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Abstract: An extension of the well-known Particle Swarm Optimization (PSO) to multi-robot applications has been recently 
proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole popula-
tion of robots. Although such strategy allows decreasing the amount of required information exchange among robots, a fur-
ther analysis on the communication complexity of the RDPSO needs to be carried out so as to evaluate the scalability of the 
algorithm. Moreover, a further study on the most adequate multi-hop routing protocol should be conducted. Therefore, this 
paper starts by analyzing the architecture and characteristics of the RDPSO communication system, thus describing the dy-
namics of the communication data packet structure shared between teammates. Such procedure will be the first step to 
achieving a more scalable implementation of the RDPSO by optimizing the communication procedure between robots. Sec-
ondly, the Ad hoc On-demand Distance Vector reactive routing protocol is extended based on the RDPSO concepts, so as to 
reduce the communication overhead within swarms of robots. Experimental results with teams of 15 real robots and 60 simu-
lated robots show that the proposed methodology significantly reduces the communication overhead, thus improving the 
scalability and applicability of the RDPSO algorithm. 
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I. INTRODUCTION 
Communication constitutes one of the most important resources for more effective cooperation among robots and im-

proved robust collective performance [1]. The way robots communicate can be divided into basically three most common 
techniques:  
¾ Implicit communication “through the world” (i.e., stigmergy) – robots sense the effects of team-mates’ actions through 

their effects on the world [2] [3] [4] [5];  
¾ Passive action recognition – robots use sensors to directly observe the actions of their teammates [6];  
¾ Explicit (intentional) communication – robots directly and intentionally communicate relevant information through 

some active means (e.g., WiFi) [7] [8]. 
Within the three techniques described above, the use of explicit communication is the most appealing method because 

of its directness and ease with which robots can become aware of the actions and/or goals of their teammates. The main uses 
of explicit communication in multi-robot teams are to synchronize actions, exchange information, and to negotiate between 
robots. Furthermore, explicit communication is a way of dealing with the hidden state problem, in which limited sensors 
cannot distinguish between different states of the world that are important for task performance. 

However, the development of robot teams for unstructured scenarios, such as rescue missions, require that robots are able 
to maintain communication among them without the aid of a communication infrastructure. In other words, robots need to be 
able to deploy and maintain a Mobile Ad hoc Network (MANET) in order to explicitly exchange information within multi-
hop network paths without unnecessarily restricting the team’s range [9]. 

MANETs have attracted much attention in the last years within mobile robotics community. The efficient information 
shared between agents belonging to a multi-robot system (MRS) would allow the coordination and cooperation necessary to 
fulfill collective tasks such as search and rescue (SaR). However, such networks typically consist of a large number of dis-
tributed nodes (i.e., robots) that organize themselves into multi-hop wireless networks. Therefore, robots may cooperate and 
route messages for each other [9], i.e., robots can perform the roles of both hosts and routers.  

Usually, within the context of MRS, a node corresponds to a robot with embedded processor, low-power radio, and typical-
ly battery operated. In order for MANETs to be cost efficient, the onboard processing, the wireless communication capabili-
ties and the battery power of each robot are highly limited. Moreover, since robots have mobility nature, the topology of the 
distributed networks is time varying and the strength of the connection can rapidly change or even completely disappear. 

 
A. Our Preliminary works 
It was based on those assumptions that the authors proposed a strategy in [9] to ensure the MANET connectivity based on 

attraction-repulsion mechanisms evaluated on the Robotic Darwinian Particle Swarm Optimization (RDPSO) (cf., Section II 



 
 

 

for a brief explanation about the RDPSO algorithm). The problem was stated as having a population of 𝑁 robots, divided into 
several swarms of 𝑁𝑆 robots, 𝑠 ∈ ℕ, wherein each robot would be both an exploring agent of the environment and a mobile 
node of a MANET that performs packet forwarding, according to a paradigm of multi-hop communication. The goal was to 
ensure that robots would explore an unknown environment, while ensuring that the MANET regarding their swarm would 
remain connected throughout the mission. For that purpose, the connectivity between robots was described by means of a link 
matrix 𝐿 = �𝑙𝑖𝑗� for a 𝑁𝑆-node network, where each entry represents the link between robot 𝑖 and 𝑗. The link was defined as 
either the link distance [10] or the link quality [11] (e.g., Received Signal Strength Indicator (RSSI)), between pairs of robots. 
Simulation results showed that the influence inherent to communication’s limitations can be attenuated as the number of 
robots or the communication range/quality increases.  

Recently, the authors proposed a natural extension of [9], focusing on a fault-tolerance strategy to guarantee 𝑘-connected 
MANETs within each swarm, 𝑘 𝜖 ℕ and 𝑘 ≤ 𝑁𝑆 − 1 [12]. Hence, a given robot would choose its 𝑘-nearest neighbors and the 
virtual force to maintain the MANET connectivity was represented by the vector sum of 𝑘-virtual forces. A population of 15 
physical robots, denoted as eSwarBots [13], was used to evaluate such strategy. Experimental results showed that the pro-
posed fault-tolerance RDPSO would enable the overcoming of several robot failures such as energy depletion. This work 
follows the same principles previously addressed in other works such as [14] and [15] regarding the need to maintain a perva-
sive MANET. 

Nevertheless, only by securing that each robot may communicate with its teammates does not ensure an efficient group 
communication. Besides studying the necessary information to be exchanged between teammates, routing protocols should be 
designed based on the mission-related contextual information, i.e., based on the behavior that one should expect from the 
MRS.  

 
B. Prior works 
Bearing in mind such assumptions, many works on MRS has been focused on efficiently sharing information between 

teammates [16, 17, 18]. Rocha [16] addressed the problem of building volumetric maps efficiently sharing the necessary 
information based on mutual information minimization. To that end, the author presented a distributed architecture model 
with efficient information sharing, wherein entropy was used to define a formal information-theoretic background to reason 
about the mapping and exploration process. This allows to share only information that may be relevant for the team. It was 
with that same principle that Hereford and Siebold [17] proposed a swarm exploration strategy wherein robots only shared 
their position if their own solution was the best solution in the whole swarm. Although this is an interesting strategy, robots 
still need to share information concerning their own solution and a global assessment of the collective performance needs to 
be carried out. Similarly, the authors in [18] proposed a communication-efficient dynamic task scheduling algorithm for MRS. 
This algorithm avoided unnecessary communication by broadcasting global information only to the robots who were interest-
ed in it, thus reducing the communication overhead. Simulation experiments showed that the proposed strategy was able to 
reduce the communication cost to almost half when compared to a common broadcast approach.  

Besides exploiting the necessary information that robots should share, routing protocols, such as the well-known Ad hoc 
On-demand Distance Vector (AODV), have been successively extended based on the mobile network requirements [19, 20, 
21]. For instance, the authors in [19] extended the AODV routing protocol based on the Manhattan mobility model, thus mak-
ing it more fitted for Vehicular Ad hoc Network (VANET) applications. Such strategy allowed the establishing of more stable 
routes, especially in applications demanding a high mobility of nodes, thus reducing the communication overhead of the net-
work. More generally, Asenov and Hnatyshin [20] extended the AODV based on the geographical position of nodes retrieved 
with Global Positioning Systems (GPS). This improves the performance of the route discovery process in AODV routing (cf., 
Section IV-A for a description about this mechanism). Nevertheless, such strategy assumes that each robot in the network is 
aware of all teammates’ position, thus increasing the communication complexity. Similarly, the work presented in [21] pro-
posed two GPS-based strategies, namely the AODV Location Aided Routing (LAR) protocol and the AODV Line protocol, to 
minimize the control overhead of the AODV protocol, thus limiting the flooding area of AODV. While the first protocol limits 
the route discovery to a small area of the network, the second protocol uses node location information to restrict route search 
area to be only near the line connecting source and destination nodes. However, both strategies still present the same disad-
vantage as the work in [20], i.e., the knowledge about the current position of all robots.  

 
C. Statement of contributions and paper outline 
Although this work revolves around the RDPSO first presented in [22] and briefly described in Section II, the same analy-

sis may be conducted to other behavior-based architectures. The main contributions of this work are as follow: 
i) The data exchanged between robots of the same swarm, i.e., network, is studied in depth and a rationale is presented 

for each different situation within the RDPSO context so as to minimize the communication overhead (Section III); 
ii) The traditional AODV reactive routing protocol is extended based on the RDPSO dynamics to minimize the number of 

updates regarding the routes connecting pairs of robots, thus avoiding unnecessary flooding (Section IV); 
iii) Based on the proposed approaches, the communication complexity of the RDPSO is evaluated using both physical and 

virtual robots in a large indoor environment (Section V).  
Sections VI and VII outline the discussion and main conclusions, respectively. 



