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Abstract—There are several applications for which it is
important to both detect and communicate changes in data
models. For instance, in some mobile robotics applications (e.g.
surveillance) a robot needs to detect significant changes in
the environment (e.g. a layout change) which it may achieve
by comparing current data provided by its sensors with
previously acquired data (e.g. map) of the environment. This
often constitutes an extremely challenging task due to the
large amounts of data that must be compared in real-time.
This paper proposes a framework to detect, and represent
changes through a compact model. The main steps of the
procedure are: multi-scale sampling to reduce the computation
burden; change detection based on Gaussian mixture models;
fitting superquadrics to detected changes; and refinement and
optimization using the split and merge paradigm. Experimental
results in various real and simulated scenarios demonstrate the
approach’s feasibility and robustness with large datasets.

I. INTRODUCTION

Autonomous mobile robots working in unknown and dy-

namic environments should be capable of (i) building a map

of the environment based on perceptual data, and simul-

taneously localize itself with respect to the map (SLAM),

and (ii) autonomously navigate and explore world. This is

why extensive work has been devoted in the past decade to

techniques that deal with SLAM [1] and the action selection

problems (e.g. [2]).

Changes in the environment that may affect a robot’s

path may be caused by risky situations that will trigger

some kind of alarms with the robot should be correctly

handle. Therefore, when a robot revisits some place of

the environment, it may be worthwhile to compare current

perceptual data with previously acquired one, in order to

detect novelties in the environment [4]. This problem is

not restricted to mobile robot navigation alone; but it is

certainly important, for instance, in automatic surveillance

and security systems [3] or, whenever need arises to compare

signals of the same type with the aim of detecting novelties.

Solving this problem in real-time with large datasets is

quite challenging and requires the development of specific

techniques, which involves achieving two interrelated goals

(Fig. 1): first, to detect whether there is some significant
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Fig. 1. Change detection and shape retrieval.

change; second, if some significant change exists, to segment

the data associated with it – change detection and segmen-

tation – and to represent the change using a compact model

– shape retrieval. These two steps could be necessary for a

posteriori classification and identication of changes.

This paper proposes a framework to detect, segment and

represent changes in a data model. Firstly, the data to be

compared is simplified through a multi-scale sampling tech-

nique in order to reduce the computation burden of detecting

changes. Secondly, a previously developed method [4] is

improved and validated, which is based on Gaussian Mixture

Models (GMM). This model is used to detect changes and

obtain a segmented point cloud representing those novelties.

Finally, this point cloud is used to retrieve the shape of these

novelties using superquadrics [5].

The rest of the paper is organized as follows. After briefly

reviewing the state of art in Sec. II, Sec. III presents an

overview of the proposed solution. The following sections

present the different parts of the solution: the novelty detec-

tion in Sec. IV and the shape retrieval using superquadrics

in Sec. V. Experimental results are described in Sec. VI.

Finally, in Sec. VII, the main conclusions and future work

are drawn.

II. RELATED WORK

The behavior of an autonomous mobile robot working in

dynamic environments has been intensively studied in the

last decade. A typical strategy has been to remove dynamic

objects from the model in order to improve the navigation

and localization tasks [7]. However, these changes in the

robot’s surrounding may be actually relevant depending of

the applications. In this sense, Andreasson et al. [3] presented

a system for autonomous change detection with a security

patrol robot using 3D laser range data and images from a

color camera.
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Fig. 2. Overview of the proposed method.

On the other hand, the detection of shapes is a common

task in many areas of geometry and computer science. In past

years, a vast number of algorithms has been proposed that

use different strategies: region growing [8], RANSAC-based

shape detection method [6] or superquadrics [5].

Novelty detection based on Gaussian Mixture Models

(GMM) and Earth Mover’s Distance (EMD) were addressed

in the work proposed by Núñez et al. [4]. In a first stage,

GMM was calculated for clustering the set of 3D range

data. Next, EMD was used to quantify changes in the data.

Two different algorithms for the shape retrieval problem

were compared in [4]: RANSAC [6] in the Euclidean space;

and a newly proposed algorithm working directly in the

GMM space. In spite of the impressive results attained,

the computation time of the proposed techniques were not

suitable for large datasets. This paper refines the approach

in [4] with the goal of reducing the required computation

burden and representing changes through a highly expressive

model: superquadrics [5].

