
On 3D Simulators for Multi-Robot Systems in ROS:
MORSE or Gazebo?

Farzan M. Noori, David Portugal, Rui P. Rocha, and Micael S. Couceiro

Abstract—Realistically simulating a population of robots has
been an important subject to the robotics community for the
last couple of decades. Multi-robot systems are often challenging
to deploy in the real world due to the complexity involved, and
researchers often develop and validate coordination mechanisms
and collaborative robotic behavior preliminarily in simulations.
Thus, choosing a useful, flexible and realistic simulator becomes
an important task. In this paper, we overview several 3D multi-
robot simulators, focusing on those that support the Robot
Operating System (ROS). We also provide a comparative analysis,
discussing two popular open-source 3D simulators compatible
with ROS – MORSE and Gazebo –, using a multi-robot patrolling
application, i.e. a distributed security task, as a case study.

I. INTRODUCTION

Research in multi-robot systems has been growing consis-
tently since the eighties [1]. However, one common issue per-
sists to the present day: setting up experiments with multiple
robots, especially large populations, is usually a daunting and
time-consuming task. For the ease of researchers, different
simulators have been developed.

Robotics simulators play an essential part in research as
tools for testing safety, efficiency, new concepts, and ro-
bustness of algorithms. Moreover, code portability from a
simulated to a real platform is another desirable feature in
most modern robotics software tools to ensure that the system
can be connected to the real robots, with little to no changes
required. Due to these needs, a developing number of open-
source and commercial simulation toolkits have been outlined.
A workshop held in ICRA 2009 [2] has raised the awareness
for the robotics community to take interest in the need of open-
source middleware and software for programming and simu-
lating robots. A comprehensive survey of robotic simulators
based on the feedback provided by the researchers was carried
out in 2013 [12]. More recently, in March 2017, a cofounder
of Elre Robotics, one of the many companies devoted to create
both hardware and software to support robotics development,
wrote an article in Hackernoon highlighting the importance of
robotic simulators, such as the Player project (formerly known

This work was supported by the Seguranças robóTicos coOPerativos
(STOP) research project (ref. CENTRO-01-0247-FEDER-017562), co-funded
by the “Agência Nacional de Inovação” within the Portugal2020 programme,
and by the Institute of Systems and Robotics (ISR) – University of Coimbra
(project ref. UID/EEA/00048/2013) funded by the “Fundação para a Ciência
e a Tecnologia” (FCT).

Farzan M. Noori, Rui P. Rocha (corresponding author) and M. S.
Couceiro are with ISR – University of Coimbra, Portugal. E-mail:
{farzan,rprocha,micaelcouceiro} at isr.uc.pt

D. Portugal and M. S. Couceiro are with Ingeniarius Ltd., Portugal. E-mail:
{davidbsp,micael} at ingeniarius.pt

as the Player/Stage project [6]) and the Gazebo simulator1.
The same article enumerates several drawbacks that have
significantly slowed down the industrialization of robotics over
the past decade, such as the use of proprietary frameworks and
the lack of portability and standardized interfaces.

This paper overviews 3D simulators for multi-robot systems,
focusing on those that support Robot Operating System (ROS)
[3]. Additionally, two widely used simulators – MORSE
[4] and Gazebo [5] – are subject to both qualitative and
quantitative comparison, using a multi-robot patrolling task
[11] as a benchmark. The multi-robot patrolling task is one
of the main approaches explored in the ongoing STOP R&D
project2, which aims at deploying a commercial security
system of distributed and cooperative robots by 2020. In spite
of the targeted ground-breaking real-world application, the
team, comprising both public and private entities, has been
benchmarking existing realistic simulators as powerful tools
for saving development time and money, as well as to mitigate
common mistakes made during the design of multi-robot
systems. The benchmark comprises multiple features, such as
portability and CPU usage, so that forthcoming researchers
may assess the most adequate 3D ROS-compatible simulator,
according to the requirements of their applications.

The paper is organized as follows: Section II presents the
importance of ROS and surveys available robotics simulators.
In Section III, both simulations and hybrid experiments (real
robot together with simulated robots) are described, compar-
ing the MORSE and Gazebo simulators under a multi-robot
patrolling task. Section IV presents and discusses results based
on the comparison. The paper is concluded in Section V.

II. RELATED WORK

After introducing the Robot Operating System (ROS), this
section reviews available ROS-compatible robotics simulators.

