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Abstract

In this work we contribute to the field of human-machine

interaction with a system that anticipates human move-

ments using the concept of Laban Movement Analysis

(LMA). The implementation uses a Bayesian model for

learning and classification and results are presented

for the application to online gesture recognition. The

merging of assistive robotics and socially interactive

robotics has recently led to the definition of socially as-

sistive robotics. What is necessary and we found still

missing are socially interactive robots with a higher

level cognitive system which analyzes deeply the ob-

served human movement. In this article we provide a

framework for cognitive processes to be implemented

in human-machine-interfaces based on nowadays tech-

nologies. We present LMA as a concept that helps

to identify useful low-level features, defines a frame-

work of mid-level descriptors for movement-properties

and helps to develop a classifier of expressive actions.

Our interface anticipates a performed action observed

from a stream of monocular camera images by using

a Bayesian framework. With this work we define the

required qualities and characteristics of future embod-

ied agents in terms of social interaction with humans.

This article searches for human qualities like anticipa-

tion and empathy and presents possible ways towards

implementation in the cognitive system of a social robot.

We present results through its embodiment in the social

robot ’Nicole’ in the context of a person performing ges-

tures and ’Nicole’ reacting by means of audio output

and robot movement.
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Figure 1. Nicole in position to interact.

1. Introduction

The merging of Assistive Robotics and Socially

Interactive Robotics has recently led to the definition

of Socially Assistive Robotics [6]. Assistive robotics

solves tasks ranging from physical therapy and daily

life assistance to stimulation of emotional expression.

The user-group goes from individuals in convalescent

care and elderly people to individuals with cognitive

disorders. Socially assistive robotics serves the very

same purpose but acts through social interaction. One

example is stroke rehabilitation with the assistive task

of achieving measurable progress in convalescence. A

robot capable of social interaction can then be used to

repeatedly remind and coach the patient to use the af-

fected limb(s)[6]. In this example, the observation and

analysis of the user’s movements become a key mode of

interaction. We find more examples for the importance

of this modality in tasks like aiding the wheelchair navi-

gation and controlling manipulator arms through point-

ing gestures.

What is necessary and we found still missing are

socially interactive robots with a higher level cogni-

tive system which analyzes deeply the observed human

movement. One can think of the problem as a scenario

where a robot is observing the movement of a human,



analyzes the movement pattern and acts according to the

extracted information (see fig. 1).

Our ultimate goal is to provide the robot with a cog-

nitive system that mimics human perception in two as-

pects. One aspect involves anticipation, the ability to

predict future situations in a dynamic world, physically

in motion. The other is empathy, the ability to recog-

nize, perceive and directly experientially feel the emo-

tion of another person.

Towards the latter requirement this article will

present the concept of Laban Movement Analysis

(LMA) [3] as a way to describe intentional content and

expressiveness of a human body movement. Three ma-

jor components of LMA (i.e. Space, Effort and Shape)

are described in detail. The Space component presents

the different concepts to describe the pathways of hu-

man movements inside a frame of reference. The most

suitable concept, that of Vector Symbols [11] will be

adopted by our system. The components Effort and

Shape will be presented with exemplary actions.

We show the technical realization of LMA for the

cognitive system of the embodied agent which is based

on a probabilistic (Bayesian) framework and a human-

movement-tracking system [20]. The tracker extracts

the movement-features of a human actor from a series

of images taken by a single camera. The hands and the

face of the actor are detected and tracked automatically

without using a special device (markers). Face recog-

nition is incorporated to take advantage of a person’s

”individual” movement pattern.

This work presents the Bayesian approach to LMA

through the problem of learning and classification, also

treating the system’s online characteristic of anticipa-

tion. The probabilistic model anticipates the gesture

given the observed features using the Bayesian frame-

work. The Bayesian framework offers a great variety of

probabilistic tools and has proven successful in building

computational theories for perception and sensorimotor

control of the human brain[9]. The system has been im-

plemented in our social robot, ’Nicole’ to test several

human-robot interaction scenarios (e.g. playing).

