
A Study of Genetic Algorithms for Approximating
the Longest Path in Generic Graphs

David Portugal
Instituto de Sistemas e Robótica

Dept. of Electrical and Comp. Eng.
University of Coimbra

3030-290 Coimbra, Portugal
davidbsp@isr.uc.pt

Carlos Henggeler Antunes
INESC Coimbra

Dept. of Electrical and Comp. Eng.
University of Coimbra

3030-290 Coimbra, Portugal
ch@deec.uc.pt

Rui Rocha
Instituto de Sistemas e Robótica

Dept. of Electrical and Comp. Eng.
University of Coimbra

3030-290 Coimbra, Portugal
rprocha@isr.uc.pt

Abstract—Finding the longest simple path in a generic undi-
rected graph is a challenging issue that belongs to the NP-
Complete class of problems. Four approaches based on genetic
algorithms to solve this problem are presented in this article.
The first three algorithms proposed use crossover mechanisms
between pairs of solutions based on their intersecting regions and
the fourth one uses a mutation mechanism on individual solutions,
in which the perturbation applied depends on the state of the
system. Simulation experiments have been carried out to validate
the distinct approaches, which reveal their good performance and
provide hints for their application in robotics, packet networks
and other fields.

Index Terms—Genetic Algorithms, Graph Theory, Longest
Path Problem

I. INTRODUCTION

A. The Longest Path Problem (LPP)

In this paper, we address the problem of finding the longest
path in a generic undirected graph G=(V, E). V is the set of n
vertices and E is the set of m edges. The goal is to find for all u,
v ∈ V, the longest path from u to v, using weighted edges. We
consider simple paths, which do not have any repeated edges
or vertices. This problem belongs to the NP-Complete class
of problems, as it is a generalization of the Hamiltonian path
problem and cannot be solved in polynomial time unless P=NP.
For this reason, the solutions proposed are normally based on
heuristics. The main objective of this work is to analyze and
validate distinct approaches to solve this problem using genetic
algorithms.

A vast work in graph theory is already presented in the
literature. In this paragraph, work concerning the longest path
problem (LPP) and related issues is reviewed. Karger et al. [1]
presented several polynomial-time approximation algorithms
for the LPP in unweighted undirected graphs, with limited per-
formance. Hardness results are provided to justify the difficulty
of obtaining better performance guarantees for the longest path
approximations and, in general, for NP-complete problems.
Additionally, a polynomial time approximation algorithm for
the LPP is presented in [2]. The method finds paths that have
a length greater than polylogarithmic. The main idea of the
algorithm is to add edges vx and vy to a 2 degree vertex
v. By letting x and y vary, one can approximate the longest
path and similarly the longest cycle in an undirected graph.

More recently, an approximate and simplified search algorithm
for the longest path in a graph was described in [3]. This
was used for planning robot’s patrolling trajectories based on
a topological graph-like representation. The algorithm is fast
and always returns, at least, a sub-optimal solution. Monien
[4] worked on finding arbitrary long paths with fixed length
k, which is a problem closely related to the LPP, and proved
that they can be found in O(k!nm) time, if they exist. Also,
[5] described a construction algorithm for cycles or paths
with length≤k, which uses O(n) time, based on a depth first
search approach, improving Monien’s bounds. Furthermore, a
randomized method for finding paths of a specified length k
in generic graphs, which improved the worst-case bound of
Bodlaender [5] in undirected graphs, was described in [6]. This
method was called color-coding. It detects, in polynomial time,
whether a path of length log(n) exists. Despite the NP nature
of the general problem, conclusions have already been drawn
from studying particular cases; moreover, polynomial solutions
are known for specific classes of graphs. For example, for di-
rected acyclic graphs (DAGs) the problem is solvable in linear
time by negating the edge weights and running a shortest-
path algorithm like Bellman-Ford. Other different algorithms
for DAGs have also been presented in [7] and [8], the latter
one being applied for studies with gene pairs in large genetic
networks. Uehara and Uno [9] showed that the LPP can be
solved in polynomial time for (vertex/edge) weighted tree-like
graphs and discussed the complexity of the problem for other
types of graphs. Following this work, an algorithm in [10]
that solves the LPP in polynomial time for interval graphs was
presented. Finally, [11] studies longest paths in combinational
circuits containing cycles.