A. ROS Middleware

ROS [3] is an open-source robotics middleware that pro-
vides low-level device control, package management and mes-
sages passing between processes. ROS is based on services,
topics, messages and nodes, wherein nodes can communicate
through messages, topics are published and subscribed by
nodes, and services are a special type of pairs of messages (one
for the request and another for the reply). The ROS Master
is one of the key elements of ROS, which allows to monitor
all topics and services; it facilitates node registration, and a

1https://hackernoon.com/envisioning-the-future-of-robotics-bf529f760b45
2http://www.stop.ingeniarius.pt/

2017 IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR)
Shanghai, China, October 11-13, 2017

978-1-5386-3922-1/17/$31.00 ©2017 IEEE 19

parameter server which permits nodes to store and retrieve
parameters. The ROS master tools and server are configured
with XML files.

ROS fully supports two client libraries/languages: Python
(rospy), and C++ (roscpp) [3]. Each library utilizes and pro-
vides arrangement of ROS tools to facilitate the development
of new clients in ROS. The client libraries are sorted out as
organized software modules called packages3. These packages
contain a ROS-independent library and nodes, third-party
software, configuration files, and/or other useful modules.

ROS is preferred due to its platform interoperability, mod-
ularity, and concurrent resource handling. Moreover, the inte-
gration of simulators with ROS allows to evaluate the many
state-of-the-art useful robotics algorithms made available by
the ROS community, while providing debugging tools, such
as the powerful built-in visualization tool (rviz) which allows
to “see the world through the robots’ eyes”.

B. Robotics Simulators

This section surveys relevant robotics simulators having in
common: i) the capability to simulate multiple (possibly many)
robots; and; ii) some degree of compatibility with ROS.

Starting with 2D simulators, the Simple Two-Dimensional
Robot Simulator (STDR)4 is one of the simplest multi-robot
simulators, which does not require any dependencies for instal-
lation. STDR is totally ROS submissive: the measurements of
every sensor or robot actions are published in appropriate ROS
topics. Similarly, Stage [6] is a C++ software library that can
simulate large populations of robots in 2D. Stage is a robotics
toolkit based on the publish/subscribe paradigm from which
ROS [3] was developed later on. Nowadays Stage is made
available for ROS through the stage package, which wraps
the Stage multi-robot simulator.

As for 3D simulators, the Virtual Robot Experimentation
Platform (V-REP) is a general purpose robotic simulator
developed by Coppelia Robotics5. The software is commercial
but users can access its educational free version. V-REP is
based on a distributed control architecture: each model/object
can be individually controlled via a remote API, an embedded
script, a ROS node, a plugin, or a custom solution. V-REP
has a friendly interface running in Linux, Windows and Mac
platforms. Programs can be written in Python, Lua, C/C++,
Matlab, Urbi, Octave or Java.

Gazebo [5] began as a venture in the University of Southern
California. Later on, John Hsu (ROS maintainer) integrated
it with the ROS framework. From then, the Open Source
Robotics Foundation (OSRF) has maintained Gazebo along
with ROS. It relies on Open Dynamics Engine (ODE) and
Object-Oriented Graphics Rendering Engine (OGRE) to pro-
vide 3D robots/environments. To achieve a high degree of
realism in simulations, the simulated objects have friction,
mass, and various attributes. Multiple shapes can be assembled
along with different joints to make a simulated robot. Thus,

3http://wiki.ros.org/gazebo ros pkgs
4http://stdr-simulator-ros-pkg.github.io/
5http://www.coppeliarobotics.com/

the end user can build and simulate diverse robotic platforms.
Gazebo is available for Linux and Mac OSX platforms.

The Modular Open Robots Simulation Engine (MORSE)
[4] simulator was created in 2009 at LAAS-CNRS in France,
and has now more than 20 academic environment contributors.
MORSE is based on the open-source project Blender6, a
3D game engine that comes with the bullet physics engine
integrated. MORSE operates from a command line and it is
purely a Python application. Blender supports almost any 3D
model, so any model can be imported into MORSE.

Webots [7] is a commercially available software package
used to simulate, model and program mobile robots in a 3D
simulation environment. The ODE library is used to simulate
rigid body dynamics and provides attributes, such as mass,
shape, texture, and shape. Webots supports Linux, Windows
and MAC OS platforms. Different programming languages,
like Java, C++, C, Python, and MATLAB, can be used to build
simulations, which can also be implemented in some robot
platforms, including Pioneer, iRobot, e-puck, NAO and Lego
Mindstorm robots. It is also compatible with different sensors
used in robots, such as light sensors, proximity sensors, GPS,
touch sensors, lasers, and accelerometers. Webots can also
connect to ROS using roscpp and rospy controller interfaces.

