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∗ Institute of Systems and RobotisUniversity of Coimbra, Portugal{lgm,jorge}�isr.u.ptAbstratIn vision systems used in robotis, inertial and earth �eld magneti sensors anprovide valuable data about the observer ego-motion, as well as an absoluteorientation referene. This artile exploits the inertial orientation measurementsto ompensate the rotational degrees of freedom, in two di�erent domains.First, inertial data is used to projet images on a leveled plane, relaxing thedemands on interest point mathing algorithms when performing image mosaiing.Seond, in the rotation-ompensated, pure translation ase, full homographies areredued to planar homologies, and the ratio of heights over the ground plane on twoviews are alulated more aurately. Both tehniques are validated over outdoorimage sequenes inluding aerial images from an remotely piloted blimp.Keywords: Vision, Inertial Measurement Units, Planes, Navigation.
1. INTRODUCTIONVision systems in roboti appliations an berigidly oupled with Inertial Measurement Units(IMUs), whih omplement it with sensors provid-ing diret measures of orientation relative to theworld north-east-up frame, suh as magnetome-ters and aelerometers (that measure gravity).A novel alibration tehnique [Lobo and Dias,2005℄ �nds the rigid body rotation between theamera and IMU frames, and then the ameraorientation in the world is obtained by rotat-ing the IMU orientation measurement. The ap-proximation of the rotational degrees of freedomshould allow faster proessing or the use of simplermovement models in omputer vision tasks. Forexample, it an be explored to improve robustnesson image segmentation and 3D struture reovery[Lobo et al., 2006℄.The limits of omputer vision or sensorial datafusion alone have already been largely explored,

and it is known that some limits may be overomeby ombining them.In [Hygounen et al., 2004℄, a stereovision-onlyaproah is used to build a 3D map of the envi-ronment from stereo images taken by a remotelyontrolled blimp, traking the amera pose andlandmarks on the ground. It was not their aim tointegrate IMU measurements.On-board inertial and GPS data, together with adynami model of the vehile is used in [Brownand Sullivan, 2002℄ to projet images taken froma high-�ying airplane onto the ground plane. One-pixel auray is ahieved with no need of image-based tehniques.Image mosaiing was performed in [Graias, 2002℄,for an unmanned submarine navigating over �atsea-bottom, using only images as input. The reg-istration onverged only if the vehile movementis restrited to be planar (no large hange on rolland pith).



Figure 1. The vision-inertial system and an aerialvehile that arries it.Combined IMU and vision data were used tokeep pose estimates in an underwater environ-ment, navigating a robot submarine over a largearea [Eustie, 2005℄. Relative pose measurementsfrom the images avoided divergene of the trakedvehile pose, and an image mosai is a byprodut.In previous work [Mirisola et al., 2006℄ IMU sensedorientation aided the registration of stereo depthmaps from a moving stereo amera. Eah depthmap was rotated to a leveled referene frame pro-vided by the inertial sensed orientation. Then theremaining translation vetor to register the 3Ddepth maps was found by interest point math-ing on the image sequene. A robust estimationproess detets outliers from both interest pointmathing and stereo depth maps, and is very fastdue to the simple translation vetor model.The aim of this artile is to exploit the inertialorientation measurements in two other domains,separating rotational and translational ompo-nents, and using simpler movement models thato�er inreased performane or auray.In setion 2 we disuss the registration of imagesover planar surfaes. As the amera orientationmeasurements allow us to rotate the stereo depthmaps, images of the ground surfae an also beregistered into a ommon leveled plane, and berotated to align with the north-east axes. In thisway, the performane of interest point mathingalgorithms used in image mosaiing is shown tobe improved.Next, setion 3 shows that in the rotation-ompensated, pure translation ase, planar ho-mographies beame homologies, a more restritedmodel that allows to alulate relative ameraheights from pixel orrespondenes with more a-uray. Images from the UAV of �gure 1 are usedin the last experiment.Finally, the onlusions are shown in setion 4.1.1 De�nitions of referene framesThe amera provides intensity images I. Thesubsript i is the time index. Hene the followingframes are de�ned, as shown in �gure 2:
• Camera Frame {C}: This frame is usedin the pinhole amera projetion model. Theorigin is plaed at the amera enter, the axis