B. Genetic Algorithms (GAs)

In recent years, genetic algorithms (GAs) have become very
popular for solving complex optimization and search problems.
GAs are evolutionary computing approaches, inspired in Dar-
win’s theory about evolution and survival of the fittest. GAs
are adaptive global search heuristic methods designed to find
exact or approximate solutions by using inheritance, mutation,
crossover and selection mechanisms with individuals, in order
to form new and enhanced generations and converge to optimal

978-1-4244-6587-3/10/$25.00 É2010 IEEE

2539

solution(s).
Genetic approaches have been studied in many scientific

fields and are commonly recognized for their performance.
As a consequence, applications on graph theory problems
have emerged in recent years. Wong et al. [12] described
the GAroute, a query routing function in a Peer-to-Peer
Network, which returns a list of routing paths that cover as
many relevant peers as possible. This is equivalent to the
LPP in a directed graph and the authors use GAs to obtain
approximate solutions in polynomial time. Also working with
network datasets, [13] uses an evolutionary approach together
with graph-based computation to discover routes with specific
functional characteristics in a network. Furthermore, [14] deals
with path selection from a known sender to the receiver aiming
to maximize bandwidth along the forward channels while
minimizing the route length. The authors compare a GA with
a simulated annealing approach and conclude that the first one
shows better convergence. Also, [15] uses GAs for path dis-
covery in cognitive packet networks, by combining paths that
were previously discovered to create new valid paths, which
are selected based on their fitness. In [16], the problem of
vehicle route selection to a given destination, on an actual map
under a static and constrained environment, is addressed and
a customized solution based on a GA is proposed. In the area
of robotics, Solano and Jones [17] studied the generation of
minimum distance paths for a mobile robot in an environment
with a set of obstacles. The optimization of these paths is
done by means of a genetic approach, which considers obstacle
avoidance. In a similar work, [18] applies a GA path planner
that optimizes and reduces the time for task completion of
a set of three mobile robots that visit user-defined waypoints
while not colliding to obstacles. Finally, another application
on a classic graph theory problem is proposed in [19], which
studies a genetic approach for partitioning graphs.

The next section states the problem that is addressed in
this paper and the subsequent section describes the proposed
algorithms. The results are then presented and discussed. The
article ends with conclusions and future work.

II. DEFINING THE PROBLEM

It is not the objective of this article to describe a method
to improve the bounds of the current existing algorithms for
the LPP and demonstrate theoretical concepts to guarantee
the detection of the optimal solution. Instead, the interest is
focused on validating, by simulation, practical and reasonable
fast approaches that offer high quality solutions and can
be used in applications, which may admit sporadically sub-
optimal solutions and where computational time is important.
The initial motivation for developing this work was the same
as in [3]: finding long paths in topological graph-like maps,
which usually do not contain Euler or Hamilton paths, to
be used as a reference for patrolling an environment with
multiple robots. The longest path does not typically visit all
vertices of the graph. However, a post-processing phase can
be done to compute detours for visiting unattended places
to solve the patrolling problem. As seen on the previous

section, other applications beyond multi-robot path planning
may benefit from tackling the LPP and related problems, like
routing in packet networks, route planning for vehicles using
GPS, measuring circuit’s performance and others.

As it was stated before, we will be using weighted edges
which typically represent the distance/length between two
vertices in the context of topological navigation maps. Nev-
ertheless, the proposed approaches may also be used with
unweighted edges, by imposing the same cost for all edges. In
this particular case of the problem, the longest path(s) will be
the one(s) with the greatest number of hops in the graph.