Superquadrics are a family of geometric shapes with a

fairly simple parameter set. Leonardis et al. [9] introduced

the standard for segmentation and shape retrieval using

superquadrics. This method was applied to range images in

which data are regular and well organized. An important

approach for 3D point clouds is proposed in [10], wherein

the split and merge principle is used in unstructured 3D data.

In spite of the long time required to run it, the algorithm

produces interesting results. A good review of superquadrics

can be found in [12].

III. CHANGE DETECTION AND SHAPE RETRIEVAL

The main steps of our change detection and shape retrieval

process (Fig. 1) are outlined in Fig. 2. The simplification

stage reduces the number of points in the 3D map using the

surface information and generating a multi-scale point cloud

[11]. Sparse outliers and ground plane removal methods

are also used. After this initial stage, the novelty detection

algorithm is applied, which is based on the work of Núñez et

al. [4]. Finally, the shape retrieval problem is solved using

the split and merge paradigm [10], as well as an iterative

method to best fit superquadric models using this multi-scale

information. Novelty detection and shape retrieval stages are

explained in more details in the following sections.

IV. NOVELTY DETECTION IN 3D MAPS

The novelty detection stage is based on our previous

work [4]. In the current work, the 3D laser range data is

transformed from the Euclidean space into the mathematical

space of GMM. The system also achieves data compression

and efficient comparison using the EMD-based quantification

of novelty [4]. Secondly, a new EMD-based greedy algorithm

is used to segment changes in the maps. The main advantages

of this approach are (i) low processing time, due to the sim-

plification and greedy approach, and (ii) robust segmentation,

due to the outliers removal and GMM method. A description

of the method is explained in the next subsections.

A. Preprocessing functions

The central part of the preprocessing step is the simplifi-

cation method used to reduce the high density of points ac-

quired by 3D laser scanner. The approach presented herein is

based on the work proposed by Pauly et al. [11]. The method

has one important contribution: it reduces the computation

time without loosing much geometric information. Moreover,

it computes a multi-scale point cloud using binary space

partition. The use of covariance analysis enables the method

to compute the surface variation (σ) based on eigenvalues.

The point cluster P is then split if the size of |P | is larger

than a value and surface variation is above a maximum

threshold σmax. The value used for σmax is 0.1, and the

range of σ is [0; 1

3
]; which was empirically selected for a

typical laser data density.

This hierarchical cluster simplification process builds a

binary tree based on the split of each region. The split plane

is defined by the centroid of P and the eigenvector associated

to the greater eigenvalue (λ2). The point cloud is always

split along the direction of greatest variation. The multi-scale

representation is based on the restriction level imposed to the

tree. The tree grows until the cluster is just one point, where

the scale is chosen by setting values to size of |P | and to

σmax.

On the other hand, for a point cloud obtained by a laser

scanner, the ground plane is almost always present in the

data. In this work, a simple method using RANSAC to fit a

ground plane is used [13]. Finally, sparse outliers in the 3D

scan laser data are removed based on the technique proposed

in [14].

B. Gaussian mixture model

A Gaussian mixture model (GMM) is a probability den-

sity function described by a convex linear combination of

Gaussian density functions. Each Gaussian is defined by a

coefficient pk ≥ 0, which satisfies
∑K

k=1
pk = 1, and by a

mean and a covariance matrix.

The GMM provides good models of clusters of points

where each cluster corresponds to a Gaussian function.

Therefore, given a set of points, it is possible to find the

GMM Θ using the well known method called as Expectation

Maximization (EM). The size of the K is selected using

Kmax and the MDL penalty function [16]. Fig. 3 illustrates

this idea. See [4] for further details.
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Fig. 3. Novelty detection algorithm: a) ideal 3D corridor where an object
was placed inside; b) GMM associated to the corridor map; c) GMM
associated to a). The novelty detected by the algorithm has been indicated
by the label ’1’.

