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Although the well-known Particle Swarm Optimization (PSO) al-
gorithm has been first introduced more than a decade ago, there is a
lack of methods to tune the algorithm parameters in order to improve its
performance. An extension of the PSO to multi-robot foraging has been
recently proposed and denoted as Robotic Darwinian PSO (RDPSO),
wherein sociobiological mechanisms are used to enhance the ability to
escape from local optima. This novel swarm algorithm benefits from us-
ing multiple smaller networks (one for each swarm), thus decreasing the
number of nodes (i.e., robots) and the amount of information exchanged
among robots belonging to the same sub-network. This article presents a
formal analysis of RDPSO in order to better understand the relationship
between the algorithm’s parameters and its convergence. Therefore, a
stability analysis and parameter adjustment based on acceleration and
deceleration states of the robots is performed. These parameters are
evaluated in a population of physical mobile robots for different values
of communication range. Experimental results show that, for the pro-
posed mission and parameter tuning, the algorithm con-verges to the
global optimum in approximately 90% of the experiments regardless on
the number of robots and the communication range.

Mathematics Subject Classification: 39A30, 70E60, 65L20

Keywords: foraging, parameter adjustment, stability analysis

1 Introduction

The principles of self-organization of biological simple creatures (i.e., bees,
ants) are appealing for explaining biological collective phenomena where the
resulting structures and functionalities greatly exceed in complexity the per-
ceptual, physical, and cognitive abilities of the participating organisms. The
Particle Swarm Optimization (PSO) developed by Kennedy and Eberhart [10]
is an optimization technique that models a set of potential problem solutions
as a swarm of particles moving around in a virtual search space. However, a
general problem with the PSO and other optimization algorithms is that of
becoming trapped in a local optimum, such that it may work in some problems
but may fail on others. In search of a better model of natural selection using
the PSO algorithm, the Darwinian Particle Swarm Optimization (DPSO) was
formulated by Tillet et al. [12]. In this algorithm, multiple swarms of test
solutions performing just like an ordinary PSO, may exist at any time with
some rules governing the collection of swarms that are designed to simulate
natural selection.

However, regardless of PSO main variants [4], the difficulties in setting and
adjusting the parameters, as well as in maintaining and improving the search
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capabilities for higher dimensional problems, is still a matter that has been ad-
dressed in recent works [2, 9, 13]. One of the most common methods presented
in the literature to resolve issues in setting and adjusting PSO parameters is
based on the stability analysis of the algorithm.

In [2], it is analyzed the individual particle’s trajectory leading to a gener-
alized model of the algorithm, which contains a set of coefficients to control the
system’s convergence tendencies. The resulting system was a second-order lin-
ear dynamical system whose stability and parameters depended on the system
poles or the eigenvalues of the state matrix. Alternatively, Kadirkamanathan
et al. [9] proposes a stability analysis of a stochastic particle dynamics by
representing it as a nonlinear feedback controlled system. The Lyapunov sta-
bility method was applied to the particle dynamics in determining sufficient
and conservative conditions for asymptotic stability. However, the analysis
provided by the authors has addressed only the issue of absolute stability, thus
ignoring the optimization convergence to the global optimum.

More recently, Yasuda et al. [13] presented an activity-based numerical
stability analysis method, which involves the feedback of swarm activity to
control diversification and intensification during the search. The authors show
that swarm activity can be controlled by employing the stable and unstable
regions of PSO. However, in a distributed approach, such as the RDPSO,
calculating the swarm activity would imply that each robot shares its current
velocity with all other members.

Contrarily to the herein proposed multi-robot foraging approach, all pre-
viously presented works only consider PSO and its main variants applied to
optimization problems. Contrarily to virtual agents (i.e., particles), robots
are designed to act in the real world where their dynamical characteristics and
obstacles need to be taken into account. Also, and since that in certain en-
vironments or applications, such as hostile environments, search and rescue,
disaster recovery, battlefields, space and others, the communication infras-
tructure may be damaged or missing, the self-spreading of autonomous mobile
nodes of a mobile ad-hoc network (MANET ) over a geographical area needs
to be considered.

Bearing this idea in mind, this paper presents a stability analysis of the
RDPSO which allows obtaining the attraction domain. Moreover, in order
to improve the convergence and performance of the algorithm, a method for
obtaining a parameter adjustment inside this domain is carried out taking into
account the acceleration and deceleration states of the robots.