Meanwhile distinct groups of social robots have

been successfully developed. Some examples from the

group of guide robots are a family of robot guides

serving at the Carnegie Museum of Natural History

as docents for five years [15], the autonomous tour-

guide/tutor robot RHINO which was deployed in the

”Deutsches Museum Bonn” in 1997 [5] and the mobile

robot Robox which operated at the Swiss National Ex-

hibition Expo02 [24]. The group of socially assistive

robots is younger in age. The T-WREX system [23]

uses a modified passive antigravity arm othosis as 3-D

input device for measuring arm movements. The Com-

puter interface (Java Therapy) poses exercises to the pa-

tient (e.g. shopping), stores and displays the patient’s

progress. Bandit [26], is a prototype hands-off therapist

robot that assists, encourages and socially interacts with

users in the process of cardiac convalescence, stroke re-

habilitation, and education.

If the perceptual system of a robot is based on vi-

sion, interaction will involve visual human motion anal-

ysis. The ability to recognize humans and their activi-

ties by vision is key for a machine to interact intelli-

gently and effortlessly with a human-inhabited environ-

ment [8]. Several surveys on visual analysis of human

movement have already presented a general framework

to tackle this problem [1], [8], [18] and [13]. Aggar-

wal and Cai point out in their survey [1] that one (of

three) major areas related to the interpretation of human

motion is motion analysis of the human body structure

involving human body parts. The general framework

consists of: 1. Feature Extraction, 2. Feature Corre-

spondence and 3. High Level Processing. Meanwhile

there is a large amount of work on gesture recognition

mainly applied to control some sort of devices. In [17]

DBNs were used to recognize a set of eleven hand ges-

tures to manipulate a virtual display shown on a pro-

jection screen . Surveys specialized on gesture inter-

faces along the last ten years reflect the development

and achievements [16, 14]. The most recent survey [12]

is once more included in the broader context of human

motion analysis. It reminds us, that it is difficult to dis-

cuss the classifier isolated from the lower level feature

extraction. Again, the extracted features depend on the

devices that are used which are determined by the ap-

plication. When applied to medium sized mobile plat-

forms (like social robots) it is preferable to use small

and light devices for the sensory input as well as for

the means of computation. For social robots it is also

desired to have a fast classification result to be able to

react accordingly.

Section 2 presents the concept of LMA, the three

major components of LMA (i.e. Space, Effort and

Shape) and the concept of Vector Symbols. Section 3

presents the tracking of human movements using vi-

sion through its implementation in the system for the

social robot Nicole. Section 4 describes the Bayesian

framework that is used to classify human movements

and provides results for a performed gesture. Section

5 presents the learning of gestures, how the knowledge

is represented and how it can be assessed. Section 6

introduces anticipation as a quality for human-robot in-

teraction and defines a concept of evaluation. Section

7 presents the results on anticipation on two performed

gestures. Section 9 closes with a discussion and an out-

look for future works.



Figure 2. Major components of LMA

2. Laban Movement Analysis (LMA)

Laban Movement Analysis (LMA) is a method for

observing, describing, notating, and interpreting hu-

man movement. It was developed by a German named

Rudolf Laban (1879 to 1958), who is widely regarded

as a pioneer of European modern dance and theorist of

movement education [29]. While being widely applied

to studies of dance and application to physical and men-

tal therapy [3], it has found little application in the en-

gineering domain. Most notably the group of Norman

Badler, who already started in 1993 to re-formulate La-

banotation in computational models [2]. More recently

a computational model of gesture acquisition and syn-

thesis to learn motion qualities from live performance

has been proposed in [30]. Also recently but indepen-

dently, researchers from neuroscience started to inves-

tigate the usefulness of LMA to describe certain effects

on the movements of animals and humans. Foround and

Whishaw adapted LMA to capture the kinematic and

non-kinematic aspects of movement in a reach-for-food

task by human patients whose movements had been af-

fected by stroke [7]. It was stated that LMA places em-

phasis on underlying motor patterns by notating how

the body segments are moving, how they are supported

or affected by other body parts, as well as whole body

movement.

The theory of LMA treats five major components

shown in fig. 2 of which we adopted three. Space treats

the spatial extent of the mover’s Kinesphere (often inter-

preted as reach-space) and what form is being revealed

by the spatial pathways of the movement. Effort deals

with the dynamic qualities of the movement and the in-

ner attitude towards using energy. Like suggested in

[7] we have grouped Body and Space as kinematic fea-

tures describing changes in the spatial-temporal body

relations, while Shape and Effort are part of the non-

kinematic features contributing to the qualitative as-

pects of the movement.

