
Manufacturing Cell Monitoring Process

Carlos Martins CCP and Rui Rocha CCP

Abstract - This paper describes all the manufacturing cell monitoring process particularities, and its
several features. It is also done a brief presentation of the data structure used to monitor the
manufacturing cell status, and it is explained its achievement and its philosophy by a complete
flowchart.

1.Introduction and brief description

The monitoring process of the manufacturing cell deals with the visualisation in real time of
the manufacturing orders evolution, which are running at the moment, as well as the current
state of the several machines (Kondia, Lealde and Kuka).

Figure 1 - Monitor appearance

For each manufacturing order we can see the time spent in the last states, as well as the time
spent in the current state. In a moment, we can have a maximum of 2 orders (see figure 1).
When an order finishes, all the status times are added, and it is shown the total execution time.
At that moment, all the information about that order are transferred to a display zone called
“Last Order Parameters”, liberating the display zone that was occupied by that ended order.
Those information are the order’s identification, the machine associated with that order, the
time spent in the several states (processing, waiting for container, waiting for robot, loading,
machining, piece turning around, waiting for robot to make the unload or the turning around
operation, waiting for container to unload and unloading) and the total execution time.

Synchronised with the order’s evolution, it is possible to observe the machine´s status and
associate them with the orders. For instance (see figure 1): while a piece is being loaded in the
Lealde by the Kuka robot, we can see in the “Loading” state of an hipotetic order
“pd001op04”, the time running, and at the same time, observe that the Lealde’s state is
“Loading” and that the Kuka’s state is also “Loading”, and observe on the bottom of these
messages “Executing Order: pd001op04”.

Simultaneously, it exists a display’s zone called “System Messages”, where are shown all the
error and warning messages, associated with possible manufacturing cell controller abnormal
situations, as file opening errors, MMS errors, password incorrect introducing, and so on. This
zone has the capacity to show the eight most recent messages.

Another feature of this monitoring process is the “Command Editor”, which makes possible to
send commands by the user to the main controller (in a mailbox), after the introduction of the
security password. This editor permits, for instance, stop a machine, stop the manufacturing
cell, make a setup or alter the security password.

When the user strikes any key, the monitoring process creates automatically a child process,
that begins by verifying if the command is valid. If it is not valid, it is generated a related error
message, and the child process kills itself. If it is valid, the user must insert a password. If it
doesn’t exist any password selected, the user must insert one before the execution of any other
command, otherwise it is generated an error, and the child process kills itself. If the user takes
more than 20 seconds on entering the password, it is generated an error, and the child process
kills itself. After the introduction of the correct password, it is sent a message in a mailbox to
the main controller, except if the command is an introduction of the first password, or a
simply alteration of the current. The child kills itself in both situations.

While the child process of the command editor is executing its own tasks, the monitoring
process continues its job, altering its variables, which are a virtual image of the manufacturing
cell status. As soon as the child process finishes, the monitoring process refreshes all the
display.

If the child process doesn’t exist, any alteration in the manufacturing cell can be observed in
the display, in real time.

2. Programmation strategiy used in the monitoring process

2.1 Messages types changed between main controller and monitoring processes

The messages sent by the main controller to the monitoring process may be grouped into three
classes, according to their semantics:

1. an order that is running on the manufacturing cell changed its actual status;

2. an system error or warning occurred (problem on opening a file, for example);

3. the manufacturing cell controller is going down.

The message is composed of a structure of type t_mensagem, declared as follows:

typedef struct t_mensagem{

int num1;

int num2;

int num3;

int label_erro;

char frase[50];

} t_mensagem;

and a variable “mtype” of type long.

The resulting message is a structure of type msgbuf1:.

typedef struct msgbuf1{

long mtype;

t_mensagem mensagem;

} msgbuf1;

msgbuf1 buf;

The field “mtype” is used to distinguish the messages according to its semantics. So:

• mtype=FIM - the message’s class is 3;

• mtype!=FIM - the message’s class is either 1 or 2. In this case it’s a message, that
corresponds to the normal mode of the controller status.

If mtype!=FIM the message may be of class 1 or 2:

• class 1 : - The information is distributed by the structure buffer fields as bellow:

buf.mensagem.label_erro=0;

buf.mensagem.num2=“idmaq”;

buf.mensagem.num3=“actual_status”

buf.mensagem.frase=“idordem”;

• class 2 : - The field buf.mensagem.label_erro contains a label, whose values are declared
in “visual.h” and identifies the system error, or warning that has occurred. All these label
values differ from zero.

2.2 Monitoring process description

The monitoring process starts by initialisation the monitoring window, as shown in figure 1
(in the introduction).

After that, it jumps into a loop to receive the messages from the mailbox ´msq_cp_monitor’.
This loop is broken if a class 3 message is received, indicating that all the cell controller’s
processes and mailbox will be destroyed.

In each loop, one attempt to read the mailbox will be made. If there was no message to be read
the process will just actualise the time of both actual order’s status, and print them in the
correct place of the screen. In order to execute this request, the function
visualiza_ordem(0,buf.mensagem.frase,buf.mensagem.num2,buf.mensagem.num3) will be
called. If it was found a class 2 message in the mailbox, the function
processa_erros(buf.mensagem.label_erro) will be called, in order to print a message in the
“SYSTEM MESSAGES” box of the screen. Finally, the function visualiza_ordem(1,
bufmensagem.frase,buf.mensagem.num2,buf.mensagem.num3) will be called, if there was a
class 1 message.

