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Abstract— This paper presents a statistical significance analy-

sis of a modified version of the Particle Swarm Optimization 

(PSO) on groups of simulated robots performing a distributed 

exploration task, denoted as R-DPSO (Robotic DPSO). This 

work aims to evaluate this novel exploration strategy studying 

the performance of the algorithm under communication con-

straints while increasing the population of robots. Experimen-

tal results show that there is no linear relationship between the 

number of robots and the maximum communication range. In 

general, the decreased performance by the developed algo-

rithm under communication constraints can be overcome by 

slightly increasing the number of robots as the maximum 

communication range is decreased. 

Keywords: multi-robot systems; statistical analysis; swarm 

robotics; analysis of variance. 

I.  INTRODUCTION 

The biological world abounds in collective phenomena 
that have important adaptive functions, ranging from coordi-
nated movement to nest building and all the way to commu-
nication [1]. The principles of self-organization are appealing 
for explaining biological collective phenomena where the 
resulting structures and functionalities greatly exceed in 
complexity the perceptual, physical, and cognitive abilities 
of the participating organisms. Examples of biological self-
organization include the construction of beehives, the forag-
ing strategies of ants, and the regulation of colony life in 
social insects. In all these cases, the resulting structure 
emerges from the collective work of individual organisms 
that execute simple behaviors based on local information and 
do not possess a global plan of the end result or a central 
coordinator.  

The examples of behavior-based collective approaches 
described above inspired the design of novel machine-
learning techniques and swarm robotics [2] [3]. This area of 
research, also known as swarm intelligence [4] [5], studies 

large collections of relatively simple agents that can collec-
tively solve problems that are too complex for a single robot 
or that can display the robustness and adaptability to envi-
ronmental variation displayed by biological agents.  

One of the most well-known swarm algorithms is the 
Particle Swarm Optimization (PSO) developed by Kennedy 
and Eberhart [6]. This optimization technique models a set of 
potential problem solutions as a swarm of particles moving 
around in a virtual search space. However, a general problem 
with the PSO and other optimization algorithms is that of 
becoming trapped in a local optimum, such that it may work 
in some problems but may fail on others. In search of a better 
model of natural selection using the PSO algorithm, the 
Darwinian Particle Swarm Optimization (DPSO) was formu-
lated by Tillet et al. [7] enhancing the ability to escape from 
local optima. 

Just like in Multi-Robot Systems (MRS), where groups of 
robots interact to accomplish their goals [8], both PSO and 
DPSO use groups of interacting virtual agents (aka, par-
ticles) in order to achieve their optimization. However, con-
trarily to virtual agents, robots are designed to act in the real 
world where communication constraints and obstacles need 
to be taken into account. 

In our previous work [9], an extension of the DPSO to 
MRS was proposed. Each robot is then responsible for each 
virtual agent, which it needs to evaluate at each iteration. 
After each set of evaluations, the robots communicate to 
share the objective information (cost or fitness) needed to 
progress to the next iteration of the algorithm. 

However, the design of new swarm robotics systems 
cannot provide us with quantitative prediction of the collec-
tive performance. Real robot experiments and simulations 
are the most direct way to observe the behavior of the system 
under different conditions (i.e., population size and commu-
nication constraints). However, trials with real or simulated 
robots do not scale well as the size of the system grows. 
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Therefore, it is hard to predict the ideal number of robots 
necessary for a given task. 

Bearing these ideas in mind, this paper carries out a sta-
tistical analysis of the previously proposed algorithm in order 
to evaluate the relationship between the population of robots 
in the R-DPSO and the maximum the communication range 
between robots. To that end a Multivariate Analysis of Va-
riance technique (MANOVA) is used to evaluate the perfor-
mance of the algorithm based on the number of robots and 
the communication distance. 

The paper is organized as it follows. Section II presents 
an overview of the R-DPSO algorithm. A brief description of 
the MANOVA is given in Section III. Experimental results 
analyzing the performance of the algorithm are demonstrated 
Section IV while Section V outlines the main conclusions. 