C. Earth Mover’s Distance

The earth mover’s distance (EMD) [15] can be used to

compute the distance between two distributions. Let, Θ =
((θ1, p1), . . . , (θn, pn)) and Γ = ((γ1, q1), . . . , (γm, qm)), be
two Gaussian mixture models associated with two 3D scans,

where θi and γj are Gaussian functions, and pi and qj are

the weights associated to each Gaussian, respectively. Thus,

the distance between GMM is computed by [4]:

dGMM (Θ,Γ) = EMD (Θ,Γ) . (1)

D. Novelty segmentation to a mixture of Gaussian

Eq. (1) can be used as a quantitative metric to assist in

detecting changes in the environment. Typically, the problem

of change detection can be tackled by defining an adequate

threshold Uth, which represents the maximum value beyond

which it will be assumed that a novelty exisits in the

recently acquired map. However, using a fixed threshold is a

shortcoming of this approach. Therefore, we propose a new

greedy algorithm that overcomes this limitation by keeping

unchanged a decisions that are taken. An example of the

application of this technique can be seen in the Fig. 3 where

the GMM associated with clusters of 3D points are shown.

After applying the proposed algorithm to these two sets of

Gaussians, a novelty is detected in the maps (marked as 1 in

Fig. 3c). The overall structure of the method is outlined in

pseudo-code in Algorithm 1. The method achieves more than

just detecting changes since the novelty is segmented and

the set of points associated to it is retrieved using posterior

probability.

In each iteration the algorithm selects a Gaussian x(µ,Σ)
from Θ with the greatest quantified change dGMM , com-

puted by the function GreedySelectGMM. Furthermore, this

function returns the dGMM by the winner and the new set

Π. It works computing EMD between Γ and the new sets.

These new sets are generated by removing one Gaussian at a

time from Θ. The best Gaussian is removed from the initial

mixture Θ and is also included in the new Gaussian mixture

model Π. The distance dGMM is compared iteratively with

the previous EMD distance. The algorithm returns a list of

sets of points S. Each set represents the segmented region by

one Gaussian, using the posterior probabilities computed by

the function ChoosePtsfromGaussian that has as arguments

a point cloud P used for generating the novelty GMM and a

Gaussian x. If S = {∅} the algorithm assumes that there

are no changes in the 3D map. Moreover, the posterior

Algorithm 1 Novelty Selection algorithm

1: dGMM ← EMDdistance(Θ,Γ)
2: Π← ∅
3: repeat

4: dGMMold
← dGMM

5: [x(µ,Σ),Π, dGMM ]← GreedySelectGMM(Θ,Γ)
6: until (dGMMold

< dGMM )
7: Π← Π− x(µ,Σ)
8: S ← {∅}
9: for all x(µ,Σ) ∈ Π do

10: S ← S ∪ ChooseP tsfromGaussian(P, x(µ,Σ))
11: end for

12: return S

Fig. 4. Data flow of the 3-D shape retrieval using superquadrics. The
black arrows represent the input (simplified point clusters and multi-scale
tree) and the output (superquadric models).

probability allows the system to identify the topological

relation between the segmented regions. This will be useful

in the superquadrics computation described in Sec. V-B.

V. SHAPE RETRIEVAL USING SUPERQUADRICS

This section introduces the 3D shape retrieval algorithm

used to obtain a superquadrics-based model of the detected

novelties. The previous stage obtains a set of points that is

related to changes identified in the environment. This set of

points associated with the multi-scale tree is the input of our

method. The data flow of the method is shown in Fig. 4. It

shows the technique used to solve the superquadrics retrieval

method. Initially, the three steps are taken with the simplified

segmented set of points. Afterwards, the multi-scale tree is

used to refine the model.

A. The Superquadric model

Superquadrics are a compact model used to represent

shapes. It is defined using two parameters for shape, (ǫ1, ǫ2),

and three for scale, (a1,a2,a3). The implicit equation of

superquadrics is:

F (x, y, z) =

(

(

x

a1

)
2

ǫ2

+

(

y

a2

)
2

ǫ2

)

ǫ2

ǫ1

+

(

z

a3

)
2

ǫ1

. (2)

This equation provides an information about the 3D point

position related to the superquadrics surface. Basically, the

3637



value of this function is equal to one if the point lies on

the surface. If the point is inside, the value is less than

one. The point is outside, if this value is larger than one.

A superquadric represented on a global coordinate system

needs extra six parameters. Therefore, the function can be

expressed as F (x, y, z; Λ), where the 11 parameters are

denoted as Λ = λ1, . . . , λ11 [12].