The function visualiza_ordem uses, among other ones, the variables listed bellow:

typedef struct {

char idordem[50];

int idmaq;

int estado_actual;

unsigned long t_estados[NUM_ORD_ESTADO];

unsigned long n_seg;

} estr_estado;

typedef struct {

int estado_maq;

char idordem[50];

} estr_maq;

estr_estado ord_buffer[3];

estr_maq maq_buffer[NUM_MAQ];

where:

• NUM_ORD_ESTADO: - is the number of status of an order. For the present
implementation, this value is 12;

• NUM_MAQ: - is the number of machines available at the manufacturing cell.
In the present application, this value is 3.

2.3 Table of order’s status and times

The array of three positions ord_buffer contains in positions 0 and 1 the information related
with the orders that are running in the cell, and in position 2 the information related with the
most recent order that has finished, according to the table in figure 2.

array
index

idordem idmaq estado_actual n_seg t_estados[]

0 pd00op2 LEALDE MACHINING

1 pd00op3 KONDIA LOADING

2 pd00op1 LEALDE COMPLETE

Figure 2 - The “ord_buffer” array

Meaning of the several structure fields:

• idordem: - identifier of the order;

• idmaq: - the machine related with the manufacturing order;

• estado_actual: - actual status of the order;

• n_seg: - stores the moment (specified by the system function time(0)) in which
the time associated with the status estado_actual was incremented most recently.
This variable is used to decide if one second has elapsed since the last turn, in
which the time was displayed for the actual order status. In affirmative case, the
time shown is actualised on the screen;

• t_estados[]: - stores the time that the order spent in each state. If there is a state by
which the order didn’t pass, the related field on the array will be filled with the
value -1;

t_estados[0]- time elapsed while the order was in state
PROCESSING;

t_estados[1]- time elapsed while the order was in state
WAITING FOR CONTAINER;

......

......

t_estados[NUM_ORD_ESTADO-1]- time elapsed while the order was
in state UNLOADING;

2.4 Table of machine’s status and related orders

The array maq_buffer (see figure 3) stores the machine’s status (idle / occupied) for each
machine in the manufacturing cell, as well as the associated order identifier.

Machine estado_maq idordem

KONDIA idle

LEALDE occupied pd00op1

KUKA occupied pd00op1

Figure 3 - The “maq_buffer” array

2.5 Function “visualiza_ordem”

This function (and some other ones called inside) is used to update the information contained
in the previous two tables, to display the machine’s status and order’s status times in the
screen and to produce the desired result discussed in the introduction point.

2.6 Command editor process

When the command editor process is created, and as well as it exists, the controller evolution
cannot be seen in the screen, because the cursor cannot be at two different positions on the
window. In this case, the evolution is only registered in the tables shown in figures 2 and 3.

When, finally, the process is killed, the screen will be actualised with the information
contained in the tables.

To implement the mechanism that avoids the cursor motion by the two concurrent processes
at the same time, the follow strategy was taken:

• Two semaphores were created at the beginning of the monitoring process:
semaphore 0 and semaphore 1.

Semaphore 0 is used to control the access to the screen for write operations.
Its status, according to the circumstances, is the following:

Marked: - when the command editor process does not exist, or an
instruction to write in the screen is not reached;

Mark removed: - when the user strikes a key or the program reaches an
instruction to write in the screen;

Mark attributed: - when the command editor process is killed or the
write instruction ends;

Semaphore 1 is used to “tell” the monitoring process that the child process was
killed and the screen must be refreshed with the actual information, using
function actualiza_ecran. By default, this semaphore is not marked. The mark
will be put back when the command editor process is killed, and will be
removed when the function “actualiza_ecran” finishes.

3. Monitoring process flowchart

S T A R T

W i n d o w
inic ia l izat ion

at tempt to
read a key

any
key read?

at tempt to read a
message f rom the

ma i lbox

creates ch i ld
process

(command ed i to r)

any
message

read ?

cal l
v isua l i za_ordem
(0:no_t rans i t ion)

message
class ?

cal l
v isua l i za_ordem

(1: t ransi t ion)

cal l
processa_er ros

(label_erro)

dele te
w i n d o w

dele te
semaphores

E N D

F A T H E R P R O C E S S

1

2

3

N o Yes

N o

Yes

end o f
control ler

error
message

change in
status order

1

C H I L D P R O C E S S

I t Ocupies the semaphore 0

1

Is the key val id?

I t reads the user password f rom the
keyboard (user_passw)

I t reads the val id password f rom a
secur i ty f i le (val id_passw)

(ch i ld process)

Yes

user_passw=va l id_passw

In t roduced command

Yes

"Stop Kond ia"
message send ing

"Stop Lealde"
message send ing

"Cel l OK"
message
send ing

New/Al ter Passw.

Stop Kond ia

Stop Lealde

...

Ce l l OK

Is a password
already def ined?

Yes

Password
int roduct ion by the

user

Is i t the actual
password ?

I t Reads a new
password

N oYes

The user retypes
the new passw.

Does the two
passw. match?

The passw. secur i ty
f i le is created or

al tered

Yes

The semaphores
 0 and 1 are l iberated

Chi ld process end

Does ex is t any
 passw. def ined?

Yes

It generates the error
message:" inva l id

c o m m a n d "

It generates the error
message:" I t must be
def ined a password"

N o

N o

It generates the error
message: "The

password is inval id"

N o

N o

N o

 4 - Conclusions

With the previous monitoring strategy, it is possible to display in “on-line” the most relevant
activities occurring in the cell. Since all the orders are registered in a text file, the activities
may also be checked later.

Data related with the time of execution of an order may be used to create statistics about the
global performance of the cell.