A brief review of the RDPSO algorithm is given in section 2. Section 3
presents the stability analysis and parameter adjustment of the algorithm. A
population of real robots is used to evaluate the performance of the algorithm
in Section 4. Finally, Section 5 outlines the main conclusions.
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2 RDPSO

This section briefly presents the RDPSO algorithm proposed in [3]. Since
the RDPSO approach is an adaptation of the DPSO to real mobile robots,
five general features are proposed: i) an improved inertial influence based
on fractional calculus concept taking into account convergence dynamics; ii)
an obstacle avoidance behaviour to avoid collisions; iii) an algorithm to en-
sure that the MANET remains connected throughout the mission; iv) a novel
methodology to establish the initial planar deployment of robots preserving
the connectivity of the MANET while spreading out the robots as most as
possible; and v) a novel “punish”-“reward” mechanism to emulate the dele-
tion and creation of robots. The behaviour of robot n can then be described
by the following discrete equations at each discrete time, or iteration, t ∈ N0:

vn[t+ 1] = wn[t] +
4∑
i=1

ρiri (χi[t]− xn[t]) , (1)

xn[t+ 1] = xn[t] + vn[t+ 1], (2)

where coefficients ρi, i = 1, 2, 3, 4, assign weights to the inertial influence, the
local best (cognitive component), the local best (social component), the obsta-
cle avoidance component and the enforcing communication component when
determining the new velocity, with ρi > 0. Parameters ri are random matrices
where in each component is generally a uniform random number between 0 and
1. vn[t] and xn[t] represents the velocity and position vector of robot n, respec-
tively. χi[t] represents the best position of the cognitive, social, obstacle and
MANET matrix components. The cognitive χ1[t] and social components χ2[t]
are the commonly presented in the classical PSO algorithm. χ1[t] represents
the local best position of robot n while χ2[t] represents the global best position
of robot n. Since the other features are novel, they are further explored in the
following sections.

2.1 Fractional Order Convergence

Fractional calculus (FC ) has attracted the attention of several researchers,
being applied in various scientific fields such as engineering, computational
mathematics, fluid mechanics, among others [3, 11]. One of the most common
approaches based on the concept of fractional differential, is the discrete time
Gr̈ı¿1

2
nwald-Letnikov definition given by the equation:

Dα[vn[t+ 1]] =
1

Tα

r∑
k=0

(−1)kα(α + 1)vn[t+ 1− kT ]

Γ(k + 1)Γ(α− k + 1)
, (3)
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for the velocity vn[t + 1] with 0 < α < 1. In the common PSO algorithm,
the inertial component wn[t] is usually proportional to the inertial influence.
Based on equation (1) and (3), considering T = 1 and r = 4, the inertial
component of robot n can be defined as:

wn[t] = αvn[t]+
1

2
αvn[t−1]+

1

6
α(1−α)vn[t−2]+

1

24
α(1−α)(2−α)vn[t−3]. (4)

The characteristics revealed by fractional calculus make this mathematical tool
well suited to describe phenomena such as irreversibility and chaos because of
its inherent memory property. In this line of thought, the dynamic phenom-
ena of a robot’s trajectory configure a case where fractional calculus tools fit
adequately.

2.2 Obstacle Avoidance

A new cost or fitness function is defined in such a way that it would guide
the robot to perform the main mission while avoiding obstacles. For this
purpose it is assumed that each robot is equipped with sensors capable of
sensing the environment for obstacle detection within a finite sensing radius
rs. A monotonic and positive sensing function g(xn[t]) that depends on the
sensing information (i.e., distance from the robot to obstacle) is defined. In
most situations g(xn[t]) can be represented as the relation between the analog
output voltage of distance sensors and the distance to the detected object.

χ3[t] is then represented by the position of each robot that optimizes the
monotonically decreasing or increasing g(xn[t]) and its current position. In a
free-obstacle environment, the obstacle susceptibility weight ρ3 is set to zero.
However, in real-world scenarios, obstacles need to be taken into account and
the value of ρ3 depends on several conditions related with the main objective
(i.e., minimize a cost function or maximize a fitness function) and the sensing
information (i.e., monotonicity of g(xn[t])). Furthermore, the relation between
ρ3 and the other weights depends on the susceptibility of each robot to obstacle
avoidance behavior.