 
 

 

II. ROBOTIC DARWINIAN PSO 
This section briefly presents the RDPSO algorithm proposed in [22]. The Darwinian PSO (DPSO) was originally presented 

by Tillett et al. [23] for optimization problems, being an evolutionary algorithm that extends the well-known PSO [24] using 
natural selection, or survival-of-the-fittest, to enhance the ability to escape from sub-optimal solutions. The RDPSO is an 
extension of the DPSO to multi-robot applications presented for the first time in [22] and further improved in several subse-
quent publications such as [25] and [26], thus presenting the following features: 
• Social Exclusion and Inclusion - The RDPSO is represented by multiple swarms (i.e., group of robots from the same net-

work) wherein each swarm individually performs just like a PSO-like robotic algorithm in search for the solution and some 
rules govern the whole population of robots. The socially excluded robots randomly wander in the scenario instead of 
searching for the objective function’s global optimum like the other robots in the active swarms do. However, they are al-
ways aware of their individual solution and the global solution of the socially excluded group.  

• Obstacle Avoidance - A new cost or fitness function is defined in such a way that it guides the robot in performing the main 
mission while avoiding obstacles. For this purpose it is assumed that each robot is equipped with sensors capable of sensing 
the environment for obstacle detection within a finite sensing radius 𝑟𝑠. A monotonic and positive sensing function 𝑔(𝑥𝑛[𝑡]) 
at each discrete time, or iteration, 𝑡 ∈  ℕ, is defined. This function depends on the sensing information, i.e., distance from 
the robot to an obstacle.  

• Ensuring MANET 𝑘-Connectivity - Robots’ position needs to be controlled in order to maintain the communication based 
on constraints such as maximum distance or minimum signal quality. The way to preserve the network connectivity de-
pends on the characteristics of the communication. Assuming that the network supports multi-hop connectivity, the com-
munication between two end nodes (i.e., robots) is carried out through a number of intermediate nodes whose function is to 
relay information from one point to another. Considering that nodes are mobile, it is necessary to guarantee the communica-
tion between all nodes. The robots’ position is updated by means of the ensuring MANET connectivity algorithm first pre-
sented in [9] and further extended in [12] to consider 𝑘-fault-tolerance, i.e., each pair of robots from the same swarm is 
connected to, at least, 𝑘 robot-disjoint paths. 
The behavior of robot 𝑛 can be described by the following discrete equations at each discrete time, or iteration, 𝑡 ∈ ℕ0: 

 
𝑣𝑛[𝑡 + 1] = 𝑤𝑛[𝑡] + ∑ 𝜌𝑖𝑟𝑖(𝜒𝑖[𝑡] − 𝑥𝑛[𝑡])4

𝑖=1 , (1) 
 

𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1], (2) 
 
wherein coefficients 𝜌𝑖, 𝑖 = 1,2,3,4, assign weights to the local best (i.e., cognitive component), the global best (i.e., social 
component), the obstacle avoidance component and the network connectedness enforcement component when determining 
the new velocity, with 𝜌𝑖 > 0. Parameters 𝑟𝑖 are random vectors wherein each component is generally a uniform random 
number between 0 and 1. 𝑣𝑛[𝑡] and 𝑥𝑛[𝑡] represents the velocity and position vector of robot 𝑛, respectively. 𝜒𝑖[𝑡] represent 
the best position of the cognitive, social, obstacle and MANET components. The cognitive 𝜒1[𝑡] and social components 𝜒2[𝑡] 
are the commonly presented in the classical PSO algorithm. 𝜒1[𝑡] represents the local best position of robot 𝑛 while 𝜒2[𝑡] 
represents the global best position of robot 𝑛. The other features 𝜒3[𝑡] and 𝜒4[𝑡] are novel and inherent to multi-robot appli-
cations. In brief, 𝜒3[𝑡] represents the local best position of robot 𝑛 regarding to the sensed obstacles so far. Similarly,  𝜒4[𝑡] 
represents the local best position of robot 𝑛 that allows maintaining a connected MANET based on its closest neighbor, i.e., 
one-hop robot. 
In the common PSO algorithm, the inertial component 𝑤𝑛[𝑡] is usually proportional to the inertial influence. The RDPSO 
uses fractional calculus (FC) [27] [28], to describe the dynamic phenomenon of a robot’s trajectory. As presented on [25], the 
inertial component 𝑤𝑛[𝑡] may be defined as: 
 

𝑤𝑛[𝑡] = 𝛼𝑣𝑛[𝑡] + 1
2 𝛼𝑣𝑛[𝑡 − 1] + 1

6 𝛼(1 − 𝛼)𝑣𝑛[𝑡 − 2] + 1
24 𝛼(1 − 𝛼)(2 − 𝛼)𝑣𝑛[𝑡 − 3], (3) 

 
for the eSwarBot platforms [13], where 𝛼 represents the fractional coefficient. 

Considering equations (1-3), it is noteworthy that robots will tend to converge to the optimal solution. However, although 
all robots within a swarm agree with the best solution, they must also fulfill the other requirements (i.e., avoid obstacles and 
maintain a certain distance between neighbors). In other words, robots within the same swarm do not physically converge to a 
given solution but instead reach a global consensus. Such consensus is related to the nature of the mission. For instance, if we 
have a group of mobile olfactory robots that are trying to find a gas leak in an indoor environment (c.f., [29] [30]), each ro-
bot’s state comprises its pose and the corresponding value of gas density. The swarm will reach a consensus every time the 
highest gas density is shared among teammates, thus affecting their local decision-making. To avoid swarms’ stagnation, the 
RDPSO encompasses the rules presented in Table 1, which are based on the principles of social exclusion and inclusion. 

 
 
 



 
 

 

 
Table 1. Punish-Reward RDPSO rules. 

 
 

PUNISH REWARD 
 
If a swarm does not improve during a specific threshold the 
swarm is punished by excluding the worst performing robot 

 
 

If the number of robots in a swarm falls below the minimum 
number of accepted robots to form a swarm, the swarm is pun-
ished by being dismantled 
 

If a swarm improves and its current number of robots is 
inferior to the maximum number of accepted robots to form 
a swarm, then it has a small probability of being rewarded 
with the best performing robot that was previously exclud-
ed 

 
If a swarm has been more often rewarded than punished it 
has a small probability of spawning a new swarm 

 
Nevertheless, to achieve a global consensus within each swarm, robots need to share a certain amount of information as 

described in the following section. 

III. SHARING INFORMATION WITHIN THE RDPSO 
It has generally been assumed in MRS that each robot has the ability to communicate with any other robot with small con-

sideration for the quality and performance of the wireless communication network. Although being valid in particular situa-
tions, such an assumption does not generally hold. As previously described, the RDPSO ensures the connectivity of the net-
work (cf., 𝜒4[𝑡] term in previous section and [12] for a more detailed description). Nevertheless, how this is carried out in 
practice without overloading the communication channel needs to be addressed. Moreover, the communication packet struc-
ture shared between robots needs to be specified and a rational behind it should be introduced. Generally, the packet data 
structure may be illustrated as presented in Fig. 1. 

 
Header bit [0,1] Data byte(s) 

0 Local Broadcast to neighbors  Number of bytes depends on specific data 
1 Broadcast to whole swarm 

 
Fig. 1. General communication packet structure for a swarm of 𝑁𝑠 robots. 

 
It is noteworthy that the broadcast to the whole swarm should be avoided as it represents a high communication complexi-

ty. In brief, in order to broadcast to the whole swarm by multi-hop communication, the message needs to be addressed to each 
Robot ID. The number of bytes necessary for the main message, i.e., Data byte(s), will depend on the message itself. For 
instance, if a robot wants to share its position and considering a planar scenario, then two bytes may be enough to represent 
the coordinate on each axis. 

 
D. Ensuring Connectivity 
Since robots may move apart to further areas, it is important to have a pervasive networking environment for communica-

tions among robots. Furthermore, without a preexistent infrastructure, robots need to be able to act as intermediate nodes, i.e., 
routers, in order to relay information from one point to another, thus supporting multi-hop communication in a MANET [31]. 

In a previous work, an initial deployment strategy denoted as Extended Spiral of Theodorus (EST) was presented [12]. The 
EST was introduced as an autonomous, realistic and fault-tolerant initial deployment strategy based on the Received Signal 
Strength Indicator (RSSI) signal. Similarly to Rybsky’s work [32], the initial deployment of robots was carried out hierarchi-
cally dividing the population of robots into rangers and scouts. Each ranger handled the initial deployment of an entire 
swarm of scouts allowing a distributed and autonomous transportation, thus sparing the need of a preprocessing procedure 
(e.g., topological features extraction using unmanned aerial vehicles). In other words, the initial deployment was able to en-
sure that each exploring robot would be able to communicate with 𝑘 neighbors from the same swarm, 𝑘 𝜖 ℕ, thus ensuring 
that the MANET is 𝑘-connected. 

