
  

 

Abstract – In this work, we present a probabilistic approach 

to find motion patterns in manipulation tasks by looking for 

similarities among relevant features inside action phases of 

trajectories. From multiple observations of a specific human 

movement, we can temporally align all signals to perform a 

learning process based on selection of relevant features. By 

analyzing the probability distribution and finding 

corresponding features among trajectories (i.e. motion 

patterns), we thus obtain a prototype to represent the dataset of 

trajectories. Using the spatio-temporal information of learned 

features, a generalized trajectory can be generated by using a 

polynomial regression to fit the features data by successive 

approximations. Afterwards, trajectory recognition can be 

performed using the smoothed trajectory that can be used as a 

prototype/template for matching (1:1) or to represent a class of 

trajectories for classification (1:N) using Bayesian techniques. 

The intention here is to have an approach that is able to learn 

and generalize a specific movement by their patterns to be 

applied in the future for different contexts. We are not going 

through the imitation learning part, but we are focusing on 

building an artificial cognitive system with the ability of 

learning and generalization of movements, ability that humans 

do naturally. 

I. INTRODUCTION 

OTION pattern is an important issue for modeling and 

recognition of human actions and behaviors in 

different daily tasks. This topic has gained much attention in 

different fields where the motion assumes an important key 

point to describe actions and behaviors. The variety of 

human activity in everyday environment is very diverse; the 

same way that repeated performances of the same activity by 

the same subject can vary, similar activities performed by 

different individuals are also slightly different. These points 

are some aspects that influence the development of models 

of activities and matching of observations to these models. 

The basic idea behind this is: if a particular motion pattern 

appears many times in long-term observation, this pattern 

must be meaningful to a user or to a task. Thus, these 

patterns can be used to learn personal habits, to predict a 

user’s next action, etc. 

In this work, we are focused on manipulative tasks at 

trajectory level to find significant patterns and similarities 
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given by multiple demonstrations of human hand trajectories. 

The intention here is to obtain an approach that is able to 

learn and generalize a specific movement to be applied to 

other tasks or to different objects. We are not going through 

the imitation part, but we are focusing on the ability of 

learning for reaching some intelligence to perform such 

generalization as human do. This is not a trivial task, usually 

humans can do it in an easy way, but to reach artificially this 

goal in an approximated way, different steps need to be 

done. The main idea of our proposal is to find patterns on the 

different phases of a manipulation task (Fig.1) by analyzing 

the relevant features that can differ along the phases. From 

multiple observations of humans performing the same task 

many times, the patterns and similarities among the same 

motion performed many times can be learnt allowing 

generating a generalization of this type of movement to be 

applied to other contexts.  

The trajectories of a dataset corresponding are temporally 

aligned due to the temporal variation of the signals. The 

temporal alignment of the signals can be performed by a 

pattern-based approach used as a pre-processing step. It 

allows temporal distortion between different examples and 

provides a simple and unique description of the sequential 

information contained in the data. For that, Dynamic Time 

Warping (DTW) method is adopted.  

Inside the neuroscience field, we can find in the literature 

[1] a decomposition of a typical human manipulation 

movement on different stages such as reach, load, lift, hold, 

replace and unload. In our case, after the temporal alignment 

we propose an action phase-based segmentation as shown in 

Fig.1, taking into account the neuroscience terms for each 

stage of a manipulation task adapted for our case. Action 

phases are defined as manipulative activities involving series 

of primitives and events. These terms are defined in a 

dictionary where is followed a hierarchy of actions, 

primitives and events that can happen along the task obeying 

some grammar rules. The dictionary provides a hierarchical 

structuring for grasping and object handling tasks in order to 

describe and annotate some manipulative task. This 

dictionary consists of the definition of the hierarchy itself, 

and the systematic account of a lexicon and a generative 

grammar (formal relationships and conjugations – e.g. 

temporal sequencing – of such entities, as a body of rules) 

inspired on human models for these tasks. In this work, we 

intend to define the action phases to find motion patterns in 

each one to learn them. In Fig.1 is possible to identify the 
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action phases in each box following a temporal sequence and 

the events that happens among them. Notice that, in each 

segment, defined as an action, it is possible to detect 

primitives to describe better this action. The next stage is to 

find similarities on each action phase of all trajectories of a 

dataset. The common features among all trajectories in each 

phase with a high probability distribution are known as 

similarities or motion patterns. With the relevant features 

(similarities among the trajectories), we thus build a 

generalized/smoothed trajectory by applying a polynomial 

regression on the relevant features obtaining this way a 

reconstructed and smoothed trajectory.  