II. ROBOTIC DARWINIAN PARTICLE SWARM 

OPTIMIZATION 

This section briefly presents the R-DPSO algorithm pro-

posed in [9]. The DPSO [7] is an evolutionary algorithm 

that extends the well-known PSO [6] using natural selection, 

or survival-of-the-fittest, to enhance the ability to escape 

from local optima.  

Since the R-DPSO approach is an adaptation of the 

DPSO to real mobile robots, four general features are pro-

posed: i) a novel “punish”-“reward” mechanism to emulate 

the deletion and creation of robots; ii) an obstacle avoidance 

algorithm to avoid collisions; iii) an enforcing multi-hop 

network connectivity algorithm to ensure that the MANET 

remains connected throughout the mission; iv) a novel me-

thodology to establish the initial planar deployment of ro-

bots preserving the connectivity of the MANET while 

spreading out the robots as most as possible. 

These features are further explored in the following sec-

tions. 

A. “Punish”-“Reward” Mechanism 

In the common DPSO, “punish” means the deleting of 

particles and swarms, while “reward” means the spawning 

of new particles and swarms. In order to adapt DPSO to 

mobile robotics, the deleting and spawning of a robot are 

modelled by the mechanisms of social exclusion and social 

inclusion, respectively. 

The R-DPSO is then represented by multiple swarms, i.e., 

multiple groups of robots that altogether form a population. 

Each swarm individually performs just like an ordinary PSO 

in search for the solution and some rules governs the whole 

population of robots.  

If there was no improvement in a swarm’s objective over a 

period of time, the swarm is punished by excluding the 

worst performing robot, which is added to a socially ex-

cluded group. The worst performing robot is evaluated by 

the value of its objective function compared to other mem-

bers in the same swarm. In other words, if the objective is to 

maximize the fitness function, the robot to be excluded will 

be the one with the higher fitness value.  

Those socially excluded robots, instead of searching for 

the objective function’s global optimum like the other ro-

bots in the active swarms do, they basically randomly 

wander in the scenario. This approach improves the algo-

rithm making it less susceptible of becoming trapped in a 

local optimum. Note, however, that they are always aware 

of their individual solution and the global solution of the 

socially excluded group. 

B. Obstacle Avoidance 

A new cost or fitness function is defined in such a way 

that it would guide the robot to perform the main mission 

while avoiding obstacles. For this purpose it is assumed that 

each robot is equipped with sensors capable of sensing the 

environment for obstacle detection within a finite sensing 

radius . A monotonic and positive sensing function  

that depends on the sensing information (i.e., distance from 

the robot to obstacle) is defined. In most situations the sens-

ing function  can be represented as the relation be-

tween the analog output voltage of distance sensors and the 

distance to the detected object. 

The susceptibility of each robot (Figure 1) to the main ob-

jective and to obstacle avoidance need to be established and 

depends on several conditions related with the main objec-

tive (i.e., minimize a cost function or maximize a fitness 

function) and the sensing information (i.e., monotonicity of 

the sensing function) 

 

 
 

Figure 1.  Illustrative example of obstacle avoidance behaviour of a robot 

with different obstacle susceptibility weights. 

C. Enforcing MANET Connectivity 

Robots’ position need to be controlled in order to maintain 

the communication based on constraints such as maximum 

distance or minimum signal quality. The way network will 

be forced to preserve connectivity depends on the characte-

ristics of the communication (e.g., multi-hop, biconnectivi-

ty).  

Assuming that the network supports multi-hop connectivi-

ty, the communication between two end nodes (i.e., robots) 

is carried out through a number of intermediate nodes whose 

function is to relay information from one point to another 

(note that any robot may be used as a relay node indepen-

dently of their swarm). Considering that nodes are mobile, it 

is necessary to guarantee the communication between all 

nodes. The nodes’ position (i.e., robots’ position) are up-

dated by means of the enforcing MANET connectivity algo-

rithm are further described in [10]. 

rs rs



D. Initial Deployment 

This approach tries to get the benefits of a random pla-

nar deployment of robots eliminating the disadvantages 

inherent to it and taking into account the communication 

constraints using a deployment strategy based on the Spiral 

of Theodorus (aka, square root spiral) which is composed of 

contiguous right triangles (formerly called rectangled trian-

gles) with each cathetus (aka, leg) having a unit length of 1 

[11]. Each of the triangle's hypotenuses gives the square 

root to a consecutive natural number.  