After the initial deployment process is concluded, robots explore the environment while ensuring the same 𝑘-connectivity 
of the swarm by defining 𝜒4[𝑡] as a set of attractive and repulsive forces [12]. Let us consider the following illustrative ex-
ample presented in Fig. 2 in which it is necessary to guarantee a biconnected network (𝑘 = 2). As it is possible to observe, 
robot 1 chooses robot 2 and 4 as its nearest neighbors since they are the nearest ones or the ones that present the higher signal 
quality. As the link between robot 1 and 2 corresponds to the ideal situation such that any attractive or repulsive force is nec-
essary. However, robot 4 is too far away from robot 1, thus resulting in an attraction virtual force toward it. Robot 2 chooses 
robot 3 and robot 4 as its nearest neighbors since robot 1 has first chosen robot 2. As robot 3 is too close from robot 2, a re-
pulsive force is generated. On the other hand, as robot 4 is too far away from robot 2, an attractive force is generated. The 
resulting force will then allow robot 2 to move away from robot 3 while getting closer to robot 4. Finally, the two nearest 



 
 

 

neighbors of robot 3, that did not chosen it as their nearest neighbor, are robot 1 and robot 4 which are too far away, thus 
being affected by attractive forces toward them. 

 

 
Fig. 2. Illustration of a MANET topology of a swarm. Dashed lines represent the link quality between pairs of robots, thinner arrows repre-
sent the force vectors regarding each chosen neighbor and larger arrows represent the resulting force vectors that ensure MANET biconnec-
tivity. 

 
Based on the presented strategy, it is possible to ensure the 𝑘-connectivity of the network by simply sharing the position to 

the 𝑘 neighbors. Therefore, only taking into consideration the information of the 𝑁𝑏 robots within the one-hop path (i.e., 
neighbors) would allow ensuring the connectivity of the whole swarm. Fig. 3 presents the packet structure of communication 
for this particular situation. 

 
Header bit Data byte(s) 

0 𝑥𝑛[𝑡] 
Fig. 3. Communication packet structure that allows robots in maintaining the MANET 𝑘-connectivity within their swarm of 𝑁𝑠 robots. 

 
An alternative to broadcasting the position to the 𝑁𝑏 neighbors would be the use of strategies to find the teammates posi-

tion under their visual range [33]. For instance, if robots are equipped with laser range finders, retro-reflective markers may 
be used for recognition. To that end, one should ensure that the sensing radius 𝑟𝑠 is equal or superior to the maximum distance 
of neighbors, which depends on the minimum inter-robot signal quality RSSI. 

 
 

E. Converging to the Optimal Solution 
As previously presented in section II, 𝜒2[𝑡] represents the best positions of the social component. Therefore, robots from 

the same active swarm, i.e., not in the socially excluded group, need to share their best cognitive solution 𝑓𝑛[𝑡] and current 
position 𝑥𝑛[𝑡] so as to compute the position of the robot that has the best social solution. For instance, if one wishes to find a 
gas leak, the best performing robot will be the one with the highest solution, i.e., max𝑛∈𝑁𝑠 𝑓𝑛[𝑡]. Nevertheless, efficiently 
sharing this information may allow to drastically reduce the communication complexity of the RDPSO. For instance, if a 
robot from the active swarm was unable to improve, then the information about its position and solution are irrelevant to the 
group, i.e., the collective behavior will not change. Therefore, and as a rule, a robot may only share its current solution and 
position if it is able to improve its best cognitive solution, i.e., 𝑓𝑛[𝑡 + 𝑗] > 𝑓𝑛[𝑡], 𝑗 ∈ ℕ. Otherwise, and as robots are able to 
memorize the best solution of the swarm and corresponding position so far, without significantly increase the memory com-
plexity, robots will simply continue computing their algorithm without communicating. Fig. 4 represents the packet structure 
sent from a robot that was able to improve its solution. 

 
Header bit Data byte(s) 

1 𝑥𝑛[𝑡] 𝑓𝑛[𝑡] 
Fig. 4. Communication packet structure that allows robots from active swarms to cooperatively converge to the solution. This packet is only 
sent if a robot improves its best cognitive solution. 

 
Note that this significantly reduces the communication complexity as this data needs to be exchanged between all team-

mates, i.e., broadcasted to the whole swarm by means of multi-hop communication. For instance, in a previous work [34], a 
setup of 4, 8 and 12 educative Swarm Robots (eSwarBots) [13] on a small scenario with one optimal and one sub-optimal 
solution was presented (Fig. 5a). As Fig. 5b depicts, using 12 robots represent the most critical situation tested regarding the 
chances that the swarm has to improve. Even so, in a population of 12 robots under the 80 trials of 180 seconds each, it was 
possible to observe that a robot is only able to improve in approximately 15% of the iterations, i.e., only approximately 15% 
of the information shared is useful to the collective performance. As the number of robot decreases for the same scenario, the 

1 
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probability that a robot has to improve also slightly decreases, thus slightly decreasing the amount of useful information (Fig. 
5b). 

 

                          
 

Fig. 5. a) Experimental setup presented in [34]; b) ratio between the number of useful messages and the total number of messages. 
 
It is noteworthy that the amount of useful information will vary depending on several conditions (e.g., number of robots, 

scenario, mission objectives, among others). Nevertheless, efficiently sharing information based on the herein proposed strat-
egy will always significantly reduce the communication complexity of the algorithm as robots will not always improve at 
each iteration. After this analysis on the data exchanged between robots from active swarms, next section shows an efficient 
way to share information between excluded robots, i.e., robots within the socially excluded group. 

 

F. Avoiding Sub-Optimality 
As previously presented in section II, the way the RDPSO handles sub-optimal avoidance is by socially excluding robots 

that have nothing to offer to the group, i.e., that are unable to improve for a certain stagnancy threshold  (cf., [22] and Table 1 
for a more detailed description about this “punish”-“reward” mechanism). In brief, the number of times a swarm evolves 
without finding an improved objective is tracked with a search counter. If a swarm’s search counter exceeds a maximum 
critical threshold, the swarm is punished by excluding the worst performing robot, which is added to a socially excluded 
group. Nevertheless, the behaviour of those socially excluded robots differs from the ones in the active swarms. Instead of 
searching for the optimal solution (i.e., the main activity of the society) like the other robots in the active swarms do, they 
randomly wander in the scenario while avoiding obstacles and maintaining the MANET connectivity with the other excluded 
robots. Note, however, that they are always aware of their best cognitive solution. That being said, the only regular infor-
mation excluded robots need to share is their current position to their neighbors so as to maintain the MANET connectivity 
(cf., Section III-A). 

However, if an active swarm continues to improve for a certain amount of time, there will be a probability to be rewarded 
with the best performing robot from the socially excluded group. Moreover, the swarm will also have a small probability of 
creating a new swarm from the best performing robots from the socially excluded group. Therefore, when excluded robots 
receive a calling from an active swarm, they will broadcast their best cognitive solutions and respective positions to the whole 
socially excluded group by means of multi-hop communication (cf., Section III-B). Thereby, they will be able to assess the 
best performing excluded robots so far and evaluate which ones would be a part of an active swarm. 

Although one wishes to avoid broadcasting to the whole multi-hop network, this event will only occur from time to time 
since it depends on the constant improvement of swarms and a probability of successful calling. Furthermore, an adequate 
choice on the routing protocol may allow overcoming or, at least, minimizing the broadcast overhead. 

 

IV. ROUTING PROTOCOL 
In MANETs, the communication between source and destination nodes may require traversal of multiple hops. Since the in-

troduction of such networks, a community of researchers has proposed a variety of routing algorithms, mainly divided into 
two classes: i) proactive; and ii) reactive. In the first class, every node maintains a list of destinations and their routes by pro-
cessing periodic topology broadcasts originated by each node in the network. In reactive routing protocols, nodes maintain 
their routing tables on a need-to-use basis. For more information about those two classes please refer to [35]. 

Although many works has been comparing such routing protocols (e.g., [36], [37], [38]), those have been mostly carried 
out in simulation and outside the scope of swarm robotic applications, wherein a large quantity of highly dynamic nodes need 
to be considered. Within such assumptions, the class of proactive routing protocols utterly falls apart. Besides being unsuita-
ble to use in highly mobile nodes, proactive routing requires a high communication cost to constantly maintain all topological 
information.  

Therefore, and as swarm robotics aims for scalability under an increasing numbers of robots and mobility rate within the 
network, this work will focus on reactive routing protocols. One of the most well-known reactive protocols is the Ad hoc On-
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demand Distance Vector (AODV). 
 

