dua, N. Kumar, and S. Bawa. A systematic review on routing
protocols for vehicular ad hoc networks. Vehicular Communications,
1(1):33 – 52, 2014.

[14] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131,
June 2003.

[15] S. Farahani. ZigBee Wireless Networks and Transceivers. Newnes,
Newton, MA, USA, 2008.

[16] B. Gassend. foreign relay - ROS Wiki., 2012.
[17] M. Gramaglia, M. Calderon, and C. J. Bernardos. Trebol: Tree-based

routing and address autoconfiguration for vehicle-to-internet communi-
cations. In Vehicular Technology Conference (VTC Spring), 2011 IEEE
73rd, pages 1–5, May 2011.

[18] D. B. Johnson, D. A. Maltz, and J. Broch. Ad hoc networking. chapter
DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad
Hoc Networks, pages 139–172. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[19] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi. Multisensor
data fusion: A review of the state-of-the-art. Information Fusion,
14(1):28 – 44, 2013.

[20] H. Lim and C. Kim. Multicast tree construction and flooding in wireless
ad hoc networks. In Proceedings of the 3rd ACM International Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWIM ’00, pages 61–68, New York, NY, USA, 2000. ACM.

[21] C. Perkins, E. Royer, and S. Das. RFC 3561 Ad hoc On-Demand
Distance Vector (AODV) Routing. Technical report, 2003.

[22] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. In Proceedings
of the Conference on Communications Architectures, Protocols and
Applications, SIGCOMM ’94, pages 234–244, New York, NY, USA,
1994. ACM.

[23] R. Rajaraman. Topology control and routing in ad hoc networks: A
survey. SIGACT News, 33(2):60–73, June 2002.

[24] R. Rocha, D. Portugal, M. Couceiro, F. Araujo, P. Menezes, and J. Lobo.
The CHOPIN project: Cooperation between Human and rObotic teams
in catastroPhic INcidents. In 11th IEEE International Symposium on
Safety, Security, and Rescue Robotics, Linköping, Sweden, October
2013.

[25] I. Stojmenovic. Position-based routing in ad hoc networks. Comm. Mag.,
40(7):128–134, July 2002.

[26] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.
Comput. Netw., 52(12):2292–2330, Aug. 2008.

2014 IFIP Wireless Days (WD)