The Unified System for Automation and Robot Simulation
(USARSim) [8] is a 3D simulator based on the Unreal Tourna-
ment (UT) game engine. USARSim was developed to simulate
multiple robots in search and rescue environments and it has
been adopted in RoboCup rescue competitions. It interfaces
seamlessly with the Mobility Open Architecture Simulation
and Tools framework (MOAST), which provides a fully func-
tional modular control system. It supports sound sensors, touch
sensors, lasers, odometry, and cameras. USARSim is available
for Windows, MAC OS, and Linux platforms.

In 2016, a multi-UAV simulator based on ROS and Unity3D
was presented [9]. The interface between ROS and the UAVs
is based on the TCP/IP protocol. A particular emphasis was
given in modeling the environments and sensors, especially
collisions and LIDARs, as real as possible and at high fre-
quency. Different environment modeling, such as buildings,
terrains, trees, etc., were introduced in the initial version.

A summary of the main features of the aforementioned
simulators is presented in Table I. It also grades the support
relating to graphical user interface, tutorials, and the mailing
list of the simulators. Gazebo is undoubtedly the most used 3D
ROS-compatible simulator, while MORSE provides a flexible
interface at variable levels of abstraction and ease of program-
ming. V-REP stays close to MORSE in the comparison table,
but we preferred to focus our study in two fully open-source
projects: MORSE [4] and Gazebo [5]. In the following sections
of this paper, an in-depth comparison of these two simulators
is carried out. ROS [3] was used along with them to allow
easily migrating code between simulators, and from simulated
to real robots.

20

TABLE I: Characteristics of different robotics simulators.

V-REP Gazebo MORSE Webots USARSim STDR/Stage Unity
Main Program. Language C++ C++ Python C++ C++ C++ C++
Operating System Mac, Linux Mac, Linux BSD, Mac, Linux Linux, Mac Linux Linux Linux
Simulation Type 3D 3D 3D 3D 3D 2D 3D
Physics Engine ODE, Bullet, Vortex, Newton ODE, Bullet, Dart Bullet ODE Unreal OpenGL Unity 3D
3D Rendering Engine Internal, External OGRE Blender game OGRE Karma - OGRE
Portability Yes Yes Yes Yes Yes Yes Yes
Support **** ***** **** **** *** **** **
ROS Compatibility **** ***** **** *** ** **** *

(a) MORSE simulation (top view). (b) MORSE simulation (isometric view).

(c) Gazebo simulation (top view). (d) Gazebo simulation (isometric view).

Fig. 1: Simulation environments in MORSE (a, b) and Gazebo (c, d) simulators.

III. A MULTI-ROBOT PATROLLING CASE STUDY

To compare MORSE [4] and Gazebo [3], similar experi-
ments were performed on both simulators. Initially, a single
robot was used in the environment and more robots were
added progressively. The case study used requires multiple
robots cooperatively patrolling the whole environment with
proper coordination and without collisions. The robot team
uses the Concurrent Bayesian Learning Strategy (CBLS) for
multi-robot patrolling and coordination [11], which is based
on probabilistic reasoning for collective inspection, and dis-
tributed communication via lightweight messages. ROS [3] is
used to program the behavior of robots, and MORSE [4] and
Gazebo [5] are used to simulate dynamics and physics as if
we were in the real world. All robots are equipped with a
LIDAR and a depth camera. At the start of the simulations,

6http://www.blender.org/

all robots are sent to specific points (set previously) and then
the collective patrolling task can start.

The experiments were carried out on both simulators, thus
allowing for a comparison between their features. MORSE
1.4 and Gazebo 5.0 were used with the Ubuntu 14.04.4
operating system and ROS Jade. Fig. 1 depicts the simulation
environments of both MORSE and Gazebo for a single robot.
Fig. 1a and Fig. 1b show the top and isometric views in
MORSE, whereas Fig. 1c and Fig. 1d show the top and
isometric views of the environment in Gazebo. Fig. 2 depicts
the rqt graph and shows all the ROS nodes and topics running
in a MORSE simulation. The only difference to Gazebo would
be the replacement of the MORSE node with a Gazebo
node, on the left-hand side of the picture. Each robot runs
navigation, localization, and sensor nodes (in ROS) which
consume significant CPU power.

21

Fig. 2: Graph of ROS nodes and topics for the MORSE simulator.

The following criteria were used to evaluate and compare
the two simulators for different team sizes:

i. The real-time factor allowed by the simulator;
ii. GPU load required by the simulator;
iii. CPU load required by the simulator.

As for criterion (i), the real-time ratio can be computed
through Eq. (1). If this ratio equals to 1.0, it means that the
simulation is running exactly at the same pace as it would in
a real-world scenario.