Our Approach follows a probabilistic framework where 

the feature distributions along the manipulative tasks are 

learned for future trajectory matching/classification. 
 

 

Fig.1 – Different phases of a manipulative task. 

II. RELATED WORK 

The work presented by [2] is a programing by demonstration 

framework where relevant features of a given task are 

learned and then generalized for different contexts. Human 

demonstrator teaches manipulative tasks for a humanoid 

robot. The motion data and joint angles are projected to a 

latent space by using Principal component Analysis (PCA). 

Through Gaussian mixture models (GMM), the signals are 

encoded.to provided a spatio-temporal correlation. The 

trajectories are then generalized by using Gaussian mixture 

regression (GMR). The authors in [3] presented an approach 

to find repeated motion patterns in long motion sequences. 

They state that if a point at a given instant of time belongs to 

a set of repeated patterns, then many similar shaped 

segments exist around that data point. The proposed 

algorithm uses a hyper-sphere centered in the point, and the 

intersection of the trajectory with the circumference of that 

sphere helps to define the segments. They define the density 

of nearby segments as the sum of the lengths of all segments 

inside the sphere. Thus, they encode the characteristic point 

with partly locality sensitive hashing and find the repeated 

patterns using dynamic programming. The authors in [4] 

developed a framework for learning behaviors from multiple 

demonstrations. Given the directed acyclic graph (DAG)-like 

structure of the behavior network representation of the robot 

tasks, topological representation of such a network to be a 

linked list of behaviors was considered, obtaining by 

applying a topological sort on the behavior network graph. 

By using the topological form of the networks as training 

examples, the problem of generalization from multiple 

demonstrations of the same task is equivalent to inferring a 

regular expression (Finite State Automaton (FSA) 

representation from a set of given sample words. In [5] is 

proposed a general approach to learn motor skills form 

human demonstrations. The authors have developed a library 

of movements by labeling each recorded movement 

according to task and context. By using Non-Linear 

differential equations they could learn the movements and 

generalizing by adapting a start and goal parameters in the 

equation to the desired position values of a movement. The 

robot learned a pick-and-place operation and a water-serving 

task and could generalize these tasks to novel situations. 

In this work, we follow a probabilistic framework to learn 

patterns in order to identify or generalize a dataset of 

trajectories. Our work differs by segmenting the trajectories 

into action phases for then finding similarities among 

trajectories allowing then the trajectory identification. 

III. PROPOSED APPROACH 

A. Scenario and Data Acquisition 

The chosen task for our experiments is a simple 

homogeneous task: pick-up and place. The object used for 

this task is a Rubik cube. We have asked for three subjects to 

perform the task where the final goal is to displace the object 

in different poses. 
 

 
Fig.2 – Experimental setup 

 

For data acquisition, we have the following sensors: 

Polhemus Liberty magnetic motion tacking system [6]; 

TekScan grip [7], a tactile sensor for force feedback; and 

CyberGlove II [8], for fingers flexure measurement. Each 

Polhemus magnetic sensor has 6DoF (3D position and Euler 

angles). The magnetic sensors were attached to the fingertips 

to track the hand and fingers movements. The tactile sensing 

device is a system specifically designed to acquire the 

pressures applied by the different regions of the human hand 

(fingers, thumb, and palm) during the execution of tasks 

which require grasp movements. The CyberGlove II is a 

wireless version of the previous device. It is equipped with 

22 piezo resistive bend sensors. The glove also has sensors 

to measure the thumb crossover, palm arch, wrist flexure and 

abduction/adduction. The 22-sensor model has one 



  

additional sensor in each finger (index, middle, ring, little) to 

measure the distal interphalangeal joint flexure. 