Figure 3. The concepts of a) Levels of Space,

Basic Directions, Three Axes, and b) Three
Planes and Icosahedron

2.1. Space

The Space component addresses what form is being

revealed by the spatial pathways of the movement. The

actor is actually ”carving shapes in space” [3]. Space

specifies different entities to express movements in a

frame of reference determined by the body of the ac-

tor. Thus, all of the presented measures are relative

to the anthropometry of the actor. The concepts differ

in the complexity of expressiveness and dimensionality

but are all of them reproducible in the 3-D Cartesian

system. The most important ones shown in fig. 3 are:

1) The Levels of Space - referring to the height of a po-

sition, 2) The Basic Directions - 26 target points where

the movement is aiming at, 3) The Three Axes - Ver-

tical, horizontal and sagittal axis, 4) The Three Planes

- Door Plane πv, Table plane πh, and the Wheel Plane

πs each one lying in two of the axes, and 5) The Icosa-

hedron - used as Kinespheric Scaffolding. The Kine-

sphere describes the space of farthest reaches in which

the movements take place. Levels and Directions can

also be found as symbols in modern-day Labanotation

[3].

Labanotation direction symbols encode a position-

based concept of space. Recently, Longstaff [11] has

translated an earlier concept of Laban which is based on

lines of motion rather than points in space into modern-

day Labanotation. Longstaff coined the expression Vec-

tor Symbols to emphasize that they are not attached to

a certain point in space. It was suggested that the col-

lection of Vector Symbols provides a heuristic for the

perception and memory of spatial orientation of body

movements. The 38 Vector Symbols are organized ac-

cording to Prototypes and Deflections. The 14 Proto-

types divide the Cartesian coordinate system into move-

ments along only one dimension (Pure Dimensional



Figure 4. The bipolar Effort factors repre-

sented as a 4-D space containing a movement

(M)

Movements) and movements along lines that are equally

stressed in all three dimensions (Pure Diagonal Move-

ments) as shown in fig. 3 a). Longstaff suggests that

the Prototypes give idealized concepts for labeling and

remembering spatial orientations. The 24 Deflections

are mentally conceived according to their relation to the

prototype concepts. The infinite number of possible

deflecting orientations are conceptualized in a system

based on 8 Diagonal Directions, each deflecting along

3 possible Dimensions.

2.2. Effort

The Effort component consists of four motion fac-

tors: Space, Weight, Time, and Flow. As each factor

is bipolar and can have values between two extremities

one can think of the Effort component as a 4-D space as

shown in fig. 4. A movement (M) can be described by

its location in the Effort-space. Exemplary movements

where a certain Effort-value is predominant are given in

table 1. It is important to remember, that a movement

blends during each phase all four Effort-value. Most of

the human movements have two or three Effort-values

prominently high. In fact, it seems difficult even for a

trained Laban performer (i.e. Laban notator) to perform

single-quality movements [29].

2.3. Shape

LMA defines four Shape qualities: Shape Flow

deals with the movers body shape within itself, the in-

creasing or decreasing the body volume and the move-

ment toward or away from the body center. Direc-

tional Movement treats the bridging of the action to a

point in the environment, such as arc-like and spoke-

like movements to reach an object . Shaping is con-

cerned with the carving or molding as the body interacts

with the environment, e.g. when adapting the body to

move through a crowd. Flow-Reach Space deals with

the reach space in the Kinesphere, e.g. the distance of

the limbs away from the body center. Like suggested in

[29] we summarize the first three Shape qualities and

express it in terms of spatial directions. By using a

major and a minor direction we are able to express the

Shape in the concept of the Three Planes (πvert , πhorz,

πsag).

It is important to keep in mind, that the reference

system needs to be attached to the movers body rather

than being static somewhere in the world. An example

taken from [7] showing that the quality of Sinking, is

independent from the direction of the movement in the

world reference frame: A person can walk up a staircase

while sinking in the torso, as if someone is pulling down

an imaginary string tied to the tip of the tailbone.