Genetic approaches have the ability to collect and appre-
hend important knowledge about the search space during its
process and adapt future iterations according to previously
obtained information through random optimization techniques.
By taking the inherent knowledge within the search space
into account, it is more likely to obtain the global optimal
solution using a GA instead of a traditional search algorithm.
The first three approaches proposed are based on crossover
mechanisms, in which two parents create a set of offspring
that share their genetic material. The last approach is based
on a mutation operator, in which each individual creates two
offspring by perturbation of their genetic material in places
specified according to the overall state of the system.

There are a number of common features in all algorithms.
Each generated path is a legitimate solution and is represented
as an ordered array of vertices with variable length. The
choice of individuals for the next generation is done by means
of a roulette wheel selection between parents and offspring
based on a path cost fitness function. Also, explicit elitism is
performed by choosing a small fraction of the best solutions
to automatically carry on for the next generation. The stop
condition for the algorithms relies on the stagnancy of the
fittest solutions found during the search process. In the next
section, the generation of the initial population is explained
and the algorithms are presented.

III. THE ALGORITHMS

All the proposed algorithms accept, as input, the population
size (p) and the elitism fraction, and the output is (are) the best
obtained solution(s).

A. Generating initial solutions

One can achieve better results and faster convergence by
choosing an efficient method for generating initial solutions, in
the context of the LPP using GAs. Since most of the algorithms
herein analyzed strongly rely on the genetic material of the
initial solution population, it is important to guarantee initial
solutions with good quality; in this case, this corresponds to
long and diverse initial paths. Initially, a random method was
considered. It started by selecting a random vertex of the graph
and computing paths by choosing neighbors of the current
vertex at random, as long as they were not already included
in the path. It finished computing the path when there were
no available neighbors left. This proved to be an inefficient
method, since most of the paths computed would be very short,

2540

Fig. 1. An illustrative example of two disconnected paths.

mostly because degree one vertices, i.e. vertices with only
one neighbor would be selected rather rapidly. To overcome
this fact, a new method was developed. The first vertex is
still selected at random. However, the following vertices are
selected with a probability according to their degree. For
example, if two neighbors of a given vertex have degrees
3 and 1, the first one would be selected with a probability
of 0.75 and the second one with 0.25. In addition, if we
have reached a vertex with unavailable neighbors, instead of
stopping the method, we analyze whether the degree of the
first vertex is greater than one and keep computing the path to
the opposite direction until reaching a finishing point. This
technique presented much better results in terms of initial
generated paths than the first one and was used for producing
the initial solution population throughout the rest of the work.
Since we are dealing with undirected graphs, we consider
the path A-B-C equivalent to C-B-A and we ensure that no
identical solutions coexist in the solution population.

B. Algorithm 1: GA using non-intersecting paths (GANP)

The first algorithm generates new offspring based on parents
with no common vertices. Assuming that we have the initial
solution population, a search takes place to find pairs of non-
intersecting paths (that do not have common vertices). When
a pair of disconnected paths is found, we search for an edge
that connects both paths, by running through the vertices of a
path and checking if any of them connects to the other path’s
vertices using a single edge not included in any of the paths.
Constraining to a single edge connection between both paths,
not only drastically decreases the computational time, but it
also proves to be efficient, as it will be seen in the results sec-
tion. Figure 1 illustrates an example of two disconnected paths:
[1-2-6-11-9] and [3-5-8-10]. The edge (6, 8) will connect both
paths and four offspring are generated: [1-2-6-8-10], [1-2-6-8-
5-3], [3-5-8-6-11-9] and [10-8-6-11-9]. Note that all offspring
contain genetic material from both parents. After generating all
offspring, it is necessary to select which solutions will carry
on to the next generation. The elitist fraction of the previous
generation is automatically saved and the rest of the solutions
are picked using a roulette wheel selection between parents