The setup (Fig.2) for the experiments is composed of a 

wooden table, without any metallic parts, since the magnetic 

tracker is sensitive to nearby ferromagnetic materials. The 

experiments are executed by a subject seated in front of the 

table for executing the task. The tabletop is 50cm by75cm 

and is placed at a height of 100cm. The object is placed in 

specific initial position on the tabletop in a marked region for 

all experiments having the object in the same position. The 

magnetic tracker emitter unit that determines the frame of 

reference for the motion tracking system is placed on the 

same table more or less 50cm of the object initial position.  

For our data acquisition we are using a distributed 

architecture where two computers are used for the three 

sensors. The data acquisition is synchronized by Network 

Time Protocol (NTP) to synchronize the clocks of the clients 

to the server. This way, the timestamps of the data of all 

sensors will be synchronized so that it is possible to find the 

frame rate correspondence among the different data. The 

communication between the server and clients was 

implemented using sockets, thus, it is possible to initialize 

and finish all sensors acquisition at same time by sending a 

message from the server to the clients. 

As long as we are just working at trajectory level to find 

motions patterns for trajectory smoothing, the most 

important sensor here is the motion tracker device. By now, 

the others sensors serve to assist in segmentation level to 

identify some action phases. 

B. Temporal Alignment of the Signals 

We explore the temporal alignment of the signals by using 

a pattern-based method as a pre-processing step. It allows 

temporal distortion between different examples and provides 

a description of the sequential information contained in the 

data. Dynamic Time Warping (DTW) is used as a template 

matching pre-processing step to temporally align the signals, 

see e.g. [9]. It does have the advantage of being simple and 

robust finding a non-linear alignment which minimizes the 

error between the signals and reference signal. This step is 

very important to help in the segmentation phase to detect 

similarities between the features of the trajectories of a 

dataset. 

C. Segmentation based on Action Phases 

The segmentation step is to divide the trajectories into 

action phases of a manipulative task in order to have sub-

trajectories representing each phase (Fig.1). Thus, we can 

detect the motion patterns through the similarities among the 

features of all segments of the trajectories of a dataset.  

Following a hierarchical structure of actions, primitives, 

events (in the same level of primitives under the actions 

level), we intend to detect these action phases by analyzing 

the sensors signals respecting the following assumptions: 

 Reaching: it is the phase when the hand 

approaches the object involving hand 

configuration (preshape, aperture). By observing 

the sensors data, we can define this phase when 

the motion tracker device is active acquiring 

hand motion data; the tactile sensor is not active 

(no force measurement); the fingers flexure 

measurements has small variation that is detected 

due to the hand configuration along this phase, 

i.e., aperture (opening and closing of the hands) 

when it is close to the object; and the object 

sensor (motion tracker sensor to track the object 

position) has no variation due to the object being 

static in this phase. 

 Load: Increment of load force - it happens when 

the object is held, for instance, when an object is 

lifted. This phase is detected when the force 

measurement is detected and there is an increase 

of this measure. The active sensors are the 

motion tracker device attached to the hand; the 

tactile sensor, when there are variance on the 

object sensor (motion); and when the fingers 

flexure are more or less stable, with very small 

variance due to the hand is in hold position 

(grasping the object). 

 Lift: This phase is detected when the motion 

tracker sensor of the object starts its variance 

(object in movement mainly in height, z 

coordinate); the tactile sensor is active generating 

force feedback; and the hand motion sensor is 

active with small variation on the fingers flexure 

due to be in a grasping position holding the 

object. 

 Hold / Transport: This phase is detected after few 

seconds sequentially the lift phase, obeying the 

same assumptions concerning the sensors 

measurement, but in this case sometimes the 

fingers flexure can vary more due to the in-hand 

manipulation movement. In case of transport of 

the object without in-hand manipulation this 

variation is small. 

 Release: This phase is detected when the object is 

in contact to the surface of the table, but we have 

no measurements to detect that, then we assume 

that this phase starts when the object has no 

variation, i.e., it was reposed/replaced on the 

table. The active sensors of this phase are similar 

to the reaching phase, but it is temporally 

detected after the transport phase. 