A. Ad hoc On-demand Distance Vector (AODV) 
 
The AODV routing protocol is one of the most adopted reactive MANET routing protocols [39]. This protocol exhibits a 

good performance on MANETs, thus accomplishing its goal of eliminating source routing overhead. Nevertheless, at consid-
erably high rates of node mobility, it requires the transmission of many routing overhead packets. Despite this limitation, the 
AODV has been extensively applied in most wireless equipment, such as the one used on the robotic platforms eSwarBots 
[13] (Fig. 6a); the Original Equipment Manufacturers RF (OEM-RF) XBee Series 2 from Digi International [40] (Fig. 6b). 

 

    
Fig. 6. a) eSwarBot platforms presented in [13]; b) Electrical modification of XBee Series 2 from Digi International [40] to provide the 
RSSI signal output. 

 
Under the AODV protocol, when a robot A needs to communicate to robot B, it broadcasts a route discovery message to its 

neighbors (i.e., local broadcast), including the last known sequence number for that destination [41]. The route discovery is 
flooded through the network until it reaches a robot that has a route to the destination. Each robot that forwards the route 
discovery creates a reverse route for itself back to robot A. When the route discovery reaches a robot with a route to robot B, 
that robot generates a route reply that contains the number of hops necessary to reach robot B and the sequence number for 
robot B most recently seen by the robot generating the route reply. Each robot that participates in forwarding this route reply 
back toward robot A creates a forward route to robot B. Hence, each robot remembers only the next hop and not the entire 
route.  

In order to maintain routes, AODV normally requires that each robot periodically transmit a hello message. Within the 
RDPSO algorithm, this may be accomplished at each step of the algorithm, i.e., after reaching a desired position 𝑥𝑛[𝑡 + 1], 
thus benefiting from the need to share its current position in order to ensure MANET connectivity (Section III-A). A previous-
ly defined link may considered to be broken if a robot does not receive three consecutive hello messages from a neighbor. 
Under that condition, any upstream robot that has recently forwarded packets to a destination using that link is notified via an 
unsolicited route reply containing an infinite metric for that destination. Upon receipt of such a route reply, a robot must 
acquire a new route to the destination using the route discovery once again. 

 

B. RDPSO based AODV 
Although the mechanics of the AODV are quite transparent for users in most wireless technology (e.g., OEM-RF XBee Se-

ries 2), one may need to extend the original AODV features so as to further adapt it to the application itself (e.g., [19]). In this 
work, the AODV is extended based on two key elements: i) as the teams of robots begin connected by mean of the EST initial 
deployment (cf., [12]), a node discovery functionality was introduced; and ii) the mobility of robots within the RDPSO behav-
ior is taken into account so as to establish more stable routes. 

The node discovery basically allows discovering the IDs of all robots that have joined the network. Each robot will then 
broadcast a node discovery command throughout the network. All robots that receive the command will send a response that 
includes its own address. A timeout is defined by the node discovery sender, thus allowing specifying an amount of time a 
robot will spend in discovering its teammates. In other words, the node discovery functionality is highly suitable as the 
RDPSO handles multiple swarms and it may be difficult to predefine a population of specific robots to form a swarm in ad-
vance. Moreover, such strategy avoids the need to configure the address of each robot independently as each robot will ac-
quire the default ID of its teammates in the beginning of the mission. Therefore, after each swarm is deployed within the 
scenario, the very first action robots must perform is the node discovery command. Afterwards, the route discovery will be 
carried out (cf., previous section) and the mission will start. 
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Subsequently, it is possible to improve the AODV based on the mobility of robots, by first understanding how robots may 
generally behave within the RDPSO algorithm. As previously presented in Section II, the RDPSO model depends on the 
sensed information (1), both cognitive and social, and the inertial coefficient based on the approximate fractional difference 
of order 𝛼 (3). That being said, a robot may estimate where a neighbor, i.e., one-hop robot, will be in the next iteration by 
knowing its previous positions, its best position so far and the social solution of the group.  

The later situation is the simplest one as each robot is always aware of the best solution of the whole group so far (Section 
III-B). Hence, this requirement does not increase the memory complexity of the algorithm at all.  

Similarly, a robot may know the best position of its neighbors as it is intrinsic to the communication packet structure 
shared when robots improve their individual solution (Section III-B). For this situation, each robot will need to keep the posi-
tion received by robots when they are able to improve i.e., 𝑓𝑛[𝑡 + 𝑗] > 𝑓𝑛[𝑡], 𝑗 ∈ ℕ. Nevertheless, the position of non-
neighbor robots may be discarded as this is a distributed strategy that only considers information from one hop nodes. There-
fore, this results in an addition of the memory complexity per robot equal to the number of neighbor robots, i.e., 𝒪(𝑁𝑏). Note, 
however, that this only represents memorizing twice 𝑁𝑏 bytes necessary to represent the planar best position of each neighbor 
robot.  

The most memory demanding situation will be inevitably memorizing the position of neighbors over time. Based on equa-
tion 3, one may compute the motion of robots with the information of the four last steps, i.e., 𝑣𝑛[𝑡 − 𝑗], 𝑗 = 0, … ,3. As neigh-
bor robots share their current position 𝑥𝑏[𝑡], 𝑏 ∈ 𝑁𝑏, a robot needs to memorize the two consecutive positions 𝑥𝑏[𝑡] and 
𝑥𝑏[𝑡 − 1] of all its neighbors so as to calculate their current velocity 𝑣𝑏[𝑡] (cf., equation 2). In other words, a robot will need 
to keep track the position of all its 𝑁𝑏 neighbor robots for the last 5 steps to estimate their position, i.e., 𝒪(5𝑁𝑏).  

In sum, to extend the AODV based on the RDPSO behavior, one needs to increase the memory complexity of robots by 
𝒪(6𝑁𝑏). Note that this is a small increment to the memory complexity of each robot when compared to the benefit that this 
novel mechanism may provide in reducing the communication complexity of the whole swarm. 

Having the information described above, each robot may be able to estimate all neighbors’ next position 𝑥𝑏[𝑡 + 1] by 
means of equation 1, 2 and 3. Nevertheless, as the RDPSO is endowed with a stochastic effect, i.e., 𝑟𝑖, 𝑖 = 1,2,3,4, it is almost 
impossible for a robot to estimate the neighbors’ exact next position accurately. However, one may improve the precision of 
such estimate by considering the expected value of the uniform random parameters. In other words, for the position estimate 
of the neighbors, a deterministic simplified version of the RDPSO is considered. The deterministic simplified RDPSO is ob-
tained by setting the random numbers to their expected values: 

 
𝐸(𝑟𝑖) = 1

2 , 𝑖 = 1,2. (4) 
 
Thus, for the deterministic simplified RDPSO, replacing the random factors 𝑟𝑖 by 12, equations 1, 2 and 3 may be rewritten 

in a single equation as:  
 

𝑥𝑛,𝑏
𝑒 [𝑡 + 1] = �−1 − 𝛼 + 1
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12 𝛼� 𝑥𝑛,𝑏[𝑡 − 3] + � 124 𝛼
3 − 1

8 𝛼
2 + 1

12 𝛼� 𝑥𝑛,𝑏[𝑡 − 4] + 1
2 𝜌1𝜒1𝑛,𝑏[𝑡] + 1

2 𝜌2𝜒2𝑛,𝑏[𝑡], 
(5) 

 
in such a way that 𝑥𝑛,𝑏

𝑒 [𝑡 + 1] represents the position of robot 𝑏 estimated by its neighbor 𝑛. Note that the remaining parame-
ters in equation 5 are explained on section II. Although the estimated position is unlikely to be exactly the same as the real 
position, i.e., 𝑥𝑛,𝑏

𝑒 [𝑡 + 1] ≠ 𝑥𝑏[𝑡 + 1], a good approximation may be enough to select if robot 𝑏 may be a candidate to be the 
intermediate in route between source and destination robots.  

Therefore, to improve the AODV routing protocol, when a source robot wants to send a packet to a destination robot, it will 
first estimate the next position of neighbor robots. Then, it will recognize the intermediate robot that can participate in the 
routing of the message. The robot can be selected as the next hop if its estimated position is the closest to the destination 
robot, i.e., the one with the smallest Euclidean distance.  

 
𝐼𝐷𝑏 = argmin𝑏∈𝑁𝑏 𝑑�𝑥𝑛,𝑏

𝑒 [𝑡 + 1], 𝑥𝑓𝑒[𝑡 + 1]�, (6) 
 
wherein 𝐼𝐷𝑏 will represent the ID of robot 𝑛’s neighbors that has the smallest distance to the destination robot and  𝑥𝑓𝑒[𝑡 + 1] 
the estimated position of the destination robot. After the message reaches the selected robot, the same process is carried out in 
order to assess the neighbor robot that would yield the next most fitted hop. Hence, source robot, destination robot and candi-
date robot for next hop are the inputs of the herein proposed strategy for each robot. It is noteworthy that the information that 
will be used from the destination robot will be the last known information obtained from the broadcast to the whole swarm 
(cf., Section III-B). Although the destination robot is likely to have changed is position in the meanwhile, the idea is to have 
an estimate on the region where to send the message to and choose the most adequate path.  