Fig. 2. An illustrative example of two paths which intersect.

and offspring. This is done firstly by gathering all parents
and descendants, then removing identical solutions in order
to eliminate replicate individuals in the population, computing
their path cost (fitness function), and finally selecting them
with a probability according to their cost. The higher the cost,
the more likely it is that a given solution is chosen. After this
step, the new generation is created and the process can start
again. As the process goes on, it is expected to run slower
in the beginning and faster along time, due to the detection of
longer paths over time, which reduces the probability of having
disconnected pairs of solutions and less crossovers are made.
After a few runs, the algorithm converges to a final solution.
A stagnancy indicator is responsible to monitor the changes of
the best values obtained and after a predetermined number of
runs without improving, the algorithm stops.

C. Algorithm 2: GA using intersecting paths (GAIP)

The second algorithm generates new offspring based on
parents which intersect. Assuming that we have the initial
solution population, a search takes place to find pairs of paths
that intersect once (which have a common vertex, a common
edge or a common set of edges). When a pair of intersecting
paths is found, their intersection must be analyzed, since two
different cases may occur:
∙ A crossroad, if they only have a common vertex, which

means that this vertex has at least degree 4, and four offspring
can be generated.
∙ A junction, if they have a common edge or set of edges,

which is the most usual case. They can generate only two
descendants.

Figure 2 illustrates an example of the second case, two
intersecting paths: [1-2-6-8-5-7] and [3-5-8-10] with (5, 8)
as their common edge. Two offspring, which also incorporate
the junction, can be generated: [1-2-6-8-5-3] and [10-8-5-7].
Note that all offspring contain genetic material from both
parents. It is worth mentioning that if the junction occurs in
the beginning (or end) of one or both paths, no offspring is
generated, because it is not possible to create a descendant
that contains the junction and the parents’ genetic material.
Not doing anything in this case will benefit the computational

2541

Fig. 3. An illustrative example of a mutated path.

time of this approach. Also, paths that contain two or more
intersections are not considered. This case would imply the
presence of cycles in the graph. Our algorithms can deal with
cycles but, in general, the existence of several cycles in a graph
is not usual, hence there was no need to create an algorithm
specific for these cases. After generating all offspring, both the
selection of paths to carry on to the next generation and the
stopping condition are the same as in the previous algorithm.
In this case, as the process goes on, it is expected to run faster
in the beginning and slower along time, due to the detection
of longer paths over time, which increases the probability of
having intersecting paths and consequently more crossovers
are required.

D. Algorithm 3: GA using both pairs of paths (GABPP)

The third algorithm basically combines the two previous
approaches. Assuming that we have the initial solution popu-
lation, a search takes place to find pairs of paths that intersect
once and pairs of disconnected paths. Offspring are generated
using the methods presented before, for each particular case.
After generating all offspring, the selection of paths to carry
on to the next generation and the stopping condition are the
same as in the previous algorithms.

E. Algorithm 4: GA using a mutation mechanism (GAMM)

Unlike the previous approaches, this algorithm does not
rely on crossover mechanisms. Instead, it uses a mutation
technique to generate descendants. A variable is initialized
to measure the perturbation pressure, which is related to the
rate of solution improvement obtained. Assuming that we
have the initial solution population, the mutation operator
works as follows: it starts by going through all the paths, the
perturbation pressure is evaluated and according to its scalar
value a perturbation is applied close to the end of the path (low
perturbation measures) or near the middle of the path (high
perturbation measures). For each successful run, two offspring
are generated per path consisting in two mutated solutions that
result from the perturbation applied in the original path and in
a flipped version of the original path, as seen on figure 3. The
perturbation starts in a vertex that must have at least degree
3, since it cannot go backwards or to the next vertex of the

TABLE I
RESULTS OBTAINED FOR THE FIRST ALGORITHM (GANP).