3. Tracking of human movements using vi-

sion

Using cameras as the basic input modality for a

robot provides the highest degree of freedom to the

human actor. Though being the most natural way of

interaction it also poses the biggest challenge to the

functionality of detecting and tracking of human move-

ments.

Figure 5 shows the functional order of our imple-

mented modules inside the Nicole architecture. The

current state of the system architecture is a redefined

version the gesture perception system (GP-System) pre-

sented in [19]. The image data is used by the Human

(Motion) Tracking module to perform face detection,

face recognition, skin-color detection and object track-

ing and has been described in [19]. We use a face detec-

tion module based on Haar-like features as described in

Effort Movement

Space Direct Pointing gesture

- Indirect Waving away bugs

Weight Strong Punching,

- Light Dabbing paint on a canvas

Time Sudden Swatting a fly

- Sustained Stretching to yawn

Flow Bound Moving in slow motion

- Free Waving wildly

Table 1. Effort qualities and exemplary move-
ments



Figure 5. Architecture of the Nicole-System.

[28] and a face recognition based on eigen-objects and

PCA [27]. For skin detection and segmentation we use

the CAMshift algorithm presented in [4].

Figure 6 a) shows the tracking of a hand move-

ment with the completed trajectory superimposed over

a particular snapshot image. From the resulting trajec-

tories we calculate the relative displacement between

each frame and the absolute displacement from the ini-

tial position. The latter triggers the starting and end of

the gesture. The former undergoes a further discretiza-

tion according to the concept of Vectors Symbols. As we

will actually calculate segments of the Vector Symbols

we will refer to them as Vector Atoms or simply Atoms

A.

Shape Direction Plane

Enclosing Major: Sideward horizontal

Spreading Minor: For-/Backward plane πh

Sinking Major: Up-/Downward vertical

Rising Minor: sideward plane πv

Retreating Major: For-/Backward sagittal

Advancing Minor: Up-/Downward plane πs

Shrinking - Reach

Growing - Space

Table 2. Shape qualities

Figure 6. Tracking of a hand movement. a) Tra-

jectory of a Bye-Bye gesture b) Discretization

into Vector Atoms according to the concept of
Vectors Symbols.

4. Bayesian Framework for Movement

Classification

The classification of human movements is done

with a probabilistic model using a Bayesian framework.

The Bayesian framework can offer combinations of the

whole family of probabilistic tools like Hidden Markov

Models (HMMs), Kalman Filters and Particle Filters

and their various modifications. Though, the Bayesian

framework can be used for all kind of system modeling

(e.g. navigation, speech recognition, etc.) they are spe-

cially suited for cognitive processes. Research on the

human brain and in its computations for perception and

action report that Bayesian methods have proven suc-

cessful in building computational theories for percep-

tion and sensorimotor control [9].

The process of prediction and update represents an

intrinsic implementation of the mental concept of antic-

ipation. In general, modeling offers the opportunity to

reach a modest dimensionality of the parameter space

that describes the human motion. Bayesian models in

particular also maintain an intuitive approach which can

also be understood by non-engineers [10]. Furthermore

these methods have already proven their usability in

gesture recognition [25, 17].

In the following we give a short description of

equation 1 representing our Bayesian model. A more

detailed description can be found in [21]. Our solution

assumes that the probability distribution for all possi-

ble values of atom A given all possible gestures G and

frames I ,which is P(A|G, I) can be determined.

Applying Bayes rule we can compute the probabil-

ity distribution for the gestures G given the frame I and

the atom A expressed as P(G|I,A), which is the ques-

tion the classification is based upon. P(G) represents

the prior probabilities for the gestures.

Assuming the observed atoms are independently



and identically distributed (i.i.d.) we can compute the

probability that a certain gesture has caused the whole

sequence of atoms P(a1:n|g, i1:n) by the product of the

probabilities for each frame. Where a1:n represents the

sequence of n observed values for atom and g a cer-

tain gesture from all gestures G. The jth frame of a

sequence of n frames is represented by i j.

We are able to express the probability of a gesture g

that might have caused the observed sequence of atoms

a1:n in a recursive way. As each frame a value for a is

observed we can express the online behavior by using

the index t.