Real time factor =
Simulation time

Real time
(1)

Furthermore, to cross-validate the results, hybrid experi-
ments were also performed. In these hybrid experiments, two
robots were simulated on a computer, while a third robot
– the real robot depicted in Fig. 3 – patrolled in the real
world environment. In this experiment, the multimaster fkie
package7 was used for communication between the different
ROS systems. A long corridor with a 55 m length located in
an office area in the building of CTCV, a partner in the STOP
R&D project having the role of an end user, was used for both
the simulation and hybrid experiments.

IV. RESULTS AND DISCUSSION

For the benchmark, a total of twenty trials were performed
on each simulator for each configuration. In each trial, the
robots had to cover the whole environment at least three times.
Below is the evaluation based on the set criteria.

In the case of a single robot, the real-time ratio was 1.0
for MORSE and 0.9 for Gazebo. By adding more robots in
the simulated environments, the ratio decreased as simulations

7http://wiki.ros.org/multimaster fkie

Fig. 3: Robot patrolling in the real world.

ran slower. MORSE’s ratio also decreased with the increase of
the team size but it performed slightly better than Gazebo as
shown in Fig. 4. Afterwards, we added more robots to acquire
the maximum number at which the simulator would be able to
run with a ratio greater than 0.2. With 6 robots, the simulation
time on Gazebo was 5 times slower than the real time, while
MORSE had a ratio greater than 0.3, which shows the time
efficiency of MORSE over Gazebo for larger team sizes.

The laptop used for the simulations is a ThinkPad
Lenovo with 8GB RAM memory and a Intel Core i7-6500
CPU@2.5GHz. The laptop has a AMD Radeon (TM) R7
M370 graphics card, which was also used to analyze the
performance of the simulators. It can be seen clearly in Fig. 5
that Gazebo presents a higher GPU load than MORSE. The
variability of the GPU load of both simulators increases with

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

R
e
a
l
T

im
e
 F

a
c
to

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

R
e
a
l
T

im
e
 F

a
c
to

r

Fig. 4: Real-time ratio for different team sizes: MORSE simulator (left) and Gazebo simulator (right).

the team size. Which (either CPU or GPU) bottleneck hits
first depends on the specific game engine or an application. In
the case of Gazebo, for a single robot, GPU consumes more
load than CPU. Adding more robots into the environment, the
GPU alone was not able to handle the required computation,
therefore some load was also transfered to the CPU.

We also analyzed the total CPU load of all processes, mea-
sured between 0.0 and 1.0 (0% and 100%). Gazebo presented
a CPU load equal to 0.61 +− 0.08 for a single robot. As the
maximum load was covered by the GPU (0.87 +− 0.09), the
simulator presented a low CPU load. In the case of MORSE,
both presented a fairly low load i.e. 0.73+− 0.10 for GPU and
0.47+− 0.07 for CPU. With the increase of teamsize, the CPU
load also increased. With 6 robots, the CPU load for Gazebo
was 0.75+−0.05 and 0.77+−0.01 for MORSE. The complete set
of results is depicted in Fig. 6. The load distribution between
CPU and GPU depends on the type of application. Overall, the
performance of the MORSE simulator was better than Gazebo
in the multi-robot patrolling simulation experiments.

In order to validate that MORSE is statistically discriminant,
we applied the Student’s t-test. The p value obtained using
MORSE versus Gazebo was 0.0097 (less than 0.01) for 3-
robots simulations, thus establishing the statistical significance
of MORSE simulator. Furthermore, we increased the number
of robots to perform a stress test to assess the criteria analyzed
in an extreme situation for each simulator. Gazebo almost
stalled when simulating a total of 10 robots. The real-time
factor was 0.05 for Gazebo and 0.14 for MORSE, and p values
were less than 1.0E-5. MORSE almost stalled when simulating
a total of 15 robots, having a real-time factor equal to 0.06
in this experiment. Fig. 7 shows a simulation being run in
Gazebo with 10 robots, as seen in rviz.

For cross-validation of results, a hybrid experiment was
also conducted. Two robots were configured to patrol in the
simulator while another robot (see Fig. 3) was moving in
the real world. Using MORSE, the task (i.e. patrolling the
whole environment at least three times) was completed in 5.8
minutes, whereas Gazebo took 13.5 minutes. Furthermore, the
CPU load was 0.95 with Gazebo, whereas it was 0.75 with

MORSE. The portability of the code between simulated and
real robots was good for both simulators. The code written
for the simulation environment was easily ported to the real
robotic platform and the latter could interact seamlessly with
simulated robots as if robots were either all virtual or all real.