p Elite (%) Success �w(%) Avg.Time (s) Avg.It. Score (%)
200 10% 5/10 5.33% 249.46 4.4 98.74%
200 5% 7/10 1.67% 242.40 3.7 99.50%
200 1% 7/10 7.58% 241.70 3.3 98.62%
100 10% 1/10 9.13% 40.92 4.0 96.21%
100 5% 2/10 8.61% 39.89 3.7 96.54%
100 1% 4/10 3.92% 40.03 3.7 98.43%
50 10% 2/10 28.53% 8.40 4.1 87.43%
50 5% 1/10 18.19% 8.44 3.6 91.36%
50 2% 0/10 24.23% 7.80 3.5 86.48%

TABLE II
RESULTS OBTAINED FOR THE SECOND ALGORITHM (GAIP).

p Elite (%) Success �w(%) Avg.Time (s) Avg.It. Score (%)
100 10% 5/10 7.58% 492.95 5.4 98.00%
100 5% 1/10 17.87% 298.17 4.1 92.58%
100 1% 2/10 7.90% 372.54 4.6 96.80%
75 10% 0/10 26.29% 92.76 4.2 87.62%
75 5% 1/10 25.90% 176.24 5.6 87.87%
75 1% 0/10 12.02% 88.98 4.1 94.05%
50 10% 1/10 47.69% 12.13 3.6 76.79%
50 5% 0/10 38.75% 8.93 3.3 73.26%
50 2% 1/10 31.49% 10.78 3.2 83.49%

TABLE III
RESULTS OBTAINED FOR THE THIRD ALGORITHM (GABPP).

p Elite (%) Success �w(%) Avg.Time (s) Avg.It. Score (%)
100 10% 7/10 5.33% 581.54 4.8 99.07%
100 5% 3/10 10.80% 542.59 4.7 97.12%
100 1% 5/10 3.92% 775.86 5.0 98.54%
75 10% 5/10 7.58% 347.61 4.3 97.80%
75 5% 3/10 12.02% 510.01 6.5 97.06%
75 1% 5/10 5.46% 380.20 4.5 98.36%
50 10% 0/10 27.12% 141.18 4.3 87.08%
50 5% 1/10 24.10% 136.97 4.0 89.02%
50 2% 0/10 24.61% 162.70 4.9 87.19%

TABLE IV
RESULTS OBTAINED FOR THE FOURTH ALGORITHM (GAMM).

p Elite (%) Success �w(%) Avg.Time (s) Avg.It. Score (%)
400 10% 8/10 7.71% 41.11 6.2 98.84%
400 5% 5/10 6.36% 44.69 7.1 98.03%
400 1% 5/10 2.25% 41.38 6.5 98.99%
300 10% 7/10 5.33% 29.91 8.0 99.13%
300 5% 5/10 17.99% 22.24 6.2 96.29%
300 1% 6/10 7.71% 27.14 7.4 98.67%
200 10% 4/10 18.57% 11.32 5.8 95.46%
200 5% 4/10 24.10% 11.75 6.0 96.48%
200 1% 3/10 23.01% 11.00 5.7 93.37%
100 10% 4/10 24.04% 5.03 8.0 95.55%
100 5% 1/10 28.57% 3.92 6.3 94.01%
100 1% 2/10 20.24% 3.99 6.4 92.29%

p - Population Size.
Elite (%) - Elite Fraction.

Success - Number of successful times the Longest Path was achieved.
�w - Worst Deviation Obtained.

Avg.Time - Average Time to Converge.
Avg.It. - Average Iteration to Converge.

