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Abstract

The concept of tracking the component origin and manufacturing specification encoded
in the form of Data-Matrices has been gaining ground. This has translated into a search for
cost-effective alternatives to machine readable, printable codes such as barcodes. The advan-
tage of Data-Matrices assumes special relevance in the case of miniature components and in
the case of complex, multi-part assemblies in which a large amount of information must be
encoded within a small foot-print. We propose the application of state of the art techniques
in multi-scale, local image feature extraction (Corners and lines) to read the binary data in
Data-Matrices. The columns of binary data are arranged in the form of a sequence of binary
features each of which codes some information. Our aim is to increase the applicability of
the codes by developing applications in object classification without supervision, achieving
tolerance to incomplete information about the objects to be classified. The classification pro-
cess is achieved by using techniques that are commonly utilized in bio-informatics to align
protein sequence which recently have been applied to Place recognition problems in Mobile
Robot Navigation.

1 Introduction

The need to tracking the origin of manufactured components and their specifications has
been gaining ground. Whereas, barcodes were once utilised to code a small amount of
information regarding the manufacturer, part and manufacturing batch numbers, the need
for ever greater information regarding the history and origin of the components has resulted
in their substitution by Data-Matrices. The advantage of Data-Matrices assumes special
relevance in the case of miniature, albeit complex, components in which a large amount of
information must be encoded within a small foot-print Fig. 1a, in middle. It has also been
found to be very useful in the case of multi-part assemblies that use concatenated Data-
Matrices to express very large amounts of information.

The use of two dimensions to store the information coupled with more robust algorithms
for reading and error detection/correction means that a large amount of information can be
stored in the data-matrix representation. Typically in a square symbol, between 10 × 10 to
144× 144 bits can be stored. Using multi-scale techniques the principal ’sync’ and ’handle’

1



A single 21 x 21 
Data Matrix Symbol

A EAN-13 barcode.

A set of contactenated
23 x 23 Data Matrix Symbols

(a)

k

  F
(B

in
ar

y 
Fe

at
ur

es
)

(Index of classified objects)

(b)

Figure 1: Rearranging the barcode/data-matrix symbols to create a Binary vector
descriptor. The descriptors for a pilot set of classified object is represented as a
Feature Incidence Matrix, shown at right

properties of a data-matrix are extracted in order to recover the orientation and to achieve the
ability to correctly read the matrix. The black and white squares are then extracted, using
fast corner extractors on the original and on the inverted images, in the form of sequences of
binary features each of which codes some information together with the redundancy implicit
in the coding process. Given these limiting features on a single data-matrix symbol, multiple
symbols can be concatenated along either dimension to increase the amount of information
that is stored, Fig. 1a, at bottom.

data-matrix have been used to mark small items such as integrated circuits and printed
circuit boards. In such applications the code can typically hold upto fifty characters within a
3× 3 square and can be read using a video camera in situations of atleast 20 percent contrast
ratio.

While the main use of the data from barcodes and Data-Matrices is to correctly and
reliably access databases containing information regarding the historical information of a
component, there are some applications that could use the information that is stored in the
pattern on the label itself. Our aim is to increase the applicability of the codes by developing
applications in object classification without supervision, achieving tolerance to incomplete
information about the objects to be classified. Most airline tickets are printed by a type of
barcode label printer, and another similar machine is also used to make luggage tags that
help the airline keep track of luggage.

While service industries, retailers and storage facilities already utilise barcodes and Data-
Matrices to adequately label spare parts and keep track of stocks and storage locations, the
increased requirement for recycling products and parts has opened up a need to incorporate
and handle much more information.
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Proof of concept projects and research is still ongoing into the informational databases
and product labelling that would lower the costs of recycling just as in other industries they
have increased efficiencies [Saar & Thomas, 2002]. Getting as much information as possible
is pertinent in the case of products that contain as toxic substances [Saar & Thomas, 2004],
or might have come in contact with such substances over the course of their useful lives.
Since the specification of the European Waste Electrical and Electronic Equipment (WEEE)
directive, Industry associations such as SPECTARIS, the German Industrial Association for
Optical, Medical and Mechatronic Technologies promote the use of technologies that inte-
grate manufacturing information with usage history in order to make recycling easier. The
information that can be coded in a data-matrix or an RFID includes quantity and type of
the old device, quantity of the re-used old device, quantity of the raw materials used, and
notification of the components and working materials used. Similarly, the US Department of
Defence has mandated that components used in DOD project must include Data-Matrices in
order to enhance the traceability of these components [Agapakis & Stuebler, 2006].