Several previous studies have simulated multi-robot sys-
tems. In [10], the authors proposed a simulation-based com-
munication system for a cooperative driving system. MORSE
along with the NS-3 network simulator was used for better
functionality, which shows that MORSE is an emerging sim-
ulator, and it is becoming more popular in the community for
multi-robot simulations.

The ROS official repository for Gazebo is maintained by the
OSRF. The package contains plugins for the interface between
ROS and Gazebo. In the simulator scene, these plugins can
be attached to the models and provide handy ROS topics
and services. On the other hand, MORSE offers packages
that can be used for creating ROS subscribers and publishers.
The packages python3-dev, python3-yaml, python3-setuptools,
python3-rospkg, and python3-catkin-tools must be installed
to connect ROS with MORSE. The main disadvantage of
Gazebo in comparison with MORSE is its higher CPU load
for larger team sizes. The main programming language for
Gazebo is C++ and MORSE strictly requires the use of Python.
Gazebo has a total of 190.k documented lines of code while
MORSE has just 31.k lines of code. Gazebo uses OGRE
for 3D rendering, while MORSE relies on the Blender game
engine.

V. CONCLUSION AND FUTURE WORK

In this study, we compared in detail two fully open-source
3D simulators for multi-robot systems: MORSE and Gazebo.
The Robot Operating System (ROS) was used as a middleware
for both simulators. The quantitative analysis focused on CPU
and GPU consumption. MORSE and Gazebo almost stalled
for a total number of 15 and 10 robots, respectively. Overall,
MORSE performed better than Gazebo in the tests conducted.
The results represent a step forward in the ongoing efforts
within multi-robot systems’ simulations. In future work, we
will extend our multi-robot patrolling system with advanced

23

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

G
P

U
 L

o
a

d

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

G
P

U
 L

o
a

d

Fig. 5: GPU load required by the simulators for different team sizes: MORSE simulator (left) and Gazebo simulator (right).

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

C
P

U
 L

o
a

d

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 6

 Robots

C
P

U
 L

o
a

d

Fig. 6: CPU load required by the simulators for different team sizes: MORSE simulator (left) and Gazebo simulator (right).

Fig. 7: Visualization of 10 robots patrolling the environment in rviz.

artificial perception capabilities for detecting the presence of
unauthorized people and other abnormal security situations.

REFERENCES

[1] E. Freund. “On the design of multi-robot systems”. In Proc. of IEEE
Int. Conf. on Robotics and Automation, vol. 1, pp. 477-490, 1984.

[2] H. Hirukawa and A. Knoll. “Workshop on open source software in
robotics”. In Proc. of IEEE Int. Conf. on Robotics & Automation, 2009.

[3] M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A.Y. Ng. “ROS: an open-source robot operating system”.
In Prof. of IEEE Int. Conf. on Robotics and Automation Workshop on
Open Source Software in Robotics, 2009.

[4] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. “Modular
open robots simulation engine: MORSE”. In Proc. of IEEE Int. Conf.
on Robotics and Automation, pp. 46-51, 2011.

[5] N. Koenig and A. Howard. “Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator”. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, vol 3, pp 2149-2154, 2004.

[6] R. Vaughan. “Massively multi-robot simulation in Stage”. Swarm Intel-
ligence, vol. 2(2), pp. 189-208, 2008.

[7] O. Michel. “Webots: Symbiosis between virtual and real mobile robots”.
In Proc. of Int. Conf. on Virtual Worlds, pp. 254-263, 1998.

[8] S. Carpin, M. Lewis, J. Wang, S. Balakirsky and C. Scrapper. “USAR-
Sim: a robot simulator for research and education”. In Proc. of IEEE
Int. Conf. on Robotics Automation, pp. 1400-1405, 2007.

[9] Y. Hu, and W. Meng. “ROSUnitySim: Development and experimentation
of a real-time simulator for multi-UAV local planning”. Simulation, vol.
92(10), pp. 931-944, 2016.

[10] A. E. Gomez, T. C. dos Santos, C. Massera Filho, D. Gomes, J. C.
Perafan, and D. F. Wolf. “Simulation platform for cooperative vehicle
systems”. In Proc. of IEEE 17th Int. Conf. on Intelligent Transportation
Systems, pp. 1347-1352, 2014.

[11] D. Portugal, and R. P. Rocha. “Cooperative multi-robot patrol with
Bayesian learning”. Autonomous Robots, vol. 40(5), pp. 929-953, 2016.

[12] S. Ivaldi, J. Peters, V. Padois, and F. Nori. “Tools for simulating
humanoid robot dynamics: A survey based on user feedback”. In Proc.
of 14th IEEE-RAS Int. Conf. on Humanoids, pp. 842-849, 2014.

24