Score - Overall Score (Measures the quality of the solutions obtained with
respect to the optimal solution).

original path. Therefore, a third vertex must be selected as
an alternative to apply the mutation. From this point on, all
following vertices are chosen applying the same principle as
in the generation of the initial solutions. Vertices with higher
degree have higher probabilities of being picked, keeping in
mind that no vertex already included in the path can be chosen

2542

Fig. 4. Realistic graph used for simulations.

again.
As it was mentioned before, the starting point to compute

the mutation depends on the perturbation pressure value. This
value varies during the process, in order to adapt to the needs of
the problem. If in a generation there is no improvement of the
obtained solution then the perturbation measure is incremented,
and in the next generation the perturbation pressure on the
solutions is higher. This is aimed at bringing new genetic
material into the population and therefore diversify the search
into new regions of the search space, in order to attempt
escaping from local optima. To avoid the overgrowing of this
value, the number of successful mutations is controlled. If in
a given generation no mutation is successful, it means that
the perturbation value is too high (higher than half of the
hops on all paths) and no mutation can be applied. In this
case, the perturbation pressure indicator is re-initialized. After
generating all offspring, the selection of paths to carry on to
the next generation and the stopping condition are the same as
in the previous algorithms. The results show the high efficiency
of this algorithm.

IV. RESULTS AND DISCUSSION

The four algorithms described in the previous section were
implemented in Matlab R2007b, using Matgraph, a graph
theory toolbox [20], and simulation results were collected
using an Intel Pentium Core 2 Quad 2.66GHz Desktop with 4
GB RAM.

In Tables I to IV, we present the results for the four
approaches using a graph with 134 vertices, displayed in
figure 4. Each row represents a sample of 10 runs of the
corresponding algorithm with the parameters presented therein.
More results were collected; however, due to space limitations
only these representative results are presented.

In the first approach (GANP), the longest path was found
7 times out of 10 for a population of 200 individuals with
elite size of 5% and 1%. The poorer performance with an elite
size of 10% suggests that a higher selective pressure (20 elite
individuals) would lead often to a premature convergence to
a local optimal solution. In the first case, with an elite size
of 5%, the 3 results that did not achieve the global optimum
converged to the second longest path, hence the overall score
of 99.5%. Also, GANP presents good results with population
sizes of 100 inviduals in reasonable computational time and
becomes much slower with large populations. Apparently, the
improvement of the overall scores does not justify the extra
computational time; however, the probability of finding the
longest path increases significantly.

The second algorithm (GAIP) scored the worst results. The
algorithm is slower, because much more operations are made
during one run, when compared to the first algorithm (GANP).
Results suggest that the algorithm’s design could be improved
in a way to filter out most of the operations which may be
considered unnecessary, i.e., that provide worse paths than their
ancestors, in order to reduce the computational time.

The third algorithm (GABPP) got much better results
than the previous (GAIP) and similar results to the first one
(GANP). Despite this, the approach is even slower and is not
appropriate for fast applications. With lower population sizes,
for the same parameters, when compared to GANP it had a
slightly worse score probably because the GAIP component
generates more solutions than the first (when they run together)
and the paths that resulted from the GANP, which may be
overly better, have less probability to be chosen.

Although not scoring the best results, the GAMM algo-
rithm is the most appropriate for applications in which time
is critical. This approach has the best compromise between
quality and computational time. Since there is no crossover, the
algorithm does not need an inner loop like the others. Hence,
it is around 10 times faster than GANP for a population of 100
individuals and around 100 times faster than the GAIP for the
same case. Every offspring is generated from a single parent
and the results obtained are very good. Even tests with large
population sizes run very quickly. Note that in the case of a
population size of 400, with a 10% elite group, the longest path
was reached 8 times out of 10, finding the solution in 41.11
seconds on average. In this case the selective pressure (made by
the elite size) contributes for faster convergence and higher rate
of success. Another interesting aspect of this approach is that
it normally needs a higher number of iterations to converge,
around 6 or 7, while in the other approaches the final result is
usually known after 4 looping runs. As seen before, the longest
path of the graph was known ahead. This was only possible by
running a brute-force search and confirming it through visual
inspection.