The classification technique that is proposed has been previously utilized in measuring
the similarity between documents, based on the word-similarity. It has also been recently
applied to Place recognition problems in Mobile Robot Navigation[Ferreira et al., 2006].

2 Local Features from images

Local image image feature detectors are ubiquitous in applications of vision to robotics.
Among the various local features, corners and edges are among the most common features
used.

In Schmid and Mohr[Schmid & Mohr, 1995], it is mentioned that the only image invari-
ants are the curvature of the isophote line and the flow line. This same article goes on to
suggest that this property is of little practical value given that the associated calculations are
difficult, and that the noise in real images and their limited resolution negates the remaining
usefulness of the result. So a lot of research goes into the extraction of ’partially invariant’
features in images. Schmid constructs a ’Local-jet’ and extracts points of interest accord-
ing to a Heitger and Rosenthaler detector. In Schmid and Mohr [Schmid & Mohr, 1997],
the same authors utilize a Harris detector, a corner detector, to choose interest points in an
image.

In Mikolajczyk and Schmid [Mikolajczyk & Schmid, 2001], a comparison is made of
various methods of extracting points of interest and the efficacy of different region descrip-
tors. Invariance to scale variations is achieved differently.

Image pyramids have been utilized for quite some time in order to take advantage of
memory savings and faster processing as information redundancy in an image increases.
Lowe [Lowe, 1999], utilizes a sampled Gaussian kernel to smooth an image repeatedly. Each
smoothing by convoluting with a Gaussian filter is followed by the reduction of the resolution
of the image. The Difference of Gaussian(DoG) image as an approximation of the laplacian,
is used to identify the interesting points.
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3 Classification using Bernoulli Mixture Model

While classification of a few binary properties might be easy, using many, correlated features
is very difficult. In applications such as Mobile-robot-localisation, Image retrieval and robot
localisation methods typically make use of a large number of features. In the application
to Mobile-robot-localization, we have employed up to 16000 binary features to allow the
robot to recover its position within the environment. Having to reduce the dimension of data
from a sensor or multiple sensors in order to make the procedures more tractable or robust is
therefore a common problem. A common solution to the problem is to perform data fusion
according to some model to create composite features from different features(from the same
or from different sensors) after registering the data of one sensor with another. This approach
seeks to impose correlations that are suspected to exist in the data as a result of a particular
environment.

On the other hand a data-driven approach will attempt to extract these correlations. Meth-
ods that reduce the dimension of features with continuous values are common in many per-
ception fields including face recognition, speech recognition etc. Among these approaches,
Mixture Models are a common solution to modelling data that is thought to a follow non-
parametric distribution. Sajama and Orlitsky in [Sajama & Orlitsky, 2005] demonstrate the
use Mixture models composed of Gaussian, Bernoulli and exponential distributions as a
solution to the classification problem. To a greater or lesser extent these clustering or classi-
fication methods seek to identify features that are more correlated with members of their own
group than with members from another group. Mclachlan and Peel [McLachlan & Peel, 2000]
provide a good reference to the general topic of Finite Mixture Models.

Articles such as [Kaban & Girolami, 2000] and [Wang & Kaban, 2005] provide a healthily
different viewpoint and go some way to demonstrated the usefulness of binary features. In
[Wang & Kaban, 2005] the context in which a word is used in a sentence is converted into
multiple binary features. Similarly [Juan & Vidal, 2004] and [García-Hernández et al., 2004]
seek to model some training data as a sample of sets of binary features taken from a popu-
lation of binary features, each distributed according to a mixture of Bernoulli distributions.
The application of binary features to the classification of images and text has motivated us
to apply the approach to classifying other types of features, such as barcode/data-matrix
features.

Mixture models assume that there exists a finite number of distributions which, when
mixed together in a particular proportion, result in a distribution that best describes the data.

3.1 Specifying the Classification Task

Supposing we classify a pilot set of objects into two or more subsets according to certain
criteria that are reflected in the binary digit code that could come from a barcode or from a
data-matrix.