Routes established within such strategy are more stable and have less overhead than the original AODV routing method. 
Nevertheless, this is a greedy distributed strategy and it may happen that a robot cannot find any intermediate node as next 



 
 

 

best hop. For instance, the source robot may choose the incorrect neighbor robot based on its location without knowing that it 
may not have any other neighbors at all besides itself. In this situation, i.e., when a message returns to a robot that already 
forwarded it or to the source robot, then the common AODV mechanism of route discovery is used between that robot and the 
destination one (cf., Section IV-A). 

To easily understand the herein proposed strategy, Fig. 7 presents an illustrative example of a swarm under the RDPSO al-
gorithm. In the beginning (Fig. 7a), and due to RDPSO main mechanisms [12], robots are able to communicate between 
themselves, thus guaranteeing the MANET connectivity. Since the AODV routing protocol is the one adopted in this work, its 
main mechanism to retrieve all routes between robots is fulfilled, i.e., route discovery, as presented in Section IV-A. The 
routes between robots are represented by the blue thin lines that connect them. Due to the particularities of the RDPSO, the 
node discovery is carried out so as to retrieve the IDs of all robots within the same swarm. While any robot improves, they 
will continue exploring the scenario informing its neighbors about its position to maintain the MANET connectivity (Section 
III-A). After a while (Fig. 7b), robot 2 is able to improve its cognitive solution, thus informing all other robots within the 
swarm (Section III-B). Since robot 2 cannot communicate with robot 6, and considering the traditional AODV, a new route 
needs to be found, i.e., the route discovery needs to be fulfilled once again. Those new routes are represented by the red thick 
lines that connect the robots. Nevertheless, the route discovery mechanism requires successive local broadcasts that may 
overload the communication channel. Fig. 7c depicts the mechanism inherent to the RDPSO based AODV. Within such strat-
egy, robot 2 will choose the nearest neighbor that presents the smallest distance to robot 6 (cf., equation 6). As robot 2 is able 
to directly communicate to robot 6, it will forward the message to it. 

 

 

Fig. 7. RDPSO based AODV routing protocol. Red bolder lines between robots represent that there exists a possible link between them but 
that the AODV protocol is unaware of. a) The robots start connected by means of the EST initial deployment strategy, thus enforcing the 
MANET connectivity of the whole swarm [12]. The node discovery and route discovery allows to retrieve the ID of all robots and build the 
routes between them (blue thin lines). b) After a while, robot 2 improves and tries to broadcast its new solution and position to the whole 
network. However, as robot 2 is unable to communicate with robot 6 by means of the route previously built using AODV, a new route 
discovery needs to be sent (red thick lines). c) Using the RDPSO based AODV will allow robot 2 to choose the neighbor that is near robot 6, 
i.e., robot 3, that will forward the message to its destination, i.e., robot 6. 

 
 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

a)  

b)  c)  

Traditional  AODV RDPSO based  AODV 

solution 

robot improved 

route broken 



 
 

 

The whole RDPSO communication procedure for a robot 𝑛 may be briefly summarized as presented by Algorithm I. Note 
that Algorithm I only focus on the shared information between robots and the routing protocol. For a detailed description of 
the RDPSO main behavior please refer to [42]. 

 
 

Algorithm 1. Sharing information within the RDPSO 
 

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔( )  // wait for information about initial position 𝑥𝑛[0] and 𝑠𝑤𝑎𝑟𝑚𝐼𝐷  
𝑓𝑢𝑙𝑙𝐼𝐷𝑠 =  𝑛𝑜𝑑𝑒_𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦(𝑠𝑤𝑎𝑟𝑚𝐼𝐷) // full list of robot IDs from the same swarm 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 
𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠 =  𝑟𝑜𝑢𝑡𝑒_𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦(𝑓𝑢𝑙𝑙𝐼𝐷𝑠) // list of routes within the same swarm 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 
𝑀𝑎𝑖𝑛_𝐿𝑜𝑜𝑝  
 If 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 ≠ 0  // it is not an excluded robot 
  𝑠𝑒𝑛𝑑(0,𝑥𝑛[𝑡])  // local broadcast may be avoided applying recognition techniques in visual range (Section III-A) 
  𝑓𝑛[𝑡] = 𝑠𝑒𝑛𝑠𝑒( )  // evaluate individual solution 𝑓𝑛[𝑡]  
  If 𝑟𝑜𝑏𝑜𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑(𝑓𝑛[𝑡 − 1], 𝑓𝑛[𝑡])  // robot 𝑛 will globally broadcast its current solution and position (Section III-A) 
   𝑙𝑖𝑠𝑡𝐼𝐷𝑠 =  𝑠𝑒𝑛𝑑(1, 𝑥𝑛[𝑡], 𝑓𝑛[𝑡])  // 𝑙𝑖𝑠𝑡𝐼𝐷𝑠 is an array of robot IDs that did not received the message   
   𝑟𝑒𝑠𝑒𝑛𝑑(𝑙𝑖𝑠𝑡𝐼𝐷𝑠)  // use the RDPSO based AODV   
   If 𝑐𝑎𝑙𝑙_𝑟𝑜𝑏𝑜𝑡( )  // robot 𝑛 may call a new robot from the excluded group to its swarm  
    𝑠𝑒𝑛𝑑(0, 𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑐𝑎𝑙𝑙)  // broadcast the possibility to receive a new robot  
   If 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑤𝑎𝑟𝑚( )  // robot 𝑛 may create a new swarm from the excluded group  
    𝑠𝑒𝑛𝑑(0, 𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑛𝑒𝑤)  // broadcast the possibility to create a new swarm  
  If 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑓𝑤𝑑𝑚𝑠𝑔�𝐼𝐷𝑓 , 𝑥𝑛[𝑡], 𝑓𝑛[𝑡], 𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠�  // 𝐼𝐷𝑓 represents the ID of the destination robot 
   𝑟𝑒𝑠𝑒𝑛𝑑�𝐼𝐷𝑓�  // use the RDPSO based AODV  
 Else  // it is an excluded robot 
  𝑤𝑎𝑛𝑑𝑒𝑟( )  // Section III-C 
  𝑠𝑒𝑛𝑑(0,𝑥𝑛[𝑡])  // local broadcast may be avoided applying recognition techniques in visual range (Section III-A) 
  𝑓𝑛[𝑡] = 𝑠𝑒𝑛𝑠𝑒( )  // evaluate individual solution 𝑓𝑛[𝑡]  
  If 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑐𝑎𝑙𝑙) Or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑛𝑒𝑤) // call for a new robot or swarm received 
   𝑙𝑖𝑠𝑡𝐼𝐷𝑠 =  𝑠𝑒𝑛𝑑(1, 𝑥𝑛[𝑡], 𝑓𝑛[𝑡])  // 𝑙𝑖𝑠𝑡𝐼𝐷𝑠 is an array of robot IDs that did not received the message   
   𝑟𝑒𝑠𝑒𝑛𝑑(𝑙𝑖𝑠𝑡𝐼𝐷𝑠)  // use the RDPSO based AODV   
End // until stopping criteria (e.g., convergence, time) 
 

𝑟𝑒𝑠𝑒𝑛𝑑(𝑙𝑖𝑠𝑡𝐼𝐷𝑠)  // RDPSO based AODV function   
 For 𝑖 = 1 to len(𝑙𝑖𝑠𝑡𝐼𝐷𝑠)  // check unreached robots one by one from 𝑙𝑖𝑠𝑡𝐼𝐷𝑠 
  For 𝑗 = 1 to 𝑁𝑏  // estimate position of its 𝑁𝑏 neighbors (equation 5)  
   𝑏 = 𝑓𝑢𝑙𝑙𝐼𝐷𝑠(𝑗)   
   𝑥𝑛,𝑏

𝑒 [𝑡 + 1] = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑝𝑜𝑠 �𝑥𝑛,𝑏[𝑡], … ,𝑥𝑛,𝑏[𝑡 − 4],𝜒1,2𝑛,𝑏[𝑡]�   

  𝐼𝐷𝑏 = min𝑏∈𝑁𝑏 𝑑�𝑥𝑛,𝑏
𝑒 [𝑡 + 1], 𝑥𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)

𝑒 [𝑡 + 1]�  // find closest neighbor to robot 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖) (equation 6)  
  If 𝐼𝐷𝑏 = 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)  // the unreached robot 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖) is a neighbor  
   𝑠𝑒𝑛𝑑(𝐼𝐷𝑏 , 𝑥𝑛[𝑡], 𝑓𝑛[𝑡])  // send message directly to robot 𝐼𝐷𝑏  
  Else  
   If  𝑓𝑖𝑛𝑑(𝐼𝐷𝑏 , 𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠)  // the robot 𝐼𝐷𝑏 already exists in the route necessary to reach 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)  
    𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠 =  𝑟𝑜𝑢𝑡𝑒_𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦(𝑓𝑢𝑙𝑙𝐼𝐷𝑠) // necessary as it is unable to reach the destination robot  
    𝑠𝑒𝑛𝑑(𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖), 𝑥𝑛[𝑡], 𝑓𝑛[𝑡]) // send message to robot 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)  
   Else  
    𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑟𝑜𝑢𝑡𝑒�𝑛, 𝐼𝐷𝑏 , 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)�  // update the route necessary to reach 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)  
    𝑠𝑒𝑛𝑑(𝐼𝐷𝑏[𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)], 𝑥𝑛[𝑡], 𝑓𝑛[𝑡], 𝑟𝑜𝑢𝑡𝑒𝑠𝐼𝐷𝑠)  // send message to robot 𝐼𝐷𝑏 so as to reach 𝑙𝑖𝑠𝑡𝐼𝐷𝑠(𝑖)  
End 
 
Next section evaluates the communication complexity of the RDPSO with and without the herein proposed strategies. 