 

 

Figure 2.  Initial deployment based on the spiral of Theodorus of a 

population of robots using the R-DPSO algorithm. 

Since this approach uses the spiral of Theodorus to carry 

out the initial deployment of robots, two general adjust-

ments need to be considered: i) the initial position of each 

robot is set at the further vertex of the centre of the spiral for 

each right triangle with a random orientation and also a 

random swarm in the specific situation of the R-DPSO algo-

rithm; and ii) the size of the cathetus is set as the maximum 

communication range (instead of having the unit length 1) 

consequently changing the triangles’ hypotenuses to the 

product between the maximum communication range and 

the square root of the consecutive natural number. These 

assumptions make it possible to have an initial deployment 

of the robots in an area that depends on both the number of 

robots and the communication constraints (Figure 2). 

III. MULTIVARIATE ANALYSIS OF VARIANCE  

The significance of the maximum communication dis-
tance and the number of robots (independent variables) on 
the global solution and the runtime (dependent variables) 

was analyzed using a two-way MANOVA after checking the 
assumptions of multivariate normality and homogeneity of 
variance/covariance. The assumption of normality of each of 
the univariate dependent variables was examined using un-
ivariate tests of Kolmogorov-Smirnov (p-value < 0.05). Al-
though the univariate normality of each dependent variable 
has not been verified, since  and using the Central 
Limit Theorem (CLT) [12] [13] this statement was assumed 
[14] [15]. Consequently, the assumption of multivariate 
normality was validated [14].  

The assumption about the homogeneity of va-
riance/covariance matrix in each group was examined with 
the Box’s M Test (M = 6465.13, F(69; 5368369.62) = 92.98; 
p-value = 0.001).  

Although the homogeneity of variance/covariance ma-
trices has not been verified, the MANOVA technique is ro-
bust to this violation because all the samples have the same 
size [14].  

When the MANOVA detected significant statistical dif-
ferences, we proceeded to the commonly-used ANOVA for 
each dependent variable followed by the Tukey’s HSD Post 
Hoc. The classification of the size effect (i.e., measure of the 
proportion of the total variation in the dependent variable 
explained by the independent variable) was done according 
to Maroco [14]. 

This analysis was performed using IBM SPSS Statistics 
for a significance level of 5%. 

IV. EXPERIMENTAL RESULTS 

In this section, it is explored the effectiveness of the R-
DPSO, while performing distributed unsupervised learning 
with local and global information, under communication 
constraints while increasing the population of robots. 

The number of robots is set equal to the number of par-
ticles and the number of nodes in the network. Robots are 
deployed in the search space in a spiral manner (as previous-
ly described) where the radius depends on the maximum 
communication distance and the number of robots in the 
population. Since the R-DPSO is a stochastic algorithm, 
every time it is executed it may lead to different trajectory 
convergence. Therefore, multiple test groups of 100 trials, of 
300 iterations each were considered. It will be used a mini-
mum, initial and maximum number of 1, 3 and 6 swarms 
(represented by different colors in Figure 2), respectively, 
independently of the population of robots. The search space 
is represented by a Gaussian distribution consisting on a 
function of two variables of the search space, x and y-axis, 
which represents the position of the robot in meters. The 
particles will then move in an outdoor scenario of 300 x 300 
meters where the z-axis represents the value of the objective 
function. In order to improve the interpretation of the algo-
rithm performance, results were normalized in a way that the 
objective of robots team is to find the optimal value of 1 
while avoiding obstacles and enforcing the MANET connec-
tivity (cf., Section II). Trying to maintain the network con-
nectivity by only taking into account the communication 
range does not match reality since the propagation model is 
more complex – the signal depends not only on the distance 
but also on the multiple paths from walls and other obstacles. 
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However, in simulation, the communication distance is a 
good approach and it is easier to implement.  