Figure 2. De�nition of frames of referene.
Figure 3. The virtual leveled plane onept.

z is the depth, and the axes x and y areparallel to the image plane. The amera isalibrated, its intrisi parameter matrix K isknown, and f is its foal length.
• Inertial Frame {I}: The IMU outputs therotation W RI |i from the {I} to the {W}frame.
• World Frame {W}: A NED (North EastDown) frame.
• Rotated Camera Frame {R}: This virtualamera frame shares its origin with the {C}frame, but its optial axes points in thediretion of gravity, and the image axes areparallel to the north and east axes.The amera-inertial alibration outputs the on-stant rotation IRC between the amera ({C}) andinertial ({I}) frames.1.2 A virtual leveled planeThe knowledge of the amera orientation provideddiretly by the IMU measurements allows theimage to be projeted on entities de�ned on anabsolute NED frame, suh as a virtual horizon-tal plane (with normal parallel to gravity), at adistane f below the amera enter, named asthe virtual leveled plane, as shown in �gure 3.Projetion rays from 3D points to the ameraenter interset this plane, projeting the 3D pointinto the plane. This projetion orresponds to theimage of a virtual amera at the {R} frame, withoptial axis oinident with the gravity vetor. Inthe �gure the moving observer is an UAV (out ofsale).



1.3 Experimental PlatformsThe moving observer hardware is shown in �g.1. The amera is a Point Gray Flea [Point GrayIn., 2006℄, and the inertial and magneti sensoris a Xsens MT9-B [XSens Teh., 2006℄.2. BUILDING IMAGE MOSAICS.This setion deals with the registration on the vir-tual leveled plane of an image sequene taken froma moving amera, rigidly oupled with an IMU.One arbitrary image is hosen as the refereneimage IB , and the origin of its {R}|B frame isset as the origin of the {W} frame.2.1 Projeting on the virtual leveled plane.For eah image Ii, �rst the amera orientationin the {W} frame is alulated as the rotation
W RC |i = W RI |i ·

IRC .Then the image is transformed by the in�nite ho-mography [Ma et al., 2004℄, denoted by H∞ = K ·
RRC |i ·K

−1. H∞ is indued by the plane at in�n-ity, i.e., it is the homography between two imagestaken from ameras at the same amera enter,but rotated by the rotation matrix RRC |i. Hereit synthesizes a virtual view from a non-existentamera {R}|i with an image plane oinident withthe virtual leveled plane - thus projeting theimage on it. RRC |i = RRW ·W RC |i is the rotationfrom the {C}|i to the {R}|i frame, where RRW isa �xed rotation.Any image an be piked as the referene one, asit is automatially projeted to the desired mosaiplane orientation. In an image-only approah, theorientation of the mosai plane must be retrievedfrom a spei� image, or external inputs shouldbe used.2.2 Building mosais with interest point mathingOne the images are projeted into the virtualplane, interest point mathing algorithms �ndpixel orrespondenes between pairs of suh pro-jeted images, from whih homographies are al-ulated to register these pairs. Small mosais arebuilt from suessive overlapping frames in thesequene, registering as many frames as possible(two examples of small mosais are shown in �g.4, separately and then drawn together). Next thesame algorithm is applied on the mosais them-selves, registering them into larger mosais, andso on.

Figure 4. Right, two mosais, with pixel orre-spondenes; left, the mosais registered.The mosai of �g. 5 was built from 61 images,taken from a tripod moved manually over a pla-nar yard, with two di�erent heights. From thissequene 20 mosais were built, and then, a seondrun over them generated 4 larger mosais. The�nal run generated the mosai of �g. 5, withfeathering to smooth image transitions.This mosai was obtained without deghosting andbundle adjustment, whih usually must be appliedto image-only mosaiing of this size [Szeliski,2004℄, and still may be exploited to register largerdatasets. Also, some reent results in mosaiingsuppose a rotation-only model (e.g. [Brown andLowe, 2003, Szeliski, 2004℄), where the ameraenter is the same for all images. But here theamera is freely translating and rotating.For omparison, the same interest point mathingalgorithms were applied to suessive frames inthe original image sequene as well as in thesequene projeted into the virtual plane. Thereprojetion error (root mean square) on pixelorrespondenes was 20% less on the projetedimages.Also, after tuning interest point detetor param-eters, a better ratio of number of mathings ver-sus total number of interest points deteted wasobtained with the projeted images, hene themathing of interest point desriptors was 50%faster, while still yielding a 2% larger number oforrespondenes.3. CAMERA HEIGHTS FROMHOMOGRAPHIES AND HOMOLOGIESConsider a 3D plane imaged in two views, anda set of pixel orrespondenes belonging to thatplane, in the form of pairs of pixel oordinates
(x,x′), representing the projetion of the same 3Dpoint on eah view. The transformation relatingthese two sets of oordinates is a homography,