D. Motion Patterns: Similarities between Trajectories 

An example of the problem of interest is presented in Fig.3. 

Given a dataset of hand trajectories related to a manipulative 

task, we want to find the similarities among all trajectories, 



  

repeated motion patterns that are the relevant features to 

generate an optimal trajectory, a generalized one.  
 

 
Fig.3 – Motion Patterns: Similarities detection in the action phases of the 

trajectories of a dataset. 

 

The classes of features that we are using to describe a 

trajectory are: curvatures and hand orientation that vary 

during the task performance. In previous work [10], we 

developed a probabilistic framework for hand trajectory 

classification where curvatures and hand orientation were 

detected in 3D space. Here, we are following the same idea 

for feature extraction, but considering spatio-temporal 

information 

In 3D space, it is better compute the curvature in 

cylindrical (r, θ, h) or spherical coordinate system (r, θ, φ) 

than adopting Cartesian space. Using two points of the 

trajectory, we have the vectors representation and the angle 

formed between these two vectors by the projection on (x, y) 

plane, obtaining θ angle which give us the pan information; 

if the angle is increasing, we have the discretized change in 

direction (here called as curvature) at left, or if it is 

decreasing we obtain the direction at right. The same 2 

vectors and their formed angles by the projection on (z, y) 

plane, we obtain φ angle for tilt information. In a 3D space, 

we can make some combinations of the possible directions, 

for example, we have up and down reached by h, left and 

right obtained by θ and further and closer obtained by 

variations in r (radius), so that we can have several 

combinations of change in direction features. We obtain the 

height information (h) in a simpler way, using the cylindrical 

coordinate system, calculating the difference between the z 

axis values from both points. In spherical coordinate system 

just the φ angle cannot give us the height or diagonals 

movements, being necessary verify also the radius (r), if it is 

increasing or decreasing and φ angle did not change, this 

way, we obtain this information. To know up or down 

directions, φ and r change and θ remains the same. In 

cylindrical coordinate system, we need to combine r, θ and h 

to know features like up-right, up-left, down-right and down-

left. The curvature segmentation is performed at each two 

points of the trajectory. The detailed features computation 

can be found in [10]. 

Using the information of three position sensors 

(fingertips), we can approximate the hand plane computing 

its orientation to find out if it represents top or side-grasp 

orientation [10]. We have used the three parallel fingers 

(index, middle and ring) that usually remain parallel in the 

most part of hand shape for grasping. These three 3D points 

from the hand plane, thus we compute the normal of this 

plane, finding the angle between it and the z axis of the 

motion tracker frame of reference to know the hand 

orientation. At each 3 points in each part of the trajectory we 

update the hand orientation.  

Taking into account that the trajectories are temporally 

aligned, and after computing the classes of features in each 

trajectory, we thus compute the probability distribution of 

the features P(C) and P(O) (occurrence of each type of 

curvatures C and hand orientation O for each trajectory in 

each action phase. Later we take into account the features 

with high probability (high occurrence in the trajectories), 

trying to find if there are similarities in the others trajectories 

in the corresponding phase. If it is found similar features in 

the majority of the trajectories, we will have a high 

probability confirming that a specific feature is relevant. The 

high probability means a specific threshold (e.g. 0.7) that can 

be adjusted so that can increase or decrease the number of 

relevant features. The step of feature selection (represented 

in Fig. 3) that takes into account the type of trajectory (the 

task goal G) is the learning process of characterization of the 

task by learning the relevant features. This process is 

repeated for each class of feature separated (curvatures and 

hand orientation). It can be described as P(C | G A) for the 

curvatures and P(O | G A) for hand orientation where A 

means the hand displacement in each action phase. This 

learning process is to be used for classification where given a 

new observation it is possible to classify it as a specific task.  

Later the spatio-temporal information in respect to the 

learned features is useful to generate the generalized 

trajectory that can be used also as a prototype in case of 

matching. 

E. Trajectory Generalization using the Relevant Features 

After extracting the relevant features by using a probabilistic 

approach, we consider their spatio-temporal information 

(their coordinates along the time) to apply a polynomial 

regression to fit the data in order to have a new and 

smoothed trajectory of the manipulative task. The 

polynomial regression was chosen due to the curvilinear 

response during the fit and it can be adjusted because it is a 

special case of multiple linear regressions model. We are 

adopting the quadratic form of the model, a polynomial 

regression of second order. 