 
V. EXPERIMENTAL RESULTS 

This section is divided into three sub-sections exploring and comparing the properties of the “regular” version of the 
RDPSO (previously presented) to its counterpart version proposed in this paper – the “optimized” RDPSO. 

A. Real-World Experiments 
In this section, it is explored the effectiveness of the proposed communication methodology on a group of 15 eSwarBots 

[13], i.e., 𝑁 = 15, performing a distributed exploration task under the RDPSO behavior (Fig. 8). As this paper emphases on 
the analysis the communication complexity of the RDPSO, the convergence of the algorithm itself was neglected. This may 
only be considered as the herein proposed communication methodology does not affect the decision-making of robots since 
the same useful information is always shared between teammates. Therefore, as eSwarBots are equipped with LDR light sen-
sors that allow sensing the brightness of light, their solution was affected by the current room lighting conditions, either natu-
ral or not. Just for the purpose of illustrating the variability of light over time, Fig. 8b represents the intensity values of light 



 
 

 

𝐹(𝑥, 𝑦) over a day. Such data was obtained sweeping the whole scenario with a single robot with the light sensor connected 
to a 10-bit analog input resulting in a resolution of approximately 5 mV.  
 

 
 
 

 
 
 
 
Fig. 8. Experimental Setup. a) Arena with 3 swarms (different colors) of 5 eSwarBots each; b) Virtual representation of the target distribu-
tion over day with under different lighting conditions. 

 
Since the RDPSO is a stochastic algorithm, it may lead to a different trajectory convergence whenever it is executed, thus 

resulting in a different amount of information exchanged between robots. Therefore, two sets of 20 trials of 360 seconds each 
were considered. In other words, the “regular” RDPSO (first set of trials) was compared with the “optimized” RDPSO (sec-
ond set of trials), i.e., the extension of the RDPSO based on the strategies presented in Section III and IV. At each trial, the 
robots were deployed in a 20 ×  10 meters indoor scenario (Fig. 8a) ensuring the initial connectivity of each swarm in a 
spiral manner (cf., Section II or [12] for a more detailed description).  

The inter-robot communication was carried out using ZigBee 802.15.4 wireless protocol. Although the XBee Series 2 
modules allow a maximum communication range of approximately 30 meters in indoor/urban environments (cf., [13]), the 
signal quality of the received data is highly susceptible to obstacles and other phenomena (e.g., communication reflection and 
refraction), thus resulting in the loss of packets as the inter-robot distance increases. In fact, preliminary experiments to test 
the XBee modules on the same scenario showed that the connectivity starts failing above 10 meters (Fig. 9). Therefore, to 
allow a more realistic and conservative approach, the connectivity between robots was maintained using the received signal 
quality. To that end, the XBee modules were modified in order to provide the RSSI signal output (cf., Fig. 6b). This RSSI 
output is available as a pulse width modulation (PWM) signal of 120 Hz where the duty cycle 𝐷𝐶 varies accordingly to the 
signal level relative to the receiver sensitivity as it follows: 

 
𝐷𝐶 ≈ 38 + 0.1 × 𝑅𝑆𝑆𝐼, (7) 

 
in which the parameters of the straight-line equation were obtained in the equipment datasheet [13]. For instance, a 30% duty 
cycle (i.e., 1.5 V) is equivalent to approximately the receiver sensitivity of -94 dBm. In order to choose a minimum signal 
threshold that would ensure the MANET connectivity, Fig. 9 presents the relation between the RSSI and the distance between 
two robots randomly wandering in the same scenario presented in Fig. 8a while sending 30 periodic messages every 2 sec-
onds to each other at each different distance. The RSSI vs the inter-robot distance was represented using a boxplot chart, in 
which the ends of the blue thicker lines and the circle in between correspond to the first and third quartiles and the median 
values, respectively. The numbers on top of each set of measures correspond to the number of messages received at each 
different distance. 
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Fig. 9. Measured RSSI versus distance from two robots located in the experimental scenario. 
As expected, in an indoor scenario endowed with obstacles, the signal quality is not proportional to the inter-robot distance. 

In fact, even the inverse relationship between distance and signal quality considered in many works does not match reality 
since the propagation model is more complex, i.e., the signal depends not only on the distance but also on the multiple paths 
from walls and other obstacles. Moreover, for a distance above 10 meters, a robot is only able to receive approximately 2/3rd 
of the messages. Therefore, to avoid the possible loss of packets due to the distance between robots, the minimum allowed 
receiver power was set to -85 dBm, i.e., for distances bellow 6 meters. This allows avoiding the possible loss of packets due 
to low levels of signal quality.  

A minimum, initial and maximum number of 0, 3 and 4 swarms were used, thus representing an initial swarm size of 
𝑁𝑆  = 5 eSwarBots. The maximum travelled distance between iterations was set as 0.25 meters, i.e., max|𝑥𝑛[𝑡 + 1] −
𝑥𝑛[𝑡]| = 0.25. In other words, each robot could only travel a maximum of 0.25 meters without considering the position of its 
neighbor robots so as to ensure the MANET connectivity. 

As previously stated, by employing the optimized communication strategies from Section III and IV, it is expected to sig-
nificantly reduce the communication cost of the RDPSO algorithm. One of the methods to evaluate the communication cost 
consists in counting the average number of packets sent and the processing time to handle the communication procedure, i.e., 
pause time, for each robot over the 360 seconds of each trial. The number of packets sent was easy to retrieve since a robot 
under the “regular” RDPSO communicates after each iteration step to its own swarm, i.e., if it is a swarm of 5 robots then the 
robot will send 4 packets, while in the “optimized” one the robot follows the rules presented in Section II. Regarding the 
pause time inherent to the whole communication procedure, a timer was used to count the time before entering the function 
that allows for a robot to send and receive the data packets from its own swarm. It is noteworthy that during that time the 
robot is unable to perform any other action. Table 2 compares the average (AVG) and standard deviation (STD) communica-
tion cost of the RDPSO with and without the proposed strategy. 

 
Table 2. Communication Cost. 

 

 AVG±STD Number of packets AVG±STD Pause time [seconds] 

“Regular” RDPSO 742±24 126±4 
“Optimized” RDPSO 415±37 39±7 

 
 As it is possible to observe, the number of messages significantly decreases using the proposed methodology. This is high-

ly valuable as the number of exchanged messages has a high influence on the power consumption of each robot. On the other 
hand, reducing the number of times each robot needs to share its information allows reducing the time allocated for such task. 
Note that this is not proportional since that, in the “optimized” RDPSO, robots communicate at each iteration step only to 
their neighbors (since eSwarBots are not equipped with sensing capabilities that allows retrieving teammates position). 
Communication to the whole swarm is constrained by how each robot improves over time. In other words, while each robot 
allocates approximately 35% of the mission time to exchange information within the “regular” RDPSO, this novel approach 
allows reducing this value to approximately 10%, thus increasing robots mobility. This is due to both requiring less data to be 
exchanged (Section III) but also the minimization of route discovery messages inherent to the RDPSO based AODV (Section 
IV).  In other words, the herein proposed approach would be more power efficient and allow each robot to spend less time 
without moving than the “regular” one.  

Nevertheless, the efficiency of a communication paradigm cannot be measured by only comparing the total number of ex-
changed packets. One of the most well-known performance metrics to evaluate the network throughput is the packet delivery 
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ratio. The packet delivery ratio is calculated by dividing the number of packets received by a robot by the number of packets 
sent to it. This allows specifying the packet loss rate, which limits the maximum throughput of the network. Therefore, the 
average packet delivery ratio was evaluated based on the number of robots within the same swarm (either active swarm or the 
socially excluded group). As previously mentioned in Section III, and further detailed in [22], the RDPSO uses a “punish”-
“reward” mechanism to avoid sub-optimality by socially excluding and including robots within active swarms. In other 
words, at some point over the 360 seconds of each trial, i.e., 7200 seconds for each set, a swarm may be formed by only two 
robots or even by the 15 robots from the population. In other words, Fig. 10 depicts the average packet delivery ratio when 
swarms are formed by a specific number of robots, even if some of those cases, namely swarms formed by less than 3 robots 
or by more than 10 robots, only occur in some occasions (around 5% of the whole time).  