The maximum communication distance  will then 
vary depending on the chosen wireless protocol. Four condi-
tions were described: 1) Existence of a communication infra-
structure (i.e., without communication constraints 

); 2) WiFi; 3) ZigBee; 4) Bluetooth. Table 1 depicts the 
maximum communication distance adapted from a compari-
son between the key characteristics of each wireless protocol 
in [16]. The mean between the minimum and maximum 
range shown in [16] was considered as the maximum com-
munication distance . 

 

TABLE I.  TYPICAL MAXIMUM COMMUNICATION DISTANCES OF THE 

WIFI, ZIGBEE AND BLUETOOTH PROTOCOLS 

 No Limit WiFi ZibBee Bluetooth 

 [m]  100 55 10 

 
 
The number of robots will vary from 3 robots to 33 ro-

bots with incremental steps of 6 robots, i.e., 
 in order to understand the performance of 

the algorithm while changing the population size and the 
maximum communication distance. 

Since these simulation experiments represent a search 
task, it is necessary to evaluate not only the completeness of 
the mission but also the speed. Therefore, the performance of 
the algorithm will be evaluated through the analysis of the 
final global solution of the population and the runtime of the 
simulation. If the group cannot find the optimal solution, the 
runtime is considered to be the simulation time (i.e., 300 
iterations). 

A two-way MANOVA analysis was carried out to assess 
whether the factors on this study have a statistically signifi-
cant effect on the team's performance. The MANOVA re-
vealed that the maximum communication distance had a 
small effect and significant on the multivariate composite 
(Pillai's Trace = 0.75; F(6; 4752) = 30.974; p-value = 0.001; 
Partial Eta Squared  = 0.038; Power = 1.0). The number 

of robots also had a small effect and significant on the multi-
variate composite (Pillai's Trace = 0.080; F(10; 4752) = 
19.706; p-value = 0.001;  = 0.04; Power = 1.0). Finally, 

the interaction between the two independent variables had a 
small statistically significant effect on the multivariate com-
posite (Pillai's Trace = 0.032; F(30; 4752) = 2.55; p-value = 
0.001;  = 0.016; Power = 1.0). 

After observing the multivariate significance in the max-
imum communication distance and the number of robots, an 
univariate ANOVA for each dependent variable followed by 
the Tukey’s HSD Test was carried out. 

For the maximum communication distance, the depen-
dent variable final global solution presents statistically sig-
nificant differences (F(3, 2376) = 45.185; p-value = 0.001; 

 = 0.054; Power = 1.0) and the dependent variable runtime 

presents statistically significant differences (F(3, 2376) = 
53.683; p-value = 0.001;  = 0.063; Power = 1.0). 

For the number of robots, the dependent variable final 
global solution also presents statistically significant differ-
ences (F(5, 2376) = 23.347; p-value = 0.001;  = 0.047; 

Power = 1.0) and also the dependent variable runtime shows 
statistically significant differences (F(5, 2376) = 39.816; p-
value = 0.001;  = 0.077, Power = 1.0). 

Using the Tukey’s HSD Post Hoc, it is possible to verify 
where the differences between maximum distances of com-
munication lie. 

 

A. Maximum Communication Distance 

Analyzing the team's final solution and the runtime va-
riables, it appears that there are statistically significant dif-
ferences between experiments without communication con-
straints and experiments using the WiFi protocol, the ZigBee 
protocol and the Bluetooth protocol.  

