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Abstract — Several distinct multi-robot patrolling strategies have
been presented for the last decade in the context of security ap-
plications. However, there is a deficit of studies comparing these
strategies, namely in terms of their performance and the scalability
in the number of robots. For that reason, in this paper, an evaluation
of five representative patrolling approaches is presented. This analysis
is based on realistic simulation results using ROS and a performance
metric represented by the average idleness of the topological envi-
ronment (i.e., graph) that represents the area to patrol.

The results presented help to identify which strategies enable
enhanced team scalability and which are the most suitable approaches
given any environment.

Keywords: Multi-Robot Systems, Patrolling, Security, Scal-
ability and Performance.

I. INTRODUCTION

This work focus on surveillance tasks using multiple mobile
robots, which involve frequent visits to every point of the
environment. Therefore, the words “Patrol” and “Patrolling”
are implicitly used in this sense.

The major motivation for studying this issue relates to its
spectrum of applicability in the context of security systems and
the potential to replace or assist human operators in dangerous
real-life scenarios, like mine clearing, rescue operations or
surveillance, easing arduous and time-consuming tasks and
offering the possibility to relieve human beings, enabling them
to be occupied in nobler tasks like monitoring the system from
a safe location.

Cooperation among robots is one of the most decisive issues
in this context; since robots must efficiently work together in
order to improve the performance of the system as a whole.

In addition, multi-robot patrol is a challenging problem,
because agents must navigate autonomously, coordinate their
actions, be distributed in space and must be independent of
the number of robots and the environment’s dimension.

This work presents a comparative study between five differ-
ent state of the art patrolling strategies using distinct topolog-
ical environments and different teamsizes, in order to analyze
the performance and scalability of each approach. Conclusions
drawn in this field of research may support the development
of future approaches not only in this domain but also in other
multi-robot applications.

II. RELATED WORK

The existing algorithms in the literature for patrolling an
environment with multiple mobile agents present many differ-
ences in terms of strategy, communication paradigm, coopera-
tion scheme, performance evaluation and other features. They
can be divided into Pioneer methods [1], [2]; Graph Theory
methods, [3], [4], [5]; and Alternative Coordination methods
[6], [7], [8], [9].

Pioneer strategies include simple architectures with agents
with different capabilities that move in the environment mostly
looking for locations that have not been visited for some time,
aiming to maintain a high frequency of visits in every place
of the area.

Graph Theory strategies look for solutions of classical
problems like finding Hamilton cycles, Graph partitioning
and others to assign efficient routes for the robot’s patrolling
missions. These strategies typically rely on a centralized
coordinator to calculate those routes.

Recently, many alternative coordination methods have also
been presented, aiming to solve the problem through the usage
of approaches that have presented good results in multi-robot
systems in general, like task allocation, reinforcement learning,
negotiation mechanisms and swarm-based strategies.

A pioneer work was presented in [1], where several archi-
tectures for multi-agent patrol were proposed. These archi-
tectures have distinct agents’ behavior, perception, commu-
nication paradigms and decision-making. Additionally, they
have contributed with criteria to evaluate the performance of
the approaches based on the average and maximum idleness
of the vertices of the graph that represents the topological
environment.

In [2], the architectures proposed by Machado were en-
hanced with advanced decision-making, based on both the
instantaneous idleness of vertices and the distance to them, as
well as with advanced path finding, which considers distance
(or cost) of the edges and the idleness of vertices in the
path towards a goal. Also, the tests were run on more and
distinct environment topologies, which was a strong limitation
of Machado’s work. Nonetheless, Almeida’s work contains
several simplifications that are overcome in this article by
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using realistic simulations that consider both the dynamic of
robots and the actual time to measure performance instead of
using iterative simulation cycles.

Approaches based on graph theory and operational research
(OR) commonly address the patrolling problem by computing
minimal-cost cycles that visit all points in the target area.
The agents are employed uniformly along the path and follow
the same patrol route over and over again. For example, [3]
presented an area patrol algorithm based on the computation
of Hamilton cycles that guarantees that each point in the target
area is covered at the same optimal frequency. On the other
hand, [4] described a cyclic algorithm based on heuristics that
approximates a Travelling Salesman Problem (TSP) cycle on
top of the topological representation of the environment.

These strategies are robust, being independent of the number
of robots and are recognized for their results in terms of
visit frequency. However, they have a deterministic nature,
which means that an intelligent intruder that apprehends the
patrolling scheme may take advantage of the idle time between
passages of robots in some points of the area.