Figure 5. A mosai from 61 registered images.said to be indued by the plane. Given the twoamera projetion matries P = [I|0] and P ′ =
[R|t], the homography an be reovered from pixelorrespondenes [Ma et al., 2004℄, and it is relatedto the 3D plane normal n, the distane from theamera enter to the plane d, and the relativeamera poses de�ned by a rotation matrix R anda translation vetor t, by:

λH = λ
(

R − tn
T /d

) (1)The module of the sale λ is the seond largestsingular value of λH , and the orret signalof H an be reovered by imposing a positivedepth onstraint. In the translation-only ase,plane indued homographies beome a speialform alled planar homology.A planar homology G [van Gool et al., 1998℄ is aplanar perspetive transformation that has a lineof �xed points (the axis), and another �xed point,the vertex. The axis is the image of the planevanishing line (the intersetion of the 3D planeand the plane at in�nity), and the vertex is theepipole, or Fous of Expansion (FOE).The ross ratios de�ned by the vertex, a pair oforresponding points, and the intersetion of theline joining this pair with the axis, have the samevalue µ for all points. The matrix G is de�nedfrom the axis a, vertex v, and µ, by:
G = I + (µ − 1)

va
T

vT a
(2)3.1 3D plane parallel to image planeIf the 3D plane is parallel to the image planes, theaxis is the in�nite line a = (0, 0, 1)T , and equation2 beomes:

Figure 6. Two ameras under pure translation.
G =
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 (3)where vx, vy are the unhomogeneous image oor-dinates of the vertex v = (vx, vy, 1). µ dependsonly of the relative depths of the 3D plane inboth views. To analyze this relation, we reallthat the relative sene depth of two points equalsthe reiproal ratio of the image distanes to thevanishing point of their onneting line [Arnspanget al., 1999℄.This fat is true for two images of the same 3Dpoint X under pure translation. De�ning Z and
Z ′ as the depth of X in �rst and seond views,and x and x

′ as its respetive projeted imageoordinates, as in �g. 6, we have:
Z ′

Z
=

dist(x,v)

dist(x′,v)
(4)where dist is eulidean distane on the image. If a3D plane is parallel to the image planes, all pointson it have the same depth, and are transferredbetween the two views by the same homology.The homology alulation involves many pairs oforresponding pixels, and thus is potentially morestable than an image measure involving just onepair. To relate the relative depth of the planewith the ross-ratio µ we reall that, given thehomography matrix indued by a 3D plane in twoviews, the relative distane between the ameraenters and the plane is equal to the determinantof the homography [Malis et al., 1999℄.This is valid for full homographies, thus also forhomologies. As, from equation 3, det(G) = µ, andas the distane between the amera enter and theplane is the depth of the plane, we have:

Z ′

Z
=

dist(x,v)

dist(x′,v)
= µ (5)3.2 Results: Relative Height for horizontal planes.Again, rotation is ompensated by projeting theimages into the virtual leveled plane. In suh



