Manufacturing Cell Monitoring Process

Carlos Martin®€CCP and Rui Roch&CP

Abstract- This paper describes all the manufacturing cell monitoring process particularities, and its

several features. It is also done a brief presentation of the data structure used to monitor the
manufacturing cell status, and it is explained its achievement and its philosophy by a complete
flowchart.

1.Introduction and brief description

s s ot s e ode skt sl s e e ool e besde sk ool el sl el e ode st sbe o sl ol e ookl sl el ool ol be sl sk ode ool sl de ol e ode st oo sl ol e o skl mde s el ool e el she ot ol ok sl sie ot el el st e sl she sl sl skl el e

* MANUODFACTURING CELL MOMNITOR *
e o sl o sl o sl o e e e e o ol ool o sl o sl sl e e e e o ol ool o ol o sl e e e e e o ol o o o e o sl e e e e e o ol ol o o o sl o e e ol e o o o ol ol e e e e e e e ol e e e e sl e e e e
W W
* MACHIME®S STATUS *
£ —_— £
£ £
* KONDIA: WAITING FOR ROBGT | KUKA: LOADING | LEALDE: LOADING *
* EXECUTING ORDER:pd001ap07 | EXECUTING ORDER:pd001op04 | EXECUTING CRDER:pd001op04 *
W W
e e e o e o ol o e o ol e oo e oo e s e o e o oo o ol o e e ol e oo e oo e s e ol e o sl ol e e e e e e ol e ol e s e ol e ol e ol e e e e e e ol e ol e ol e ol e ol e ol e e e e e e e e oo sl sl e sl e ol e ol e ke sl s sl s ke s ke sk e e e e sl e o
* ACTUAL ORDER STATUS # L&ST ORDER PARAMETERS *
£ _— £ £
£ #* £
#* ORDER ID:...vueviennans pdd01op04 ORDER ID:w.eiiencrnenns pdO01op07 * CRDER ID:...uscieensss pd001opdt
* MAGCHIME'S MAME:.......... LEALDE MACHIME'S MAME:.......... KONDIA * MACHINE™S MAME:.......... LEALDE *
£ H £
* STATUS DESCRIPTION TIME(=) STATUS DESCRIPTION TIME(s) * STATUS DESCRIPTION TIME(=s) *
£ I £ £
* PROCESSING: 1] | PROCESSING:.........u.o.. 0 * 0 *
* WAITIMG FOR CONTAIMER:... 0 WAITING FOR COWTAIMER:... 3 # 1 #*
* WAITIMG FOR LOAD:........ 0 WAITING FOR LOAD:........ 3 # 0 #*
*OLOADIMG: . e e B LOADING: e e e e s # 10 *
#* MACHIMIMG: inioonts MACHINIMG: ..o ei e ot * 12 *
* WAITING FOR ROBOT:....... WAITING FOR ROBOT:....... # 0 *
* TURNIMG ARQUND:.......... | TURNING AROUMD:.......... * 25 *
* WAITIMG FOR CONTAIMER:... | WAITING FOR COMTAIMER:... * 0 *
#OUMLOADIMG: . e a s UM LOAD TG s s s e e v newnmn s # 10 #*
£ H £
e e e o e o ol o e o ol e oo e oo e s e o e o oo o ol o e e ol e oo e oo e s e ol e o sl ol e e e e e e ol e ol e s e ol e ol e ol e e e e e e ol e ol e ol e ol e ol e ol e e e e e e e e oo sl sl e sl e ol e ol e ke sl s sl s ke s ke sk e e e e sl e o
SYSTEM MESSACES: # COMMAND EDITOR: *
T, #* —_— £
Enter command number:
#* # 1-5TOP LEALDE #*
* # 2—=STOP KOMDIA *
* * 3-5TOP kEUkA *
* # 4-STOP CELL *
* * S-KILL CELL *
* * E—CELL OK *
#* # V-NEW/ALTER PASSWORD #*
b ki b
e s e e oo o s o ol ol e e ol e o e e ol sl e e e e ol e ol ol ol e o e e o ol o sl o sl ol e e e e o ol ool el e e o e o sl ol ol o e e ol e e e e sl ol sl e e e e ol sl ol ol ol e ol e e e ol o ol ol sl ol e e e e e ol el e e e e e e e sl e e ol

Figure 1 - Monitor appearance

The monitoring process of the manufacturing cell deals with the visualisation in real time of
the manufacturing orders evolution, which are running at the moment, as well as the current
state of the several machines (Kondia, Lealde and Kuka).

For each manufacturing order we can see the time spent in the last states, as well as the time
spent in the current state. In a moment, we can have a maximum of 2 orders (see figure 1).
When an order finishes, all the status times are added, and it is shown the total execution time.
At that moment, all the information about that order are transferred to a display zone called
“Last Order Parameters”, liberating the display zone that was occupied by that ended order.
Those information are the order’s identification, the machine associated with that order, the
time spent in the several states (processing, waiting for container, waiting for robot, loading,
machining, piece turning around, waiting for robot to make the unload or the turning around
operation, waiting for container to unload and unloading) and the total execution time.