The binary features from each of the objects in the pilot set are represented within a
Feature Incidence Matrix (FIM), V . Each row i, of the FIM corresponds to a feature Yi and
each column j, to an object, Vj , from the reference sequence (each entry in the FIM might
be represented as Yi,j where the first subscript indicates the feature and the second subscript,
the object). Yi,j takes value 1 if feature Yi appears (is present in the code) in object Vj , 0
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otherwise, see Fig. 1.

V =

⎡
⎢⎢⎢⎣

Y1,1 Y1,2 . . . Y1,K

Y2,1 Y2,2 . . . Y2,K
...

...
. . .

...
YN,1 YN,2 . . . YN,K

⎤
⎥⎥⎥⎦ (1)

A simple metric for verifying the similarity between a new object to be classified, and another
in the pilot set, could be the number of binary features in each object that are unchanged.
This metric would assume that the individual features on each object are independent. Unfor-
tunately, given that features arise in groups and persist/disappear as a result of the behaviour
of the object and its exposure to the environment, the assumption of independence between
the features does not reflect reality.

Inferences made under this assumption would be biased toward certain objects in the
FIM and in practice, some of the features are highly correlated while others are less. In
such circumstances we need to employ methods that deal with the correlation between the
features. As stated earlier, this thesis describes our use of Mixtures of Bernoulli Distributions
to model the binary FIM.

3.2 Formulation of the Bernoulli Mixture-Model

Mixture models assume that there exist a finite number of parametric distributions which,
when mixed together in a particular proportion, result in a distribution that best describes
the data we wish to characterize. In this case we model any code that is observed Vobs as a
vector of binary features {0, 1}N which is obtained from a particular mixture of Bernoulli
distributions, as in (2).

We present a brief legend of the terms we will utilize below. V represents the complete
set of objects as collected during the classification fo the pilot set, Vk is a single object with
an index k within the pilot set, V , described by multiple features, Vobs is a single object that
must be classified and F is a A single [named] Feature. Z is a Hidden or incomplete data
in a Mixture Model, αi represents the mixture component coefficient or component Prior
probability and Θi is a single component of the mixture model with the named features

∏
represents the product operator while

∑K
k=1, represents the sum operator with the index k

varying from 1 to K.

P (Vobs|Θ) =
M∑
i=1

αiP (Vobs|Θi) (2)

where Θ denotes the parameters of the distribution of the objects that compose our Mix-
ture Model. These parameters include the M component vectors, the Θis, and the propor-
tions in which these are mixed, the αis. Each αi represents the prior probabilities of the com-
ponent i in the mixture model, subject to the constraint

∑
i αi = 1. The term P (Vobs|Θi),

can be determined using (3) where each Θi is a multivariate vector of Bernoulli probabilities
each of whose N components indicate the probability of success for a particular feature.

P (Vobs|Θi) =
∏N

j=1 jΘ
jVobs

i (1 − jΘi)(1−jVobs) (3)
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To obtain the mixture parameters that explain a particular FIM V , consisting of K ob-
servations it is assumed that the objects are independent and the likelihood of the mixture
satisfying the FIM is expressed thus (4).

P (V|Θ) =
K∏

k=1

P (Vk|Θ) = L(Θ|V) (4)

The optimisation task to find the mixture that best explains this V can be expressed as in
(5), i.e. find the value of Θ that best satisfies the distribution of features in V .

Θ∗ = argmaxΘL(Θ|V) (5)

The preferred method of solving the Mixture Model problem is the Expectation Maximi-
sation algorithm. McLachlan ([McLachlan & Peel, 2000], page 19) states ’...it will be seen
that conceptualization of the mixture model ...(hidden data + component distributions)... is
most useful in that it allows the Maximum likelihood estimation of the mixture distribution
to be computed via a straightforward application of the EM algorithm.’. The EM method
applied to the Mixture problem assumes that the data is only partially available. It becomes
fully known through the use of a vector of coefficients denoted henceforth as Z , called the
’missing data’ or the ’hidden data’ or still the ’unobserved data’. If we introduce this Z to
expression (2) we can now express the likelihood of the observations given the entire data as
in (6) and further simplify it to (7).