 

TABLE II.  TUKEY’S HSD POST HOC TEST TO THE MAXIMUM 

COMMUNICATION DISTANCE 

 Final Solution Runtime 

No Limit vs WiFi 0.002* 0.854 

No Limit  vs ZigBee 0.001* 0.001* 

No Limit vs Bluetooth 0.001* 0.001* 

WiFi vs ZigBee 0.207 0.019* 

WiFi vs Bluetooth 0.001* 0.001* 

ZigBee vs Bluetooth 0.001* 0.001* 

* The corresponding  p-value for mean difference when it is significant at 
the 0.05 level 

 
It is noteworthy that without communication constraints 

the algorithm produces better solutions. Also, using WiFi 
protocol produces better solutions than using the ZigBee 
protocol and, on the other hand, this last one produces better 
solutions than the Bluetooth protocol as expected. 

In fact, using the Bluetooth protocol proves to be the 
“worse” communication protocol to employ. 

 

B. Number of Robots 

Analyzing both the final global solution of the team and 
the runtime variables, it appears that there are statistically 
significant differences between a population inferior to 15 
robots and a population superior to 21 robots, not showing 
statistically significant differences for a population between 
3 to 15 robots and 21 to 33 robots.  

Note that the “worst” result is obtained using 3 robots but 
may not be considered significantly “worse” than using 9 or 
even 15 robots. This may be relevant since the increase in the 
number of robots result in an increase in the cost of the solu-
tion. 

 
 



TABLE III.  TUKEY’S HSD POST HOC TEST TO THE NUMBER OF 

ROBOTS 

N Final Solution Runtime 

3vs9 1.000 0.861 

3vs15 0.151 0.182 

3vs21 0.001* 0.001* 

3vs27 0.001* 0.001* 

3vs33 0.001* 0.001* 

9vs15 0.249 0.844 

9vs21 0.001* 0.001* 

9vs27 0.001* 0.001* 

9vs33 0.001* 0.001* 

15vs21 0.004* 0.001* 

15vs27 0.001* 0.001* 

15vs33 0.001* 0.001* 

21vs27 0.842 0.654 

21vs33 0.785 0.076 

27vs33 1.000 0.845 

* The corresponding p-value for  mean difference when it is significant at 
the 0.05 level 

C. Discussion 

As previously depicted in tables II and III, as figures 3 
and 4 shows and using Tukey’s HSD Post Hoc test, the con-
ditions of the independent variables N and  can be di-
vided into different homogeneous subsets.  

 

 

Figure 3.  Estimated marginal means of the final global solution. 

For instance, since there are no statistically significant 

differences between teams of 3, 9 and 15 robots in the 

analysis of both the final global solution and the runtime, 

this can be considered as a subset of N, i.e.,  

and . In other words, in an application 

were the cost of the solution needs to be considered, and 

since there are no significant advantages of having 15 robots 

instead of having just 3 or having 33 robots instead of 21, 

the choice would be using the minimum number of robots of 

each subset of N. 

 

Figure 4.  Estimated marginal means of the runtime. 

The same analysis can be conducted for the maximum 
communication distance. However, in this specific situation, 3 
subsets can be considered analyzing the statistically significant 
differences between the different values of , i.e.,  

,  and 

. Put differently, the choice between 
wireless technologies, if unable to have a preexistent infra-

structure (i.e., ), based on the maximum communica-
tion distance and ignoring other technical features, may be 
centered on the WiFi and ZigBee technologies. 

V. CONCLUSION 

This paper presented a methodology to evaluate the pre-
viously proposed algorithm, denoted as R-DPSO, which takes 
into account real-world multi-robot systems (MRS) character-
istics.  

Experimental results shows that the performance of the al-
gorithm can be improved, thus decreasing the time needed to 
find the global optimum (i.e., runtime), as the number of ro-
bots or the communication range increases. However, the 
choice on the number of robots and the wireless technology 
needs to take into account the global cost of the solution 
depending on the statistic significant differences between the 
independent variables. 

As future work, a probabilistic model will be studied to 
optimize the swarm parameters such as the number of robots 
and the communication protocol in order to improve the 
overall runtime and find the optimal solution for a given 
scenario. 

 

No Limit WiFi ZigBee Bluetooth 

No Limit WiFi ZigBee Bluetooth 
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