It is not clear what is the appropriate elite fraction to use for
each approach. Results denote an apparent pattern where 1-5%
groups perform better for smaller population sizes and 5-10%
fractions are favourable otherwise. The choice of this value is
important to avoid imposing too much selective pressure and

2543

a premature convergence to a local optimum.

V. CONCLUSION AND FUTURE WORK

Genetic algorithms resemble aspects of biological evolution,
through an adaptive search procedure that applies the process
of natural selection and the principle of survival of the fittest.
In each generation, solutions compete for selection and the
procedure favours fitter solutions over poorer ones. When
the successful candidates are chosen, the recombination and
mutation operators take place and the procedure is repeated for
a convenient number of generations, producing higher-quality
solutions, which are focused in regions of the search space
where good solutions have already been found.

In this article, four different approaches based on Genetic
Algorithms were proposed to solve the Longest Path Problem.
Three of them rely on crossover mechanisms involving pairs
of solutions and the final one relies on a mutation mechanism
involving one single parent. Generally, all the approaches
guarantee high-quality results when using appropriate param-
eters. Results obtained also showed, in terms of the overall
score, that the GANP algorithm has the best performance in
reasonable computational time bounds. Both the GAIP and
GABPP, although obtaining good results, require long time to
compute a final solution. Finally, the GAMM algorithm is the
fastest, the one with better score/complexity ratio and the more
appropriate for applications where time is critical.

Using different meta-heuristics like PSO [21] or even con-
ventional GAs would not be suitable in this context due to the
specificity of the problem, in which solutions have variable
dimension and enforcing feasibility is not straighforward.
Applying such approaches would result in wasting most of
the computational effort in testing and discarding infeasible
solutions, since repairing procedures would be too expensive.
Instead, the four algorithms presented are well-adapted to the
properties of the LPP and do not need to incorporate any
feasibility verification phase. By relying on different genetic
operators, crossover-based algorithms and the mutation-based
algorithm reveal different pros and cons, as previously seen.

The inferior results that were obtained, namely in the
computational effort associated with the GAIP and GABPP ap-
proaches, could be strengthened in future work by filtering out
a great deal of unnecessary operations that occur during these
processes. Also, it would be interesting to test these approaches
using a more optimized programming language, e.g. C/C++,
to verify the speed of computation and incorporate them in
path planning applications, e.g. mobile robotics, military and
rescue operations, strategy games and packet networks.

ACKNOWLEDGMENTS

This work was financially supported by a PhD grant
(SFRH/BD/64426/2009) from the Portuguese Foundation for
Science and Technology (FCT), the Institute of Systems and
Robotics (ISR) and the Institute for Systems Engineering and
Computers (INESC) at Coimbra, also under regular funding
by FCT.

REFERENCES

[1] D. Karger, R. Montwani, and G. Ramkumar, On approximating the longest
path in a graph, Algorithmica, Vol. 18, No. 1, 92-98, May, 1997.

[2] H. Gabow, Finding paths and cycles of superpolylogarithmic length, In
Proceedings of the 36th annual ACM symposium on Theory of computing
(STOC’04), 407-416, Chicago, Illinois, U.S.A., 2004.

[3] D. Portugal and R. Rocha, MSP Algorithm: Multi-Robot Patrolling based
on Territory Allocation using Balanced Graph Partitioning, In Proceed-
ings of 25th ACM Symposium on Applied Computing, Special Track on
Intelligent Robotic Systems, 1271-1276, Sierre, Switzerland, March 22-
26, 2010.

[4] B. Monien, How to find long paths efficiently, Annals of Discrete
Mathematics, Vol. 25, 239-254, 1985.

[5] H. Bodlaender, On linear time minor tests and depth first search, In
Proceedings of Workshop on Algorithms and Data Structures (WADS’89),
577-590, Springer-Verlag, Lecture Notes in Computer Science, Vol. 382,
Ottawa, Canada, August 17-19, 1989.