2.3 Ensuring MANET Connectivity

Robots’ position need to be controlled in order to maintain the communication
based on constraints such as maximum distance or minimum signal quality.
The way network will be forced to preserve connectivity depends on commu-
nication characteristics (e.g., multi-hop, biconnectivity). Assuming that the
network supports multi-hop connectivity, the communication between two end
nodes (i.e., robots) is carried out through a number of intermediate nodes
whose function is to relay information from one point to another (note that
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any robot may be used as a relay node independently of their swarm). Consi-
dering that nodes are mobile, it is necessary to guarantee the communication
between all nodes. In the case where each robot corresponds to a node, in
order to overcome the non-connectivity between them, the desired position,
i.e., xn[t + 1], must be controlled since it influences the adjacency matrix
A. The adjacency matrix, on the other hand, may depend on the maximum
communication range or minimum signal quality. One way to ensure the full
connectivity of the MANET is to “force” each robot to communicate with its
nearest neighbor that has not chosen it as its nearest neighbor. Since the con-
nectivity depends on the distance/signal quality, connectivity between nodes
may be ensured by computing the minimum/maximum value of each line of
link matrix L, after excluding zeros and (i, j) pairs previously chosen. There-
fore, the MANET component χ4[t] is represented by the position of the nearest
neighbor increased by the maximum communication range dmax toward robot’s
current position. A higher ρ4 may enhance the ability to maintain the network
connected ensuring a specific range or signal quality between robots.

2.4 Initial Deployment

This approach tries to get the benefits of a random planar deployment of
robots while eliminating the disadvantages inherent to it. Furthermore, the
herein proposed approach takes into account the communication constraints
using a deployment strategy based on the Spiral of Theodorus (aka, square root
spiral). This spiral is composed of contiguous right triangles (formerly called
rectangled triangles) with each cathetus (aka, leg) having a unit length of 1
[8]. Each of the triangle’s hypotenuses gives the square root to a consecutive
natural number.

Since this approach uses the spiral of Theodorus to carry out the initial
deployment of robots, two general adjustments need to be considered: i) the
initial position of each robot is set at the further vertex of the centre of the
spiral for each right triangle with a random orientation and also a random
swarm; and ii) the size of the cathetus is set as the maxi-mum communication
range (instead of having the unit length 1) consequently changing the triangles’
hypotenuses to the product between the maximum communication range and
the square root of the consecutive natural number. These assumptions make
it possible to have an initial deployment of the robots in an area that depends
on both the number of robots and the communication constraints.

2.5 Punish-Reward Mechanism

In the common DPSO, ”punish” means the deleting of particles and swarms,
while ”reward” means the spawning of new particles and swarms. In order
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to adapt DPSO to mobile robotics, the deleting and spawning of a robot are
modelled by the mechanisms of social exclusion and social inclusion, respec-
tively. The RDPSO is then represented by multiple swarms, i.e., multiple
groups of robots that altogether form a population. Each swarm individually
performs just like a PSO adapted to multi-robot applications (explained in the
above subsections) in search for the solution and some rules governs the whole
population of robots. If there was no improvement in a swarm’s objective over
a period of time, the swarm is punished by excluding the worst performing
robot, which is added to a socially excluded group. The worst performing
robot is evaluated by the value of its objective function compared to other
members in the same swarm. In other words, if the objective is to maximize
the fitness function, the robot to be excluded will be the one with the lower
fitness value. Those socially excluded robots, instead of searching for the ob-
jective function’s global optimum like the other robots in the active swarms,
they basically randomly wander in the scenario. This approach improves the
algorithm, making it less susceptible of becoming trapped in a local optimum.
Note, however, that they are always aware of their individual solution and the
global solution of the socially excluded group. Having multiple swarms enables
a distributed approach be-cause the network that was previously defined by the
whole population of robots is now divided into multiple smaller networks (one
for each swarm,) thus decreasing the number of nodes (i.e., robots) and the
information exchanged between robots of the same network. In other words,
robots interaction with other robots through communication is confined to lo-
cal interactions inside the same group (swarm), thus making RDPSO scalable
to large populations of robots.