 

  
Fig. 10. Packet delivery ratio within robots from the same swarm.  

 
As one may observe, there is a sharp decrease on the packet delivery ratio for the “regular” RDPSO when a swarm is 

formed by more than 10 robots, dropping down to approximately 65% for a maximum network load of 15 robots. This is 
explained by the high number of exchanged messages that, for a network load above 10 robots, does not satisfy the capacity 
of the buffer or the packet buffering time exceeds the time limit. As the “optimized” RDPSO significantly decreases the num-
ber of exchanged messages (cf., Table 2), robots are still capable of receiving more than 90% of the data even within a swarm 
of 15 robots.  

The first key contribution of this paper, i.e., the efficient way to share information within the RDPSO algorithm (Section 
III), is the major reason for such significant reduction in both communication cost (Table 2) and number of dropped packets 
(Fig. 10). Although the adapted AODV improves the communication efficiency of the RDPSO algorithm, it is still not clear 
how advantageous this specific extension may be so far.  

The routing overhead has been frequently used in the literature to evaluate routing algorithms, being commonly represent-
ed by the ratio between the number of route discovery messages and the number of data packets. Once again, let us compare 
the routing overhead of the “regular” RDPSO with the “optimized” RDPSO for each different teamsize from 2 to 15 robots 
under the 7200 seconds of each set of trials. 
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Fig. 11. Routing overhead within robots from the same swarm. 

 
Once again, the “optimized” RDPSO clearly overcomes the “regular” one for larger population of robots. Even though the 

number of data packets is reduced due to the efficient way to share information between robots (Section III), the number of 
route discovery messages decreases more significantly (Section IV), thus resulting in a smaller routing overhead for a larger 
number of robots. It would be expected to have a worse routing overhead ratio when robots communicate less while they are 
moving since the routes would be completely outdated. Nevertheless, the RDPSO based AODV is able to reduce the number 
of route discovery messages in such a way that it allows overcoming that issue. This is due to the proposed geographically-
based AODV that takes into account the dynamics of the RDPSO, thus creating on-the-fly routes (Fig. 7). However, how 
better are those new routes when compared to the alternatives returned by the traditional AODV? To answer that question, 
one needs to analyze the number of hops forming such routes. 

The average hop count may be represented by the sum of the number of hops necessary to deliver the packets from their 
sources to destination divided by the total number of successful delivered packets. The average hop count is measured in 
number of hops. 

 

 
Fig. 12. Average hop count within robots from the same swarm. 

 
As Fig. 12 depicts, the applicability of the novel AODV routing protocol may be observed for a swarm of, at least, 5 robots. 

For smaller swarms, the improvement of the RDPSO based AODV is meaningless which, on the other hand, turns out to be a 
worse alternative to the traditional AODV since it slightly increases the memory complexity of the algorithm (cf., Section IV). 
However, as analyzing swarm algorithms within small populations may not represent the required collective performance (cf., 
[43]), let us focus on larger teamsizes, i.e., above 5 robots. As it is possible to observe, in some situations, the RDPSO based 
AODV reduces around 20% the number of required hops to deliver a packet. Although this may not seem relevant, this con-
tributes to a smaller pause time and, consequently, a higher mobility of the robots. Moreover, reducing the number of hops 
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necessary to deliver the packets also reduces the power consumption of each robot, thus increasing the autonomy of the 
whole swarm.  

B. Temporal Analysis  
It is noteworthy that the two key contributions of this paper, i.e., the efficient way to share information within the RDPSO 

algorithm and the adapted AODV routing protocol, result in significant differences compared to its “regular” counterpart. 
Moreover, such differences increase with the number of robots, thus improving the scalability of the RDPSO algorithm. Yet, 
in order to further explore inter-robot communication dynamics under the “optimized” RDPSO, let us analyze how such in-
formation is shared within different social statuses, i.e., within socially active and excluded swarms. 

In order to achieve this, the number of local and global broadcasts within each swarm was analyzed. For a better under-
standing of how robots within the RDPSO evolve, let us take a look at one of the 20 trials in which the “optimized” RDPSO 
was evaluated, i.e., a single trial of 360 seconds. Fig. 13 depicts the distribution of robots (Fig.13a) and highlights the respec-
tive total number of local (Fig. 13b) and global broadcasts (Fig. 13c) within each swarm over time. While the colored lines 
correspond to each socially active swarm, respectively R (red), G (green) and B (blue) swarms, the dark dashed line corre-
sponds to the socially excluded swarm. The mission starts with 5 robots within each active swarm as previously stated. As 
one may observe, the number of workers in active swarms tends to decrease over time. This is an expected phenomenon as 
the resources begin to dwindle over time, i.e., in this specific case study robots become unable to find ever improving light 
intensities. At some point it is even possible to observe that swarms B and R extinguish while swarm G proliferates, thus 
reaching a population of up to 11 robots. This happens right before the population in swarm G decreases to approximately 7 
robots. Consequently, this leads to an increase of socially excluded robots with a maximum of 10 robots after the 4th minute. 
Regarding the local broadcasts, such temporal variations would be expected by considering the rules previously stated 
throughout Section III. The local broadcasts necessary to maintain the network connectivity remain at each step of the algo-
rithm, thus presenting a proportional amount to the number of robots within each swarm. Such proportionality is only broken 
when a socially active swarm claims a new robot or tries to create a new swarm (small peaks observed in the colored lines). A 
rationale behind the global broadcasts is harder to achieve. As one may observe, in general, socially active robots present a 
higher amount of messages flooded through the whole swarm. This is interesting to observe as such global broadcast is relat-
ed to swarms’ improvement that requires the global consent of the population. As a result, such global broadcasts diminish 
over time. This kind of global message seems to be significantly less recurrent in socially excluded swarms. 

As one may observe, the time a certain amount of robots is socially excluded may not correspond to the time that the same 
amount is socially active. Therefore, to further compare the information shared within the different social statuses over the 
7200 seconds of the whole set of experiments, a simple normalization of the data over time was adopted. Fig. 14 depicts the 
average number of local and global broadcasts within each swarm configuration. As a rule of thumb, the local broadcasts 
increase almost proportionally to the population of robots. This may be observed in both socially excluded and active swarms 
with a minor difference between both. The main difference between robots belonging to different social statuses may be seen 
in the number of global broadcasts. Socially excluded robots barely communicate to the whole group. In fact, such communi-
cation only depends on the improvement of socially active swarms if socially active swarms improve. Hence, as the overall 
amount of socially active robots decreases, the number of socially excluded robots increases and the probability of success 
(i.e., improving the current solution) also decreases. Consequently, this reduces the required number of global broadcasts 
from excluded swarms. 

 

 



 
 

 

 

    
 

 

 

 

 
 

Fig. 13. Evolution of robotic swarms over a trial of 360 seconds. a) Population size; b) Number of local broadcasts; c) Number of global 
broadcasts. 
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Fig. 14. Normalized temporal average number of local and global broadcasts. 
 

As the experiments presented so far are limited to a maximum number of 15 physical robots within the same swarm, it was 
necessary to perform simulation experiments to evaluate the scalability of the “optimized” RDPSO.  

C. Scalability Evaluation through Simulation 
The Multi-Robot Simulator (MRSim)1 was used to evaluate the previously proposed “optimized” RDPSO. MRSim is an 

evolution of the Autonomous mobile robotics toolbox SIMROBOT (SIMulated ROBOTs) previously developed for an obso-
lete version of MatLab [44]. The simulator was completely remodeled for the latest MatLab version and new features were 
included such as mapping and inter-robot communication [45]. In addition, MRSim also enables the addition of a monochro-
matic bitmap as a planar scenario and configuration of its properties (e.g., obstacles, size, among others), as well as imple-
mentation of features for each swarm robotic technique (e.g., robotic population, maximum communication range, among 
others) and configuration  of the robots’ model (e.g., maximum velocity, type of sensors, among others).  