[6] N. Alon, R. Yuster and U. Zwick, Color-coding, Journal of the ACM
(JACM), Vol. 42, Issue 4, 844-856, July, 1995.

[7] E. Ando, T. Nakata, and M. Yamashita, Approximating the Longest Path
Length of a Stochastic DAG by a Normal Distribution in Linear Time,
Journal of Discrete Algorithms, Vol. 7, No. 4, 420-438, December, 2009.

[8] Wagner A, Reconstructing pathways in large genetic networks from
genetic perturbations, Journal of Computational Biology, Vol. 11, No.
1, 53-60, 2004.

[9] R. Uehara and Y. Uno, Efficient algorithms for the longest path problem,
Lecture Notes in Computer Science, Vol. 3341, Springer-Verlag, 871-883,
2004.

[10] K. Ioannidou, G. Mertzios and S. Nikolopoulos, The Longest Path
Problem Is Polynomial on Interval Graphs, In Proceedings of the 34th Int.
Symposium on Mathematical Foundations of Computer Science, Springer-
Verlag, 403-414, Novy Smokovec, High Tatras, Slovakia, 2009.

[11] Y. Hsu, S. Sun and D. Du, Finding The Longest Simple Path in Cyclic
Combinational Circuits, IEEE Int. Conference on Computer Design, IEEE
Computer Society, 530-535, Austin, Texas, U.S.A., 1998.

[12] W. Wong, T. Lau and I. King, Information retrieval in P2P networks
using genetic algorithm, In Proceedings of the 14th Int. World Wide Web
Conference, Special interest tracks and posters, 922-923, Chiba, Japan,
May 10-14, 2005.

[13] S. Prager, and W. Spears, A hybrid evolutionary-graph approach for
finding functional network paths, In Proceedings of the 17th ACM GIS
Int. Conference on Advances in Geographic Information Systems, ACM,
306-315, Seattle, Washington, U.S.A., November 4-6, 2009.

[14] T. Nair and K. Sooda, Comparison of Genetic Algorithm and Simulated
Annealing Technique for Optimal Path Selection In Network Routing, In
Proceedings of the National Conference on VLSI and Networks (NCVN-
09), 47-53, Chennai, Tamil Nadu, India, 2009.

[15] E. Gelenbe, P. Liu and J. Lainé, Genetic algorithms for route discovery,
IEEE Transaction on Systems, Man and Cybernetics (SMC 2006), Vol.
36, No. 6, 1247-1254, Taipei, Taiwan, October 8-11, 2006.

[16] A. Kumar, J. Arunadevi and V. Mohan, Intelligent Transport Route
Planning Using Genetic Algorithms in Path Computation Algorithms,
European Journal of Scientific Research, Vol. 25, No. 3, 463-468, 2009.

[17] J. Solano and D. Jones, Generation of collision-free paths, a genetic
approach, In Proceedings of the IEEE Colloquium on Genetic Algorithms
for Control and Systems Engineering, 5/1-5/6, London, 1993.

[18] T. Davies and A. Jnifene, Path Planning and Trajectory Control of
Collaborative Mobile Robots Using Hybrid Control Architecture, Journal
of Systemics, Cybernetics and Informatics, Vol. 6, No. 4, 42-48, 2008.

[19] E. Talbi and P. Bessière, A parallel Genetic Algorithm for the Graph
Partitioning Problem, In Proceedings of the 5th ACM Int. Conference on
Supercomputing (ICS91), 312-320, Cologne, Germany, 1991.

[20] E. Scheinerman, Matgraph: A MATLAB Toolbox for Graph Theory.
Available: http://www.ams.jhu.edu/∼ers/matgraph/matgraph.pdf [June
2010]

[21] J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, In Pro-
ceedings of the IEEE International Conference on Neural Networks, Perth,
Australia, IEEE Service Center, 12-13, 1995.

2544