L(Θ|V, Z) =
K∑

k=1

zklog(
M∑
i=1

αiP (Vobs|Θi)) (6)

L(Θ|V, Z) =
K∑

k=1

M∑
i=1

zki(log(αi) + log(P (Vobs|Θi))) (7)

The EM algorithm proceeds in two stages: the Expectation stage attempts to reach
the best value for the missing data Z , by keeping the parameters of the Mixture model
constant(8), while the subsequent Maximization stage attempts to optimise the components
and mixing parameters themselves by using the values of the ’missing data’ obtained in the
expectation step just performed (9), (10). The method then alternates between the two steps
until some termination criteria is satisfied.

zki =
αiP (Vk|Θi)∑M

j=1 αjPj(Vk|Θj)
(8)

αi =
∑K

k=1 zki

K
(9)

Θi =
∑K

k=1 zkiVk∑K
k=1 zki

(10)

Corresponding Author: Filipe Ferreira, email:cfferreira@isr.uc.pt



This termination criteria is usually a lack of change in the mean error when the Mixture
Parameters are applied to the original data. In the case of such applications, where the
parameters of the Mixture models are required for the purpose of classification, the process
is usually stopped quite early, when the reduction in the Mean Error is not significant.

Mixture models used for classification make use of both, the Mixture parameters and the
posterior probabilities over the components, the Z are used to evaluate the likelihood in the
space of the objects in the reference sequence as in ( 11) where P (Vk) represent the prior
probabilities on each index k.

P (k|Vobs) =

∑M
j=1 P (Vk)zkiαjP (Vobs|Θj)∑K

k=1

∑M
j=1 P (Vk)zkjαjP (Vobs|Θj)

(11)

The Maximum Likelihood Estimation approach is used to obtain the matching object, the
index k∗, in V that best describes the object to be matched, Vobs.

P (k = k∗|Vobs) = max
k

P (k|Vobs) (12)

4 Simulation results

To demonstrate the classification procedure, a matrix of binary data corresponding to a sim-
ulated set of barcode/data-matrix objects is utilised. As was explained earlier a row in the
Feature Incidence Matrix denotes a single feature. Each column denotes a particular object.
The objects index itself advances, from the left to the right. The presence of a feature is
indicated by a black square and the absence by a white square. As can be seen in Fig. 2,
the FIM is composed of what can be easily recognised as two, distinct objects each of which
is a complement of the other. Some features in some objects are flipped in order to sim-
ulate small variations between the types of objects to be classified. If we model this FIM
as a mixture model we would still expect to get two main classes, as denoted by the main
components as long as the variations in the features were not significant.

After running the EM algorithm for mixture models, with four components respectively,
we end up with the components as shown in Table 1 and the mixture coefficients as shown
in Table 2, respectively. As can be seen, most of the layout of the FIM is explained by
components Θ1 and Θ3 (the original components in the noiseless data) and the distribution
of these components is quite similar to the corresponding components for the noiseless FIM.

Thus it can be seen that the objects in the pilot set are neatly separated into classes
based on the components of the Mixture Model. By using these components we can easily
classify any new object. Additionally, it is possible to evaluate the quality of the classification
depending on how close the binary descriptor of the object to be classified is to each of the
components.

5 Conclusions

The Bernoulli mixture method has already proved its ability to classify objects that are rep-
resented using multiple binary features. As applied to the Mobile-robot-localization, it has
allowed for the recovery of the position of the robot under difficult conditions.
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Figure 2: A simulated FIM to demonstrate the working of the Bernoulli Mixture
Model

Table 1: Components for noisy FIM shown in Fig. 2.

Θ1 Θ2 Θ3 Θ4

1 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1

0 0 0.91 0
0 0 0.91 0
0 0 0.91 0

0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
1.00 0 0 0

0 0 1 0
0 0 0.91 0
0 0 0.91 0
0 0 0.91 0

0.90 0.50 0 0.44
0.80 1 0 1
0.90 1 0 1

Table 2: Coefficients for noisy FIM shown in
Fig. 2.

α1 α2 α3 α4

0.44 0.06 0.48 0.02
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The Bernoulli Mixture model manages to capture the correlation between the features on
the pilot set of objects that were classified. These correlations can be extracted and utilized
to classify new objects, even when the there is some variation in the values of features within
the group to be classified. Classification improves when the classes are substantially different
from each other and when the proportion of features that change is smaller than the features
that define one or the more classes.

We now wish to test the method using real data obtained by reading codes off Data-
Matrices created to specifically represent values of interest at the time of disassembly of a
component or object. We expect methods such as these to accompany the development of
recycling technologies for electronic products and other toxic technologies.
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