Each temporal segmentation yields the problem

that no two gestures are exactly the same in speed and

duration. A simple solution is to stretch or compress the

temporal axis of the observations according to an aver-

age. For this we use the learning samples to calculate

the average duration (i.e. total number of frames) and

variance. This produces prototypes of gestures with a

certain length and segmented by a average frame i avg.

The real observation frame i obs is then modeled by

a Gaussian distribution N(i obs,σ). This distribution

represents the probability P(i obs|i avg) of mapping

the observation frame i obs to an average frame i avg.

Our Bayesian model is shown in equation 1. We

see that the probability distribution of the gestures G at

time t + 1 knowing the observed atoms a until t + 1 is

equal to the probability distribution of G at time t times

the probabilities of the current observed atom given the

gestures G and frame i at t + 1. The probability distri-

bution of G for t = 0 is the prior.

P(Gt+1|i1:t+1,a1:t+1)

= P(Gt)P(i obst+1|i avgt+1)P(at+1|G, i avgt+1)

(1)

One characteristic of this Bayesian approach is

that, as more observed atoms arrive, the probability dis-

tribution of the gestures will converge to the correct

gesture even if the prior was wrong. The false gesture

will vanish simply because the probability of generating

”uncharacteristic” atoms for a long time is small. This

will happen for any fixed prior, as long as it does not

rule out the correct gesture by assigning zero probabil-

ity to it.

We can likewise express our model in a Bayesian

Net shown in fig. 7. It shows the dependencies of the

above mentioned variables including the displacement

dP from the previous section. The rule for classification

is based on the highest probability value with a mini-

mum threshold.

Figure 7. Bayesian Net for the gesture model.

Figure 8. Probability evolution for a Bye-Bye

gesture input.

4.1. Experimental results

For the experiment we have used 15 video se-

quences from each human actor for each of 6 distinct

gestures as shown in table 3 and fig. 9. The se-

quences taken by the camera are stored in a database

for future replications. We compute the image trajecto-

ries of hands and head, the sequence of Vector Atoms

and the probability values of the gestures. To pro-

vide a ground truth for our image tracker we also col-

lect data from a magnetic tracker. The contents of this

database are publicly available at the project’s web page

(http://paloma.isr.uc.pt/nicole/).

No. Gesture Hands Level

1 Sagittal Waving Two High

2 Waving to Left Two Medium

3 Waving to Right Two Medium

4 Waving Bye-Bye One High

5 Pointing One High

6 Draw Circle One Medium

Table 3. Characteristics of out gesture-set



Figure 9. Four exemplary gestures: a)Sagittal

Waving b)Draw Circle c)Pointing d)Waving Bye-
Bye

Figure 8 illustrates how the gesture-hypothesizes,

evolve as new evidences (atoms) arrive taken from the

performance of a Bye-Bye gesture. After twelve frames

the probabilities have converged to the correct gesture-

hypothesis (No. 4). After four frames the probabili-

ties of the two-hand gesture-hypothesis have reached

nearly zero. (No. 1, 2, and 3). Until the sixth frame

the probabilities of both High-Level gestures grow (No.

4 and 5) indicating what is called pre-stroke phase in

gesture analysis [22]. Conversely the probability of the

Medium-Level gesture (No. 6) drops slowly towards

zero. After the sixth frame the oscillating left-right

movement (and its associated atoms) makes the prob-

ability of the Bye-Bye-gesture hypothesis rise and the

Pointing-NW-gesture hypothesis drop. A similar be-

havior was revealed when the remaining five gestures

were performed. An unknown gesture, i.e. an unknown

sequence of atoms produced more than one gesture-

hypothesizes with a significant probability.

5. Bayesian Learning

As both, the gestures and the frame index are dis-

crete values we can express P(A|GIavg) in form of a

conditional probability table. The probabilities can be

learned from training data using a certain number of

atom-sequences for each gesture. A simple approach

is the one known as Histogram-learning. It counts the

number of different atom-values that appear for a ges-

tures along the frames. To overcome the problem of

assigning zero probabilities to events that have not yet

been observed an enhanced version often uses learning

of a family of Laplace-distributions.