B. Multi-scale fitting

Considering a set of 3D data points, the first goal is

to estimate the parameters of the superquadric model. The

gradient least-square minimization, based on Levenberg-

Marquardt method, is used to solve this problem [12]. The

method tries to minimize the following expression:

min
Λ

n
∑

i=1

(
√

λ1λ2λ3(F
ǫ1(xi, yi, zi; Λ)− 1))2. (3)

This equation represents a distance metric to compare

superquadrics. The constraint
√

λ1λ2λ3 is used to enforce

the recovery of the smallest superquadric. The exponent ǫ1
is used to make the error metric independent of the shape of

the superquadric [12]. There are other methods to compute

this distance, but they are slower [10].

Another important aspect to fit superquadrics is the initial

model used. This model determines the local minimum

where the method converges as well as the number of

iterations. Thus, a good initialization is crucial to the success

of the fitting process. So, we use the initial pose based on the

matrix M that represents the center of gravity and the central

moments. The shape used is an ellipsoid, i.e. ǫ1, ǫ2 = 1. The
scale factors are based on the eigenvalues (λ) of the inertia

matrix M .

Using the multi-scale approach, we propose a new method

for fitting superquadrics based on this refinement. This

method computes an initial model using simplified points.

After that, it refines the model using as initial solution the

model fitted by simplified points, together with more points

from the multi-scale tree.

C. Split and merge paradigm

The segmentation of changes produced by the GMM-

EMD method has an important limitation: it may fail due

to local minima. To overcome this problem, an approach

based on split and merge is proposed by Chevalier et al.

[10]. We propose an extension to their method: initialize

with the segmented regions and the topological relation

given by novelty detection method, proposed in this section.

This extension further simplify the method and reduces the

processing time.

The first step of the method splits the data so that all

points in a subset belong to the same object. Then, this

set of points is further divided into two sets using a split

plane. This plane is chosen using the inertia axis [10].

Afterwards, superquadrics are adjusted for both new sets.

If the distance of each one of the two superquadrics is less

than the distance to adjust a superquadric to the original set,

then this split operation is validated. This method generates

a binary tree that represents the topological relation between

the segmented sets. This relation is important because it

avoids the recomputation of these relations in the merge

step. Finally, the method concludes the merge step. The new

subsets generated by the split step are merged in order to

reduce the number of superquadrics without increasing the

whole distance. This method can be divided into two parts:

1) For each subset of points, the method computes the

cost matrix. It represents the cost to merge neighbor

subsets. The neighbourhood is based on the topological

relation.

2) Choose the pair which minimizes the distance. The

subsets are merged if their distance is less than the

largest distance of each pair and the size of the newly

merged superquadric is smaller than the sum of the

size of the two superquadrics.

An important contribution of our merge method is the use of

dynamic programming. In this work, we use a matrix where

the computed distances are saved. When the sets are merged,

the matrix is updated. This allows our method to run faster

than the method proposed in [10]. The time to compute the

3D shape retrieval is shown in Table I. This time depends of

the number of segmented sets and the characteristics of the

changes. The table shows the time only for the simplified

data, because the method is adapted to run with the multi-

scale tree.

VI. EXPERIMENTAL RESULTS

In this paper, the change detection and shape retrieval

stages have been analyzed separately. The proposed methods

have been evaluated using simulated and real data. The

algorithms were developed in C++ software and the bench-

mark tests were performed on a PC with a 2.0GHz AMD

Turion X2 CPU. The artificial data are composed of a set

of 3D points, simulating the readings of a laser scanner in a

corridor. A normal random error with zero mean and variance

0.001m2 was added to these points.

In order to evaluate the algorithms, objects were intro-

duced in different poses and scales inside the corridor. A

total of 30 different simulated datasets have been generated.

Real data have been acquired by an Hokuyo laser mounted on

a pan-tilt unit. We run experiments in three different environ-

ments, and two acquisitions were made in each one of them.

Firstly, a 3D map was acquired to obtain a representation

of the environment. Afterwards, a novelty was introduced.

Finally, in order to obtain statistically significant results, the

experiments were repeated ten times for each test area.

A. Novelty detection results

The results of the novelty detection method are shown

in Fig. 5. Blue points represent the 3D data acquired by the

robot and the ellipses are the Gaussians associated to the seg-

mentation. The first row in Fig. 5 illustrates the results using

simulated data. The results using a real corridor, with the

person being the novelty, are drawn in the second row (Test

Area 1). The results show this person adequately segmented

in one cluster, in green. The third row (Test Area 2) illustrates
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a corridor where the door is opened in the reference map, and

half opened afterwards. The results show the door adequately

segmented by a Gaussian, in green. Finally, the forth row

(Test Area 3) shows an office environment with a closed

door. The results show the door represented by a Gaussian,

in green. In this case, the scan data do not allow the system to

identify the closed door. However, due to the smooth salience

in the door, the combination GMM-EMD is able to detect

the novelty.