The polynomial regression is very used in statistics for 

data analysis. It is a way of applying polynomials in a linear 

regression. Although polynomial regression fits a nonlinear 

model to the data, as a statistical estimation problem, it is 

linear, in the sense that the regression function is linear in the 

unknown parameters that are estimated from the data.  

The general model of second order polynomial regression 

is given by: 
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where XXx ii -=  and ε  is an unobserved random error 

with mean zero conditioned on a scalar variable; ε can be 

computed as error of least square fitting; β minimizes the 

least square error. 

In our case, due the type of trajectories, to fit correctly the 

curves, the regression need to be done locally, at some parts 

of the trajectory, e.g., at each segment (action phase). 

F. Matching / Classification 

We have two possibilities to recognize a new observation: 

via matching (1:1) or via classification (1:N). 

The smoothed trajectory can be used as a prototype for a 

temporal matching (1:1) using some properties of the learned 

features (translation invariance) as explained in Fig.4. 

 

 
Fig.4 – Distances of the learned features from the center of gravity. 

 

Here, once again we can use information of the learned 

features (subsection D) for the matching between a prototype 

(generalized trajectory) and a new observation to check if 

this new trajectory corresponds to a specific manipulative 

task. Translation invariance can be easily obtained by 

considering the positions of the learned features relative to 

one reference point defined with respect to the trajectory 

pattern. The reference point (center of gravity) is obtained 

by: 
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For scale invariance, we can calculate the overall size of 

the trajectory pattern in space and then normalize the 

extracted feature values with respect to the pattern size. This 

size is given by the average positional distance of all learned 

feature points from the center of gravity, computed by: 
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where the distance of a learned feature point from the center 

of gravity is simply computed as Euclidean distance between 

them: 
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These properties extracted from the learned features are 

useful to perform the matching (1:1) between the prototype 

and the new trajectory of a specific manipulative task. The 

preprocessing is applied in the new observation and the 

features extraction as explained in subsection D is also 

applied (curvatures and hand orientation). The computation 

of the translation and scaling invariance of the learned 

features as explained above is done twice, for both classes of 

features, curvatures and hand orientation. 

We can use a probabilistic method using the computed 

scale invariance of the classes of features to be used later in 

the matching: 
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where α  and β are positive weighting coefficients; Dcurvagv 

(invariance computed from the learned curvatures) and 

Dhoriagv (invariance computed from the learned hand 

orientation). Pij is computed using the prototype 

(generalized) G and for the new observation (trajectory to be 

matched) N. There is the existence of a matching between 

pi(G) and pj(N) as binary value, { }1,0∈ijE , based on Pij  and 

defining an active matching Eij = 1,  ePP ijij -max>  , where 

e is a threshold value that can be adjusted. 

For the classification case, we are following a Bayesian 

approach where the likelihood is given by the learned 

features of the generalized trajectory of a dataset 

representing a specific manipulative task.  

By applying continuous classification based on 

multiplicative updates of beliefs via Bayesian technique, we 

can classify a new observation. The classification occurs in 

each action phase of the manipulative tasks using the 

probability of the learned features. To understand the general 

classification model some definitions are done as follows: g 

is a known task goal from all possible G (tasks goals); c is a 

certain value of feature C (Curvature types); o is a certain 

value of feature O (hand orientation types) i is a given index 

from all possible action phases A. The probability P(c | g i) 

that a feature C has certain value c can be defined by 

learning the probability distribution P(C | G A) and P(o | g i) 

of feature O has a certain value o that can be defined by 

learning the probability distribution P(O | G A). Knowing 

P(c | G  i); P(o | G i) and the prior P(G) we are able to apply 

Bayes rule and compute the probability distribution for G 

given the action phase i of the learned trajectory. Initially, 

the prior is a uniform distribution and during the 

classification their values is updated applying Bayes rule as 

shown in equation below:  
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We compute the probability of all possible G (tasks goals) 

using the probability of the relevant features of the new 

observation multiplying the probability of each relevant 

feature by the corresponding feature in each action phase of 

the learned trajectory. In the normalization the variable j is 

an index that represents all possible task goals.  