5.1. Experimental results

Currently we are using a table that is of size 18 x

31 x 6, that is 18 discrete values for the atom (9 for

each hand), 31 frames and 6 gestures. Here we have

used the value U for indicating atoms in the up direc-

tion rather than H (High) that was used in Laban Space.

Figure 10 shows a fraction of the table which is the

9 atoms of the right hand for the first 11 frames and

the Bye-Bye gesture. It represents the ’fingerprint’ of

Figure 10. Learned Table P(A|GI avg) for ges-

ture ’Bye-Bye’.

the gesture prototype for waving Bye-Bye. Knowing

the gesture we assume this sequence of distributions

of the random variable atom to be extracted. The ta-

ble represents an intuitive way to distinguish two ges-

tures from each other. For the Bye-Bye gesture (see

fig. 10) we can see, that during the first frames the

most likely atom to be expected is the one that goes

Up-Right (UR). This is similar for the Pointing gesture

(see fig. 11) reflecting the already mentioned Pre-Stroke

phase. The number of atoms during Pre-Stroke also re-

flect the Levels of Space in which the following Stroke

[22] will take place. In our example we can distinguish

the two gestures during Stroke as the Bye-Bye gesture

has a roughly equal distribution along the line of oscil-

lation (e.g. left-right), while the Pointing gesture pro-

duces mainly zero-motion atoms (O).

6. Anticipation

A robot that offers the skill of anticipation inside

a human-robot interaction scenario will be able to re-



Figure 11. Learned Table P(A|GI avg) for ges-
ture ’Pointing NW’.

act faster at the cost of probably being wrong. It is clear

that the quality of anticipation is given by what has been

learned. So far, this issue has not received enough at-

tention to act as a performance measure for intelligent

machines interacting with humans. In this section we

propose a first method of evaluation by coining three

factors of anticipation:

• the anticipation-speed (α-factor) as a measure how

fast a machine anticipates a social cue

• the anticipation-confidence (β -factor) as a mea-

sure how strong a machine believes in the most

likely hypothesis

• the anticipation-stability (γ-factor) as a measure

how stable the a machine believes in the most

likely hypothesis

Given the evolution of probability distribution over

time we first define three points in time: The start of

the gesture NS, the end of the gesture NE and the an-

ticipation point NA where the probability of specific hy-

pothesis (e.g. P(g|i,a)) reaches and then stays within a

threshold of 0.63 (see fig 12). For the sake of simplified

expressions we name the duration of the whole gesture

ng, the duration between NS and NA as nb (b from build-

up time), and the remaining duration between NA and

NE as nA (a from anticipation time).

We define the anticipation-speed (α-factor) as the

ratio of ng and nb, the anticipation-confidence (β -

factor) as the mean of the probability values during na,

and the anticipation-confidence (γ-factor) as the stan-

dard deviation from the β -factor during na. The three

Figure 12. Example of a performed Bye-Bye

gesture with anticipation-factors.

factors are shown in equation 2.

α = 1−
na

ng

β =
1

N

N

∑
i=1

Pi γ =

√

1

N

N

∑
i=1

(Pi −β )2

(2)

Figure 12 shows an example of a performed ’Bye-Bye’

gesture. As a sequence we chose one that produced a

relatively high variance along the probability curve. Us-

ing 2 we calculate the value of α = 93.9%, β = 91.1%,

and γ = 10.65%.

7. Results and Discussion

We present sequences taken from our experiments

(see fig. 13 and fig. 14) that show the images of the

performed gestures and the Laban Vector Atoms that

are estimated from the relative displacement (top-right

corner of the images). Under the images the proba-

bility distribution of the three highest valued gesture-

hypothesizes is shown (1: Come Close; 2: Move Left;

3: Move Right; 4 ByeBye; 5: Pointing; 6 Circle). The

vertical line in the bar-diagram indicates the threshold

for the α-factor. The first sequence (see fig. 13) shows

the performance of a bye-bye-gesture for the first eight

frames. The system starts anticipating a circle-gesture

in the first frame as the up-atom (U) evidence was being

learned as belonging most probably to a circle-gesture.