Synchronised with the order’s evolution, it is possible to observe the machine’s status and
associate them with the orders. For instance (see figure 1): while a piece is being loaded in the
Lealde by the Kuka robot, we can see in the “Loading” state of an hipotetic order
“pd001op04”, the time running, and at the same time, observe that the Lealde’s state is
“Loading” and that the Kuka'’s state is also “Loading”, and observe on the bottom of these
messages “Executing Order: pd001op04”.

Simultaneously, it exists a display’s zone called “System Messages”, where are shown all the
error and warning messages, associated with possible manufacturing cell controller abnormal
situations, as file opening errors, MMS errors, password incorrect introducing, and so on. This
zone has the capacity to show the eight most recent messages.

Another feature of this monitoring process is the “Command Editor”, which makes possible to

send commands by the user to the main controller (in a mailbox), after the introduction of the
security password. This editor permits, for instance, stop a machine, stop the manufacturing
cell, make a setup or alter the security password.

When the user strikes any key, the monitoring process creates automatically a child process,
that begins by verifying if the command is valid. If it is not valid, it is generated a related error
message, and the child process Kkills itself. If it is valid, the user must insert a password. If it
doesn't exist any password selected, the user must insert one before the execution of any other
command, otherwise it is generated an error, and the child process kills itself. If the user takes
more than 20 seconds on entering the password, it is generated an error, and the child process
kills itself. After the introduction of the correct password, it is sent a message in a mailbox to
the main controller, except if the command is an introduction of the first password, or a
simply alteration of the current. The child kills itself in both situations.

While the child process of the command editor is executing its own tasks, the monitoring
process continues its job, altering its variables, which are a virtual image of the manufacturing
cell status. As soon as the child process finishes, the monitoring process refreshes all the
display.

If the child process doesn't exist, any alteration in the manufacturing cell can be observed in
the display, in real time.

2. Programmation strategiy used in the monitoring process

2.1 Messages types changed between main controller and monitoring processes
The messages sent by the main controller to the monitoring process may be grouped into three
classes, according to their semantics:

1. an order that is running on the manufacturing cell changed its actual status;

2. an system error or warning occurred (problem on opening a file, for example);

3. the manufacturing cell controller is going down.

The message is composed of a structure ofttymensagerrdeclared as follows:

typedef struct t_ mensagem{
int num1;
int num2;
int num3;
int label_erro;
char frasgbQ[;
}t_mensagem;

and a variablémtype” of typelong.
The resulting message is a structure of tyisgbufl
typedef struct msgbufl{
long mtype;
t_mensagem mensagem;
} msgbufl;

msgbufl buf;

The field“mtype” is used to distinguish the messages according to its semantics. So:

* mtype=FIM - the message’s class is 3;

* mtype!=FIM - the message’s class is either 1 or 2. In this case it's a message, |
corresponds to the normal mode of the controller status.

If mtype!=FIM the message may be of class 1 or 2:
» class 1: - The information is distributed by the structure buffer fields as bellow:
buf.mensagem.label_erro=0;
buf.mensagem.num2idmad;;
buf.mensagem.num3actual _status”

buf.mensagem.frasertordem”;

. class 2 : - The fielthuf.mensagem.label_eromntains a label, whose values are declared
in “visual.h” and identifies the system error, or warning that has occurred. All these lak
values differ from zero.

2.2 Monitoring process description

The monitoring process starts by initialisation the monitoring window, as shown in figure 1
(in the introduction).

After that, it jumps into a loop to receive the messages from the maitisix cp_monitor’
This loop is broken if a class 3 message is received, indicating that all the cell controller's
processes and mailbox will be destroyed.

In each loop, one attempt to read the mailbox will be made. If there was no message to be read
the process will just actualise the time of both actual order’s status, and print them in the
correct place of the screen. In order to execute this request, the function
visualiza_ordem(0,buf.mensagem.frase,buf.mensagem.numz2,buf.mensagemwilim3pe

called. If it was found a class 2 message in the mailbox, the function
processa_erros(buf.mensagem.label_emd) be called, in order to print a message in the
“SYSTEM MESSAGES” box of the screen. Finally, the functiomisualiza_ordem(1,
bufmensagem.frase,buf.mensagem.num2,buf.mensagemwilini®) called, if there was a

class 1 message.

The functionvisualiza_ordenuses, among other ones, the variables listed bellow:
typedef struct {
char idorderfs(];
int idmag;
int estado_actual;
unsigned long t_estadd®JM_ORD_ESTADQ;

unsigned long n_seg;

where:

} estr_estado;

typedef struct {

int estado_magq;
char idorderfb(];

} estr_magq;

estr_estado ord_buff&i;
estr_maq maq_bufffdUM_MAQ];

« NUM_ORD_ESTADO: - is the number of status of an order. For the present
implementation, this value is 12;

* NUM_MAQ: - is the number of machines available at the manufacturing cell.
In the present application, this value is 3.