IV. PRELIMINARY RESULTS 

In this section we will present our preliminary results. The 

trajectories that we are using is concerning the scenario (task 

goal) described in section III-A.  

Fig.5 shows the raw data of the dataset of the task pick-up 

and place (object displacement) with 7 trajectories. Fig. 6 

shows the detected action phases using the sensors 

information. Fig.7 shows an example of the 3D positions of 

the features extracted (curvatures: changes in direction) from 

all observations before finding similarities for relevant 

features selection.  

After verifying the similarities among the trajectories of 

the dataset (similarities), we keep just relevant features and 

remove the features with low probability. Fig.8 shows the 

relevant features after verify the similarities among all 

trajectories. 

Fig.9 shows 2D view (left column: x, y; right: x, z) of the 

regression which was locally performed in sub-regions of the 

trajectory. Another alternative using the relevant features 

could be an interpolation (polynomial or other). Fig.10 

shows an example of interpolation of the features points as a 

function of arc length along a space curve.  

 

 

 
 

Fig.5 – Raw data(in inches): trajectories dataset – object displacement. 

 

 

 

 

 

 
Fig.6 – trajectory segmentation into phases by analyzing the sensors 

information. 

 

 
Fig7 – 3D positions of the features extracted along all trajectories (in 

rescaled space) of the dataset. 

 

 
Fig.8 – Coordinates of similar features among the trajectories of the dataset. 

 

 
Fig.9 – Polynomial regression performed in sub-regions of each action 

phase. 

 

 



  

 
Fig.10 – Example of interpolation along a space curve. 

 

Another dataset of a specific task was learned (e.g., 

grasping and lift an object) in order to test the classification 

step that uses the learned features. This dataset follows the 

same rules of the first dataset (Fig.5), i.e., the hand starts the 

task in a marked initial position and after releasing the object 

the hand finishes the movement in the initial position. As 

long as the dataset comprises movements performed in 

different velocities and with different temporal information, 

we have rescaled both dataset to the size 1, keeping the 

shape of the trajectories and by using the DTW technique we 

aligned all trajectories of the dataset. Thus, given a new 

trajectory, we want to classify it. Tab.1 shows the result of 

the classification of a new observation of pick-up and place. 

Fig.11 (a) shows the new observation that is being 

classified and (b) shows the learned movement (generalized 

one which represents the dataset) of pick-up and lift (from a 

dataset with 7 trajectories). 

This preliminary result demonstrated that it is possible to 

use the proposed approach for classification, even the 

learning being with few trajectories. The Bayesian 

classification presented interesting results. 

 

 
 

Fig.11 – (a) New observation: trajectory to be classified (pick-up and 

place); (b) Generalized trajectory of dataset pick-up and lift. 

 

TABLE I 

CLASSIFICATION RESULT 

Action Phases Pick-up and place % Pick-up and lift % 

   

Reaching 45.00 55.00 

Load 48.10 51.90 

Lift 59.32 40.68 

Transport 69.83 30.17 

Release 78.00 22.00 
The second and third columns show the probability of the new observation 

belonging to the pick-up and place task or pick-up and lift task. We have 

detected the relevant features in each phase using their probabilities to 

classify the new observation. 

V. CONCLUSION AND FUTURE WORK 

In this work, a probabilistic approach was developed for 

detecting motion patterns in multiple trajectories in order to 

obtain a generalized trajectory for representing the dataset, 

and also for trajectory classification. By using spatio-

temporal information, we can extract relevant features along 

action phases of the trajectories that are identified through 

the sensors data. Polynomial regression is used on the data to 

fit it by successive approximations to obtain a generalized 

version of the trajectory. An alternative for trajectory 

generalization is by interpolating the relevant features given 

their coordinates. We have presented some preliminary 

results of the proposed approach and it motivates us to 

continue testing the methodology to improve it. As future 

work we intend to perform more trials to test and evaluate 

the methodology to verify the performance of our approach 

in different datasets. 
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