Table I illustrates the performance of the proposed novelty

detection algorithm with simulated and real data and demon-

strates the introduced improvement by the simplification

stage. The experiments include real data composed by three

test area and thirty simulated datasets. Tests with both real

and simulated data were repeated ten times; the values in

the table show the average values. The ground truth for the

change detection stage (sucess rate) was generated manually

by selecting the points that represent the changes, and

comparing automatically the true positives with the results of

the algorithm. As it is shown in Table I, the simplified data

shows better results than with complete data, because the set

of outliers is reduced by the point cloud simplification step.

The processing time gain with simplified data varies between

3× and 6×; this difference is caused by the characteristics of

the data. The method to simplify data has low computation

cost and low information loss. The maximum number of

Gaussians (Kmax) in each GMM used in the experiments

is 16. Clearly, the bottleneck in the system is the method to

compute the GMM for each 3D map.

B. 3D Shape retrieval results

Fig. 6 illustrates the different steps of Fig. 4 for fitting

superquadrics to the detected novelties. Firstly, in Fig. 6-a the

simulated data are used to test the shape retrieval algorithm.

In Fig. 6a-1 draws two initial superquadrics associated with

changes. The original shape of the yellow superquadrics is

a sphere but, due to the high noise applied to the data, the

best fit is a smooth cube. Results of the split method are

depicted in Fig. 6a-2, showing the cut plane based on the

highest eigenvalue. Next, Figs. 6a-3,4 illustrate the results

of the merge and refine method. They show the quality of

the simplification method. The gain of using the multi-scale

approach is not noticeable. Nevertheless, the shapes are less

smooth due to the larger number of noisy points in this case.

Afterwards, the shape retrieval algorithm was tested with

real data. Figs. 6b-c show the results of two datasets,

which are associated to the novelties illustrated in Fig. 5

in rows 2-3. Fig. 6b draws the superquadrics fitting results

associated to the person (i.e. novelty) inside the corridor.

After executing the split method, the person is divided into

a set of superquadrics, and the merge and refine stages

segment the initial superquadric into six superquadrics. In

the right image, the yellow and green colors represent the

head and the trunk of the person, respectively. Since the

scanned person has his arm near the trunk, it was segmented

in green. The other arm is shown by the superquadric in blue.

The two legs are represented by superquadrics in gray and

cyan. Finally, the two feet are represented by pink and red

superquadrics. Fig. 6c show the result of superquadric fit of

the door, after using the split and merge method (from left

to right: initial superquadric fitting, split and merge-refine

method, respectively). As it is shown in this figure, due to

the good segmentation provided by the novelty detection, the

initial fit is sufficient to obtain a good result.

VII. CONCLUSIONS AND FUTURE WORKS

This paper described a method to detect and retrieve shape

of changes in a 3D real environment for robot navigation.

Real data acquired by the laser scanner is preprocessed in

order to reduce the size of the point clouds. Next, Gaussian

Mixture Models were used to obtain a new representation of

the point clouds and the Earth Mover’s Distance, together

with a novel greedy algorithm, are employed to quantify the

existence of a novelty in the scene. Changes detected in the

environment are modeled using superquadrics. Results of the

proposed algorithm demonstrate the reliability of the method.

Furthermore, the presented shape retrieval approach was

compared with our previous work in terms of computational

time, robustness and accuracy. Moreover, the method may

also be used to detect things removed from the scene. This

can be attained simply by putting the current map in the

reference input.

Future work will focus on the extension of the novelty

detection method to work iteratively, with the data being

captured online by the robot. One possible approach is

to use the GMM method with online learning. The final

goal of the work is to obtain a complete system capable

of detecting and representing virtual objects in the robot’s

world, which is capable of discriminating various objects.

For that, classification method to the superquadrics shapes is

being studied. Another important improvement is to include

a registration module in the system. It will allow the system

to deal with overfitting volumes, and to avoid the need for

having tmaps expressed in the same coordinate system.
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