In [5], the Multilevel Subgraph Patrolling (MSP) Algorithm
is described. In this approach, balanced graph partitioning
is projected in order to assign different patrolling regions
(subgraphs) of the environment for each mobile agent. The al-
gorithm subsequently computes effective paths for every robot
using classical graph theory approaches. Results confirmed the
flexible and high performance nature of the approach, which
benefits from being non-redundant and not needing inter-agent
communication.

Some alternative methods have been presented throughout
the years. In [6], patrolling is addressed in a task allocation
perspective, where each robot is assigned a different region
to visit. Robots send their current state to a centralized
system running on a remote computer, through a wireless
communication network, to compute the task strength and
drive the robot through propagated data.

Moreover, reinforcement learning was used in [7] to solve
the patrolling problem by automatically adapting the agents’
strategies to the topology of the environment. Additionally,
approaches based on negotiation mechanisms have also been
proposed in [8] as well as in [10]. In these works, agents
exchange vertices of the environment graph to patrol, using an
auction-based system. The agents will naturally aim to obtain
a set of vertices in the same region of the graph. Despite
the results obtained, reinforcement learning and negotiation
mechanisms prove to be extremely complex when compared
to pioneer strategies, with nearly no communication ability,
which achieve similar results [11].

Recently, swarm intelligence has also been used to tackle the
multi-robot patrolling problem [9], [12]. In such works, the en-
vironment is represented by a grid and agents only have local
perception, deciding their next move according to the artificial
state of grid cells, which depends on information previously
dropped by agents on those cells (similar to pheromones in
ant colonies).

For a more thorough survey of multi-robot patrolling archi-

tectures, one should refer to [13].

III. PROBLEM FORMULATION

As mentioned before, it is common to represent the area to
patrol by an undirected connected graph G = (V, E) with vi
∈ V vertices and ei,j ∈ E edges. Therefore, G corresponds to
the topological map for the patrolling mission and is assumed
to be known a priori. Also, in these maps, vertices correspond
to important places or landmarks, connected by edges that
represent the paths between them.

In order to address and compare the performance of dif-
ferent patrolling algorithms, it is important to establish an
evaluation metric.

The instantaneous idleness (Idltk ) of a vertex vi ∈ V in
time tk, with t = {0, ..., tk}, is defined as:

Idltk(vi) = tk − tlast visit, (1)

where tlast visit corresponds to the last time instant when
the vertex vi was visited by any robot of the team. Conse-
quently, the average idleness (Idlm) of a vertex vi ∈ V in a
total time T can be defined as:

Idlm(vi) =

T∑
k=0

Idltk(vi)

T
(2)

Finally, in order to obtain a generalized measure, the average
idleness of the graph G (IdlG) is defined as:

IdlG =

|V |∑
i=0

Idlm(vi)

|V |
, (3)

where |V | represents the cardinality of the set V.
Considering a patrolling path as an ordered array of vertices

of G, the multi-robot patrolling problem can thus be described
as the problem of finding a set of paths x which visit all
vertices vi ∈ V of the graph G, using an arbitrary team of R
robots, with the overall team goal of minimizing IdlG:

f = argmin
x
IdlG (4)

By finding:
x = [x1, ..., xr, ..., xR] (5)

Such that:
xr = {vr,1, vr,2, ..., vr,N} (6)

vr,n ∈ V

1 ≤ r ≤ R,R ∈ N

1 ≤ n ≤ N,N ∈ N

Subject to:

∀vi ∈ V,∃xr ∈ x : vi ∈ xr (7)

Note that xr represents the patrolling path of robot r which
can either be calculated a priori, which is typically done by
centralized algorithms, or online to consider and incorporate
the dynamics of the system in a given time step, which is the
usual approach of distributed approaches.
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TABLE I
COMPARATIVE TABLE OF THE ANALYZED ARCHITECTURES

Algorithm Complexity Agent Percep-
tion

Decision-
Making Planning

CR * Reactive Local Idleness-
based Online

HCR ** Reactive Local Heuristic-
based Online

HPCC *** Cognitive Global
Heuristic-based Online

CGG **** Cognitive Cycle Computa-
tion (OR) Offline

MSP **** Cognitive OR inside each
region Offline

IV. EVALUATED PATROLLING ALGORITHMS

Having analyzed the literature, five representative algo-
rithms were implemented. These algorithms were chosen
from among all previous research works based on the good
performance results that they have obtained and the different
properties assumed like agent perception, decision-making and
planning, as it is shown in Table 1. In this section, those
algorithms are examined and compared in detail. Due to
space limitations, the pseudo-code of the approaches is not
presented. No alternative approaches were implemented in
this work mainly due to the fact that the complexity of their
implementation does not lead to better results when compared
to simpler approaches, as previously concluded by [11].