The evidences arriving in the second and third frame

equalize the probability distribution. In frame four and

five the agent starts believing that he perceives whether

a pointing-gesture or a bye-bye-gesture. This is due to

the fact for the circle-gesture hypothesis to be true the

agent would expect to perceive some downward-atoms



Figure 13. Bye-bye-gesture performance with probability distribution for the three highest valued
gesture-hypothesizes (4 ByeBye; 5: Pointing; 6 Circle).

Figure 14. Pointing-gesture performance with probability distribution for the three highest valued
gesture-hypothesizes (4 ByeBye; 5: Pointing; 6 Circle).



evidence (D, DL or DR). This is due to the arrival of

the left-atom (L). Still the certainty is slightly under the

threshold. From frame seven on, the agent is quite cer-

tain about the gesture which is due to the arrival of more

and more left-right-atoms (R, L) while performing the

waving of the hand. The whole performance continued

for more 20 frames where the probabilities converged

towards 100% for the bye-bye-gesture. Using our defi-

nition of anticipation-speed we got an α-factor) of 74%.

The second sequence (see fig. 13) starts already

with a low probability for the circle-gesture as the

upright-atom (UR) evidence was being learned as be-

longing most probably to a pointing-gesture or bye-

bye-gesture. Until the fourth frame the agent’s be-

lief is similar to the one in the previous example (i.e.

we see a nearly equal distribution). The fact that no

evidences of a directional change arrive (in this case

towards left) makes the agent believe stronger in the

pointing-gesture hypothesis during frames five and six.

The arrival of zero-atoms (O) in frames seven and eight

makes the agent belief in the pointing-gesture without

much doubts. The whole performance continued for

more 15 frames where the probabilities converged to-

wards 100% for the pointing-gesture. Using our defini-

tion of anticipation-speed we got an α-factor) of 74%.

8. The Social Robot Nicole

The tested scenario with the social robot Nicole is

named Nicole@Play as shown in fig. 15. After Nicole

has been called she navigates to the position where she

expects the user (Phase 1: Long Distance Approach).

She will then, look around in search for a person (Phase

2: User Search). The first person she detects will be

approached (Phase 3: Short Distance Approach). After

taking the optimal interaction position she will greet the

user and ask for a gesture (Phase 4: Initiate Interaction).

In the next phase Nicole will observe and anticipate the

movement of the user’s hand(s) (Phase 5: Tracking and

Gesture Recognition). After being certain about the per-

ceived gesture Nicole will perform a related action (e.g.

turning around) (Phase 6: Action). After this Nicole

will end up in phase two or three start all over again.

Apart from the already discussed modules for per-

ception the system architecture also includes the Ac-

tion Planner which controls the sequential execution of

the tasks inside the interaction scenario. It holds the

script that tells in which way the robot acts upon the

perceptions. In our first trials Nicole was using au-

dio outputs like asking for confirmation on the recog-

nized commands and robot movements. Movies of the

trials can be downloaded from the project’s web-page:

http://paloma.isr.uc.pt/nicole/

Figure 15. Nicole interacting at the entrance of
our department.

9. Conclusions and Future Works

This work presented the application of the Space

component of Laban Movement Analysis (LMA) to

the Human-Robot Interface of the social robot, Nicole.

It showed that trajectories of human movements can

be learned and recognized using the concept of Vector

Symbols.

This work demonstrates that the Bayesian ap-

proach for movement classification provides a robust

and reliable way to classify gestures in real-time. Using

naive Bayesian classification we are able to anticipate a

gesture from its beginning and can take decisions long

before the performance has ended.

We have shown that through Bayesian Learning

the system memorizes learned data in an intuitive way

which gives the possibility to draw conclusions directly

from the look-up tables. The discussion on the learned

probability tables could also be turned toward the dis-

tinctions of different people (e.g. person A performs

the gesture like this, person B like that).

The scenario Nicole@Play was already tested out-

side the laboratory environment (e.g. the entrance hall

of the department) with people that had never before

interacted with any robot. The discussion with people

from a local health institute for possible rehabilitation



scenarios has just started.

The next step will be the application of the Effort

and Shape component of the LMA to Nicole. Incor-

porating the dynamic qualities we hope to classify also

the expressiveness of a human movement. We are also

investigating the usefulness of LMA for other human

movements like pedestrian walking and manipulatory

movements like reaching, grasping and placing.
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