2.3 Table of order’s status and times

The array of three positioread_buffercontains in positions 0 and 1 the information related
with the orders that are running in the cell, and in position 2 the information related with the
most recent order that has finished, according to the table in figure 2.

array | idordem idmaq estado_actual n_seg t _estadofd
index

0 pd0Oop2| LEALDE| MACHINING

1 pd0Oop3| KONDIA LOADING

2 pdOOopl| LEALDE| COMPLETE

Figure 2 - The “ord_buffer” array

Meaning of the several structure fields:

idordem: - identifier of the order;

idmagq: - the machine related with the manufacturing order;

estado_actual: - actual status of the order;

° n_seq: - stores the moment (specified by the system funath@g0)) in which
the time associated with the staestado_actualvas incremented most recently.
This variable is used to decide if one second has elapsed since the last turn, in
which the time was displayed for the actual order status. In affirmative case, the
time shown is actualised on the screen;

* t_estadol: - stores the time that the order spent in each state. If there is a state by
which the order didn't pass, the related field on the array will be filled with the
value -1;

t estado]- time elapsed while the order was in state
PROCESSING;

t estadodl]- time elapsed while the order was in state
WAITING FOR CONTAINER,;

t estadogNUM_ORD_ESTADO-]- time elapsed while the order was
in state UNLOADING;

2.4 Table of machine’s status and related orders

The arraymaq_buffer(see figure 3) stores the machine’s status (idle / occupied) for each
machine in the manufacturing cell, as well as the associated order identifier.

Machine | estado_mag idordem
KONDIA dle | ...

LEALDE occupied pd00opl
KUKA occupied pd00opl1

Figure 3 - The “maqg_buffer” array

2.5 Function “visualiza_ordem”

This function (and some other ones called inside) is used to update the information contained
in the previous two tables, to display the machine’s status and order’s status times in the
screen and to produce the desired result discussed in the introduction point.

2.6 Command editor process

When the command editor process is created, and as well as it exists, the controller evolution
cannot be seen in the screen, because the cursor cannot be at two different positions on the
window. In this case, the evolution is only registered in the tables shown in figures 2 and 3.

When, finally, the process is killed, the screen will be actualised with the information
contained in the tables.

To implement the mechanism that avoids the cursor motion by the two concurrent processes
at the same time, the follow strategy was taken:

* Two semaphores were created at the beginning of the monitoring process:
semaphore 0 and semaphore 1.

Semaphore 0Ois used to control the access to the screen for write operations.
Its status, according to the circumstances, is the following:

Marked: - when the command editor process does not exist, or an
instruction to write in the screen is not reached;

Mark removed: - when the user strikes a key or the program reaches an
instruction to write in the screen;

Mark attributed: - when the command editor process is killed or the
write instruction ends;

Semaphore 1s used to “tell” the monitoring process that the child process was
killed and the screen must be refreshed with the actual information, using
functionactualiza_ecranBy default, this semaphore is not marked. The mark
will be put back when the command editor process is killed, and will be
removed when the functiomttualiza_ecran’finishes.

3. Monitoring process flowchart

START

Window
inicialization
attempt to
read a key
any
‘ FATHER PROCESS key read? |
No Yes
v v
attempt to read a creates child
message from the process
mailbox (command editor)
CHILD PROCES
any
message \
read 2 ves
No 1 message 3
change in class ? end of
status order controller
call call call delete
visualiza_ordem visualiza_ordem processa_erros window
(0:no_transition) (1:transition) (label_erro)
delete
semaphores
END

(child process)

It Ocupies the semaphore 0

It generates the error

message:"invalid
command"

«——No

Is the key valid?

Yes

It generates the error

message:"lt must be
defined a password"

Does exist any
passw. defined?

<«——No

Yes
v

It reads the user password from the
keyboard (user_passw)

It reads the valid password from a
security file (valid_passw)

Yes
v

Password
introduction by the
user

Is it the actual
password ?

No

i No
v

It generates the error
message:"The
password is invalid"

<—No

user_passw=valid_passw

New/Alter Passw.

Is a password

Stop Kondia
Stop Leald

Yes

Introduced comman

already defined?

"Stop Kondia"
message sendin

"Stop Lealde"

g |message sending”

"Cell OK"
message
sending

No

v v

Yes

It Reads a new

password

l

The user retypes
the new passw.

.

Does the two

The semaphores

0 and 1 are liberated

Child process end

passw. match?

Yes

v

The passw. securit
file is created or
altered

L

<

4 - Conclusions

With the previous monitoring strategy, it is possible to display in “on-line” the most relevant

activities occurring in the cell. Since all the orders are registered in a text file, the activities
may also be checked later.

Data related with the time of execution of an order may be used to create statistics about the
global performance of the cell.