Besides the analysis of the performance of the diverse
algorithms, this work also addresses the scalability of the
studied approaches. In the context of multi-robot systems,
scalability is related to how well a given strategy performs
as the dimension of the team grows and how the individual
productivity of each robot is influenced by the increase of
several number of agents in the team. Having this in mind, the
interference between robots is measured in every experiment
as the number of times that different agents share nearby areas,
having to avoid each other.

A. Conscientious Reactive (CR)

Ranked one of the top algorithms in the study of Machado
et al. [1], Conscientious Reactive is a simple pioneer approach,
in which agents decide locally which vertex they should
move to in the next step, taking only into consideration the
instantaneous idleness of the neighbors of the current vertex,
where the robot is located at the moment.

B. Heuristic Conscientious Reactive (HCR)

Heuristic Conscientious Reactive is an algorithm presented
by Almeida in [2]. It is similar to CR with an important
modification on the decision-making process, where the au-
thors calculate a decision value that considers not only the
instantaneous idleness of the neighbors of the current vertex
as well as the distance to them.

C. Heuristic Pathfinder Conscientious Cognitive (HPCC)

Unlike the two previous approaches, which use reactive
agents that move only to close by vertices, Heuristic Pathfinder
Conscientious Cognitive plans on the global graph to decide

which vertex to move to subsequently. HPCC was also pre-
sented by Almeida [2] as a modified version of an approach
called “Conscientious Cognitive” previously described in [1].

Agents use a similar decision-making process as in HCR.
However, instead of only moving to vertices in their neighbor-
hood, they can move to any vertex of the graph. In addition,
the algorithm takes into account the vertices on the way from
the current one to the calculated destination. The chosen path
depends on the instantaneous idleness and the distance of the
vertices along the way. This is possible by computing new
edge costs and running a Dijkstra shortest path algorithm
considering the new costs.

D. Cyclic Algorithm for Generic Graphs (CGG)

Inspired on the work of Elmaliach et al. [3], a Cyclic
Algorithm was implemented and used in [5]. It is essentially an
offline graph theory based method which looks for Hamilton
cycles or paths in the graph in order to visit all vertices.
When no such cyles or paths exist, the method looks for
long paths and non hamiltonian cycles as an alternative and
computes detours to unvisited vertices. In this work, each robot
is endowed with the ability of computing the final cycle. Hence
the algorithm is run in a totally distributed fashion like the
three previous ones.

E. Generalized MSP Algorithm (MSP)

The MSP Algorithm [5] is an offline graph theory based
method, which partitions the graph into regions, where agents
perform the patrol task. In the first phase of the algorithm,
the graph is partitioned by a centralized entity, which then
assigns regions to different robots. In a second phase, robots
patrol their independent areas in a cyclic way, using a similar
approach to the CGG method in their own subgraphs. The
word “Generalized” was added since the algorithm can parti-
tion the graph into arbitrarily high k regions (it could only be
partitioned into a maximum of 8 regions in the original work)
being limited up to the point that the graph can no longer
be partitioned. The performance of the algorithm strongly
depends on how balanced the partitioning of the graph is.

V. SETTING UP THE EXPERIMENTS

The performance and scalability of the five algorithms
were compared using three topological maps chosen due to
their different connectivity and complexity. To address the
connectivity of the graph, a well-known metric of the graph
was analyzed: the Fiedler value or algebraic connectivity [14].
In order to remove its dependency on the number of vertices
in the spectrum of the Laplacian matrix, the Normalized
Laplacian L [15] was adopted to obtain the Fiedler value
of each graph.

All eigenvalues of L are non-negative and λ0 = 0. For non-
complete connected graphs (as is our case), the Fiedler Value
λ1 is the smallest non-zero eigenvalue of L and:

0 < λ1 ≤ 1 (8)

Table II presents the connectivity properties of the graphs
chosen for the experiments. All three graphs and the respective
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(a) Environment A. (b) Environment B. (c) Environment C.