rms error std of errorfull homography 0.055 0.036homology 0.029 0.013Table 1. Results for relative depth of 3Dplane parallel to virtual image planes.way, pure translation is simulated, and supposingthat the amera views a �at horizontal plane, theamera height is equal to the plane depth. Thissetion desribes the proess to alulate the ratioof the heights in two views.A FOE estimate is obtained from pixel orrespon-denes with outlier removal [Chen et al., 2003℄.Then, from the pixel orrespondenes and the esti-mated FOE, µ is estimated by averaging the ratioof equation 5 for all orresponding pixel pairs.Given the estimates for v and µ, an optimiza-tion routine minimizes the projetion error of theorrespondenes when projeted by the homology
G(v, µ,a = [0, 0, 1]T ), �nding improved estimatesfor v and µ. The relative depth is det(G) = µ.In the following experiment, the IMU-amera sys-tem of �g. 2 was mounted on a tripod, taking 50images of the ground from di�erent viewpoints.On this ontrolled environment the homology andhomography models an be ompared with hand-measured ground truth (this is not possible for theairship dataset used at the end of this setion).Figure 7 shows the height for all images, relativeto the �rst image height (104.5cm). Two arrowsonnet two highlighted points to their respetiveimages. The tripod was set to 3 di�erent heights,thus the 3 horizontal lines are the ground truth.The stars are µ as desribed above. The rossesare the relative depths taken as the determinantof a full homography, estimated with RANSAC,optimized to minimize the projetion error onpixel orrespondenes, and saled as in eq. 1. Therelative depths obtained from the full homographyand from the homology model are ompared, andthe results, summarized in table 1, show that thelatter o�ers improved auray.Figure 8 shows a proess diagram. There is noneed to projet all the image on the virtual plane,but only the oordinates of the pixel orrespon-denes. Sensor data ould provide diretly an ini-tial FOE estimate. The initial µ estimate is trivial,and the �nal optimization takes approximately asmuh time as the optimization for the homogra-phy. Therefore potentially this proess an be fastenough for roboti appliations.In the following plane segmentation experiment,two images were taken from a stairase seneontaining various horizontal planes, and imageross ratios were used to order the planes bytheir height. First, the image pair was projetedinto the leveled plane, pixel orrespondenes were

Figure 7. Relative heights to the ground from thetripod experiment, with two example images.
Figure 8. Finding the homology between twoviews.

Figure 9. The relative depths from two views usedto order planes by their height.found, and from them, the FOE was alulated.Then, image ross ratios with the FOE were alu-lated for all orresponding pixel pairs, and groupsof these pairs with lose ross ratio values werefound by piking the peaks of their histogram.Figure 9 shows eah group with a di�erent olor,and the sale relating olors to relative depths isshown on the right. These points are very fast toobtain, and they an be seeds for plane segmen-tation algorithms.The last result was obtained from images taken bythe remote ontrolled blimp of �g. 1 arrying theIMU-amera alibrated system and GPS, �yingover a planar area. The GPS measured heightis shown in �gure 10 ompared against visualodometry based on the µ value of homologiesalulated for the image sequene by the proessdesribed here. The height of the �rst image ismanually set as h1 = 4m, and the height of the
ith image is hi =

(

∏i−1

j=1
j+1µj

)

·h1, where j+1µjis the ross ratio of the homology that transformsthe jth image into the image j + 1. For the fewimage pairs where the homology ould not bealulated, the last valid µ value was assumed



Figure 10. Visual odometry based on homologyompared with GPS altitude measurements.to be the urrent one. No other attempt wasmade to �lter the data to avoid the drift fromsuessive multipliation of relative heights. Thesale depends on the manually set height h1. AsGPS altitude is not very aurate, the omparisononly shows the existene of orrelation.The IMU orientation output was diretly used,and its standard deviation for an stati IMU (ason the tripod experiment) is 3◦ (it is larger for themoving UAV). Errors on the orientation inreasethe reprojetion error of the homology, turningorretly mathed pixel pairs into outliers, with amore signi�ative e�et as the distane from theoptial enter of the {R} amera inreases. But onthese experiments there were still enough inliersfor a reliable alulation.4. CONCLUSIONInertial orientation measurements and omputervision were ombined in two di�erent domains.The IMU data approximated the rotational de-grees of freedom, and images were projeted onan earth-grounded virtual plane. While image-only mosaiing is ommonly done, this IMU-basedprojetion improves the performane of essentialparts of the mosaiing proess.The virtual plane projetion also aids to deter-mine relative heights, by simulating pure transla-tion, and enabling the use of the homology model,that has been shown to be more aurate than fullhomographies. Enouraging results were shown,both in ontrolled laboratory environments whereground truth an be measured, and on aerialimages taken from an UAV using diretly theorientation output of an o�-the-shelf IMU.In further developments these ideas ould be ap-plied to 3D planes in general position, and theFOE ould be diretly measured. The height mea-surements ould be used for landing aerial ve-hiles, or as an additional altitude sensor. The
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