Due to the lack of a preexistent model of WiFi propagation (radio frequency at 2.4 𝐺𝐻𝑧) in MRSim simulator, this work 
considered its implementation based on Luca et al. work [46]. The attenuation over the transmitter-receiver distance 𝑑 [𝑚] 
was calculated as: 

 
 

𝐿 = 𝑙𝑐 + 10𝛾 log𝑑 + ∑ 𝑙𝑊𝑊 , 
 

(8) 

 

 
1http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator-v1-0  
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wherein 𝑊 represents the number of walls with attenuation 𝑙𝑊 between the transmitter and the receiver. The constant 
factor 𝑙𝑐 corresponds to the reference loss value at 1 𝑚. This was defined as 𝑙𝑐 = 47.4 𝑑𝐵 and experimentally validated in 
indoor scenarios by Luca et al. [46]. The path loss exponent 𝛾 is usually defined between 2 and 4, wherein values near 2 
correspond to propagation in free space and values near 4 represent lossy environments. The parameter 𝛾 was uniformly 
distributed over the interval 3 and 4, thus providing a stochastic effect on the communication propagation [47]. 
In order to improve the understanding of how WiFi communication propagates in the scenario considered in this work, 
Fig. 15a depicts the range of communication power. Note that signal strength values are shown in 𝑑𝐵𝑚. As it is possible 
to observe, and considering the condition that the minimum receiver power allowed was set to -85 dBm (Fig. 9), a robot 
may be unable to communicate with its teammates in some zones due to occlusion by obstacles and distance. 
 

    
 

Fig. 15. Simulation experiments in a 20 ×  10 meters indoor scenario (sports pavilion): a) WiFi communication propagation; b) Setup with 
3 swarms of 20 robots each (population of 60 robots) autonomously deployed based on the EST approach in [12]. 
 

As a means of simplification and in line with the previous real experiments, the same 20 ×  10 meters indoor scenario 
(sports pavilion) was created on MRSim. Due to the computational cost of the simulator, which significantly increases with 
the number of robots, only experiments of up to 60 robots were possible to carry out.   

As MRSim is a step-based simulator (without real time iterations), the ratio between the number of packets exchanged 
within the “optimized” and the “regular” RDPSO was analyzed. Note that this depends on the type of communication (i.e., 
local or global broadcast). For instance, in a swarm of 10 robots a global broadcast from a single robot corresponds to 9 
packets exchanged, i.e., one for each teammate. However, if that same robot has only 4 neighbors (one-hop robots) then a 
local broadcast will correspond to only 4 packets exchanged. Due to the stochastic nature of the RDPSO, boxplot charts were 
once again used to represent the ratio between the number of packets exchanged within the “optimized” and the “regular” 
RDPSO over the 30 trials with a maximum of 5000 steps each (Fig. 16). To easily observe the differences, the ratio was aver-
aged at each 100 steps. Once again, note that the number of robots within the same swarm may vary from 2 robots to the total 
number of robots within the population (60 robots). 

 

 
 

Fig. 16. Ratio between the number of packets exchanged using the “optimized” RDPSO and the “regular” RDPSO over the number of 
iterations in a population of 60 robots.  
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As one may observe, the difference between the “optimized” and the “regular” RDPSO grows with time. The decreasing 

tendency observed in Fig. 16 is an expected phenomenon. As swarms exploration within the “optimized” RDPSO advances, 
the number of global broadcasts necessary to converge to the optimal solution decreases (Section III-E). After a certain 
amount of time (half the mission time), the “optimized” RDPSO is able to decrease the number of exchanged data packets to 
approximately 20% of the number of data packets exchanged under the “regular” RDPSO. In terms of communication cost 
this may be considered as a significant improvement. As an example, the eSwarBots platforms usually present a battery au-
tonomy of up to 4 hours without using the XBee Series 2 modules. However, such autonomy drops to approximately 2 hours 
with constant data transmission [13]. Another example such as the well-known e-puck robot is even more significant [48]. 
The e-puck’s battery autonomy can drop from 3 hours to approximately 1 hour using the WiFi communication from the Gum-
stix Overo COM. 

 
VI. DISCUSSION – TOWARDS A STIGMERGETIC RDPSO 

The Robotic Darwinian Particle Swarm Optimization (RDPSO) was proposed for the first time in 2011 [22] by adapting 
the Darwinian Particle Swarm Optimization (DPSO) [23] to swarm robotic applications. Although the communication be-
tween robots was initially studied in Couceiro et al [9], previous works have been mainly focused on improving the evolu-
tionary properties of the RDPSO, thus neglecting the scalability constraints that those may impose. Therefore, the authors 
would like to discuss the take-home message this paper brings forth and present future expectations around the RDPSO algo-
rithm. 

The motivation behind this work was to explore a strategy for improving the scalability of the RDPSO by optimizing its 
communication complexity. This was achieved by analyzing judiciously the information to be explicitly exchanged between 
robots and proposing a way to efficiently share it without decreasing the collective performance of the algorithm. Afterwards, 
the well-known Ad hoc On-demand Distance Vector (AODV) was adapted based on RDPSO dynamics. 

Real and simulation experiments were conducted to observe the effect of the proposed optimized strategy. The mission 
consisted of collectively exploring a 20 × 10 𝑚𝑒𝑡𝑒𝑟𝑠 scenario in which robots’ cognitive solution was affected by the light 
sensed at their current position. The superiority of the “optimized” RDPSO over the “regular” one was especially visible in 
the number of packets exchanged between robots and the packet delivery ratio. Although the differences between the routing 
overhead and the required number of hops to deliver a packet were not significant for small groups of robots, the “optimized” 
RDPSO was still able to reduce both to approximately 20% less for swarms of 15 robots. Those differences were even more 
visible in the simulations with a swarm of 60 robots examining the ratio between the total number of packets exchanged with-
in the “optimized” and the “regular” RDPSO. Although in the beginning of the mission the “optimized” RDPSO presented a 
rather modest reduction of approximately 50% of the number of packets exchanged, as robots continuously explored the 
scenario such differences increased to approximately 85%. To improve the analysis of the communication architecture within 
the RDPSO, the differences between the two social statuses were also represented, thus revealing that the principle of cooper-
ation undergoes several phases that depend on more than just mission-related contextual information (e.g., sensed solution).  

This dependency between the swarms gives rise to a competitive evolutionary process inherent to animal nature as de-
scribed in the Darwinian survival-of-the-fittest. On the other hand, as many other biological societies involved in diverse 
survival conditions, the outcome of this competitive evolutionary process is reflected into social cooperation among the 
members from the same group. This is a highly recurrent process in nature denoted as coopetition [49]. For instance, certain 
birds are unable to reach parasites on some parts of their bodies, thus benefiting from preening one another. Hence, there is 
an entire flock of potential preeners which compete in hopes of establishing a beneficial cooperative relationship. To the 
similarity of the RDPSO, birds that try to be preened without preening others are excluded from these relationships as they do 
not compete. 

Those results paved the way towards an insightful reassessment and revolution of the RDPSO algorithm. Considering the 
recent advances in the control of aggregation behaviors without communication (e.g., [5]), the most expected improvement 
would be the development of a stigmergetic RDPSO without significantly reducing the collective performance of the swarms. 
In this case, the macroscopic capabilities of the RDPSO should be defined by spatial or dynamical conditions in the environ-
ment. In other words, the system and environment itself build a closed macroscopic feedback loop, which works in a collec-
tive way as a distributed control mechanism [5]. In this case, robots interact kinetically or through stigmergy effects [50]. For 
instance, emulating Darwin’s survival-of-the-fittest without explicit communication would not only require robots to possess 
the capability of discerning collisions between obstacles and other robots, but also between robots from different swarms. 
Such could be attained by endowing robots with simple low-cost vision capabilities such as the ArduEye vision sensor2.   

All that being said, one may state that it is still difficult at this point to go from an algorithm sustained by explicit commu-
nication to a stigmergetic one. However, the authors argue that this paper provides an exhaustive rationale on the necessary 
explicit communication within the RDPSO that gives the first step in that direction. 

 
2 http://ardueye.com/  

http://ardueye.com/


 
 

 

VII. CONCLUSION 
An optimization of the communication procedure between robots under a collective swarm intelligence behavior, previously 

proposed and denoted as Robotic Darwinian Particle Swarm Optimization (RDPSO), was presented in this paper. Moreover, the 
traditional Ad hoc On-demand Distance Vector (AODV) was improved considering robots’ motion and behaviors inherent to the 
RDPSO. Such improvements were motivated by the need to use large teams of robots without significantly increase the communi-
cation overhead. Several experimental results with up to 15 real robots and 60 virtual robots in a 20 × 10 meters scenario clearly 
show the advantages of such an optimized strategy regarding the scalability of the algorithm, thus paving the way for future 
swarm applications of hundreds or thousands of robots. Therefore, in the future, and due to the flexibility of the herein proposed 
solution, this “optimized” RDPSO should be evaluated on larger teams of swarm robots under realistic applications such a multi-
robot Simultaneous Location and Mapping (SLAM) that usually presents a communication bottleneck as the number of robots 
increase. Finally, we also intend to implement an estimation method to dimension the swarm of robots according to the environ-
ment topology and temporal constraints. 
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