Fig. 1. Environments used in the experiments with respective topological map.

TABLE II
CONNECTIVITY PROPERTIES OF THE GRAPHS USED IN THE EXPERIMENTS

Topological
Map

Environment
Area |V | Fiedler

Value (λ1)
A 1357.17 m2 66 0.0080
B 1542.30 m2 32 0.0317
C 665.64 m2 25 0.1313

environments are presented in Figure 1. Since it is intended
that the simulations are as realistic as possible, the Stage
2D multi-robot simulator was chosen together with ROS
[16], a framework for robot software development. The graph
information of a given environment is loaded by every robot
in the beginning of each simulation, which then runs one
of the five algorithms described. Robots navigate safely in
the environment by heading towards their goals and avoiding
collisions with walls and other robots through the use of ROS’s
navigation stack [17] and a probabilistic localization system,
more specifically the adaptive Monte Carlo localization ap-
proach [18], which uses a particle filter to track the pose of
a robot against a known map. In addition, robots are non-
holonomic and have a maximum velocity of 0.2 m/s.

VI. RESULTS AND DISCUSSION

The simulation process involved running the five described
patrolling strategies with six different teamsizes (1, 2, 4, 6,
8 and 12 robots) in all three environments. Robots had the
same starting positions for all algorithms when using the
same teamsize and environment. Every trial was repeated three
times, in a total of 264 simulations1, which lasted around
345 hours with a cluster of four processors that were used
due to the powerful computation demands of simulations,
mainly those with higher teamsizes. Simulations were stopped
when the value of the average graph idleness (IdlG) after
each patrolling cycle, i.e. every vertex visited, converges with
2.5% of tolerance. This resulted into an average simulation
time of 1h18m, which led to accurate and similar results
between different trials; hence, there was no need to repeat the
trials several times as testified by the overall average standard
deviation of the results: σ = 4.42%.

1The ROS simulation code is available at: http://www.ros.org/wiki/isr-uc-
ros-pkg#patrol

The chart in Figure 2 represents environment connectivity
vs. teamsize and depicts some general insights about the
most suited solutions in different regions of the design space,
providing a graphical overview of the results obtained. It is
possible to verify that offline planning strategies (MSP and
CGG) perform better in weakly connected environments than
in strongly connected ones. This occurs because one can take
better advantage of offline planning in such environments,
while there are more path alternatives in strongly connected
environments, where online planning performs adequately.

Generally, MSP is the algorithm with the best IdlG values
for larger teams, up to the point where the algorithm can
no longer partition the graph. The method is not able to
partition the topologies B and C in the 12 regions case,
which happens due to limitations of the partition stage of the
algorithm. Nevertheless, these good results can be explained
by low interference between agents when compared to other
strategies, because each robot operates in a specific section
of the environment. For smaller teams, the approach is not
usually worth to employ, because it is more complex than
simple reactive approaches and it does not lead to enhanced
performance, mostly when the partitioning in regions is not as
balanced as it would be desirable.

Moreover, CGG is the most regular algorithm, achieving
fairly good results for all cases, especially in weakly connected
environments or using larger teams, similarly to the MSP.
However, it does not scale as well as the MSP as seen in
Figure 3a; e.g., note the 12 robots case.

On the other hand, HPCC proves to be an algorithm with
good performance mostly for smaller teams, independently
of the graph connectivity, given that, although it plans its
decisions online, the entire graph is considered (unlike HCR
and CR). Also, for the same reason, its performance drops
for larger teams, because all robots wander and plan in the
whole environment, which raises the probability of encounters
between them. Results also show that this approach is the one
that converges sooner to an IdlG value, as the number of
robots is increased, which indicates reduced scalability.

Moving on to reactive algorithms, it is interesting to observe
that HCR does not present evident improvements when com-
pared to CR. According to its authors, HCR can eventually be
tuned to give different weights to the vertices’ distance and the
instantaneous idleness of neighbors during decision-making.
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Fig. 2. General Simulation Results. In this chart, the best strategies for a
given map connectivity and team size are shown. Note that the figure presents
some intersections of design solutions.

In this work, the same weight for both parameters of the
decision process was used and it was verified that for weakly
connected environments, HCR was the algorithm with the
worst performance (Figure 3a). This happens because robots
tend to stay longer in regions with close vertices, causing high
interference between robots, which compete to reach those
vertices, reducing overall performance dramatically. As for
the CR algorithm, it scales better than HCR and HPCC, only
staying behind the MSP and CGG for large teams. Reactive
algorithms have good performance especially in strongly con-
nected environments, as seen in Figure 3c, where agents have
alternatives to decide at the very moment, which vertex to
move next to, taking into consideration the state of the system.
Nevertheless, even in less connected environments, at some
point when increasing the teamsize, the CR algorithm obtains
better performance than the HPCC, since it scales better than
the latter one.

As expected, all algorithms display increasing performance
only until reaching a certain group size, around which the
group productivity stagnates and even drops with the addition
of robots; e.g., HCR in environment B as illustrated by Figure
3b. In theory, productivity should grow during size scale-up;
however spatial limitations increase the interference between
robots causing the decrease of performance. For example,
calculating Balch’s speedup measure [19] for increasing team-
sizes:

S[i] =
P [1]
i

P [i]
(9)

where P [i] is the performance for i robots, it is straightforward
to conclude that such systems rapidly enter in sublinear
performance (S[i] < 1), as shown on top of Figure 4 for
environment A. On the other hand, in the bottom of Figure
4 it is represented the interference measured for the same
environment, which was calculated as the number of times
that robots had to avoid each other in order not to collide.
Online planning strategies were the ones which presented
more interference. It can be seen that speedup and interfer-
ence are negatively correlated. For larger teamsizes, instead
of cooperating, robots tend to compete to firstly reach a
given vertex than their teammates. Designing strategies which
account for the teammates’ goal can be beneficial for multi-

(a) Results for Environment A.

(b) Results for Environment B.

(c) Results for Environment C.

Fig. 3. Simulation Results: IdlG performance curves.

robot patrolling, since they can take advantage of cooperation
over competition between agents.

It is also interesting to see that Figure 3 shows that, even
though map B has a larger area to patrol when compared
to map A, all algorithms obtain lower IdlG values for the
same number of robots in environment B, due to its greater
connectivity. These results prove that graph connectivity is
a very important parameter to consider when employing a
patrolling algorithm in a given environment. Expectedly, the
performance of the team is also greatly affected by graph
dimension. However, when independent of the connectivity,
graph size is seen as a scale factor when considering fixed
teamsizes.

Furthermore, the median graph idleness value corresponds
typically to around 85% of the average graph idleness, mean-
ing that the frequency distribution is usually positively skewed
(this is true in 96% of the trials). CR is the algorithm which has
closest values between IdlG and the median, which shows that
the algorithm normally does not let points in the environment
stay idle for too long, balancing more its visits to the graph’s
vertices when compared to other approaches. However, this
property does not lead to better performance in terms of IdlG
values.

The maximum idleness (most unvisited vertex of each
graph) was also calculated. It is typically around 2.7 times
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Fig. 4. Speedup and Interference in environment A.

larger than the average graph idleness. This ratio grows consis-
tently with teamsize for all algorithms, being lower (around 2
times in average) for small teamsizes and increasing for higher
teamsizes. As expected, CR due to its balanced property is
the approach with a lower overall ratio of around 2.25 and
surprisingly, if we consider the little difference between the
two approaches, HCR is the algorithm with a higher ratio of
around 3.25. The other three approaches have a ratio of around
2.6-2.7.

VII. CONCLUSION AND FUTURE WORK

In this work, a study of the scalability and performance of
five different multi-robot patrolling strategies was presented.
This study is unprecedented in this field because it overcomes
many limitations and simplifications of previous works by
using generic environments with different topological connec-
tivity properties and weighted edges; realistic simulations that
consider the robots’ dynamics; and is based on the actual time
in its performance metric instead of atomic iterations or sim-
ulation cycles. It was shown that different types of algorithms
perform differently according to the environment and the num-
ber of robots running the patrol task. Consequently, the choice
of a patrolling strategy for teams of multiple robots should take
into consideration these two important parameters. Moreover,
to improve the team’s performance, scalable methods should
be developed to minimize interference between robots.

In the future, we intend to deepen the study on the scalabil-
ity properties of multi-robot patrolling algorithms by analyzing
the behavior of the variables of the problem in order to present
an estimation method to dimension a team of robots in such
missions according to the environment to patrol. Additionally,
we intend to develop new scalable approaches for multi-robot
patrol and test it in mobile robots and real scenarios.
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