3 Convergence Analysis

The above presented RDPSO is a stochastic procedure in which (1) describes
the discrete-time motion of a robot with four external inputs χi[t]. The main
problem when analyzing this kind of algorithms lies in the fact that external
inputs vary in time. However, one can consider that each robot converges
to an equilibrium point defined by the limit values of the attractor points χi.
Therefore, assuming that the algorithm converges, this section presents the
stability analysis of the RDPSO and the parameter adjustment inherent to
the dynamical characteristics of robots.

3.1 Problem Formulation

Consider a population of N robots wherein each robot needs to cooperatively
find the optimal solution of a given mission within its swarm. The goal is to find
the attraction domain A such that, if coefficients α, ρi ∈ A, i = 1, 2, 3, 4, the
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global asymptotic stability of the system (1) is guaranteed, thus allowing robots
to find the optimal solution while avoiding obstacles and ensuring MANET
connectivity.

3.2 General Approach

Since vn[t− k] = xn[t− k]−xn[t− (k+ 1)] with k ∈ N0, equations (1) and (2),
can be rewritten as a nonhomogeneous five-order difference equation:

xn[t+ 1] +
(
−1− α +

∑4
i=1 ρiri

)
xn[t] +

(
1
2
α
)
xn[t− 1]+

+
(
1
3
α + 1

6
α2
)
xn[t− 2] +

(
− 1

24
α3 − 1

24
α2 + 1

12
α
)
xn[t− 3]

+
(

1
24
α3 − 1

8
α2 + 1

12
α
)
xn[t− 4] =

∑4
i=1 ρiriχi[t]

(5)

The equilibrium point x∗n can be defined as a constant position solution of (5),
such that, when each robot reaches x∗n, the velocity vn[t+k] is zero, i.e., robots
will stop at the equilibrium point x∗n. Supposing that χi are constants, i.e., the
algorithm does converge, the particular solution of each robot can be defined
as [7]:

x∗n =

∑4
i=1 ρiriχi∑4
i=1 ρiri

. (6)

In other words, each robot will converge to the particular solution x∗n0, based
on the following theorems [7]:

Theorem 3.1 All solutions of (5) converge to x∗n as k →∞, if and only if
the homogeneous difference equation of (5) is asymptotically stable.

Theorem 3.2 The homogeneous difference equation of (5) is asymptotica-
lly stable if and only if all roots of the corresponding characteristics equation
have modulus less than one.

Due to the complexity in obtaining the roots of the characteristics equation
of homogeneous difference equation (5), it is established a result that ensures
that all roots of the real polynomial p(λ) have modulus less than one.

p(λ) ≡ λ5 +
(
−1− α +

∑4
i=1 ρiri

)
λ4 +

(
1
2
α
)
λ3 +

(
1
3
α + 1

6
α2
)
λ2+(

− 1
24
α3 − 1

24
α2 + 1

12
α
)
λ+

(
1
24
α3 − 1

8
α2 + 1

12
α
)

= 0.
(7)

Proposition 3.1 All roots of p(λ) have modulus less than one if and only
if the following conditions are met.{

0 <
∑4

i=1 ρiri ≤ α + 2 , 0 < α ≤ 0.6

15
4
α− 9

4
<
∑4

i=1 ρiri ≤ α + 2 , 0.6 < α ≤ 1
. (8)
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Proof: The real polynomial p(λ) described in equation (7) can be rewritten
as:

a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ a5 = 0, (9)

Furthermore, one can construct an array having initial rows defined as:

c11, c12, . . . , c16 = a0, a1, . . . , a5,
d11, d12, . . . , d16 = a5, a4, . . . , a0,

(10)

and subsequent rows defined by:

cβγ =

∣∣∣∣ cβ−1,1 cβ−1,γ+1

dβ−1,1 dβ−1,γ+1

∣∣∣∣ , (11)

dβγ = cβ,8−γ−β, (12)

where β = 2, 3, 4, 5, 6 and γ = 0, 1, 2, 3. Jury-Marden’s Theorem [1] considers
that all roots of polynomial p(λ) have modulus less than one if and only if
d21 > 0, dτ < 0, for τ = 3, 4, 5, 6. Hence, solving this conditions results in (8).

�
Consequently, by Proposition 3.1, Theorem 3.1 and Theorem 3.2, the condi-
tions in (8) are obtained so that all solutions of (5) converge to x∗n. Although
it was possible to define a relatively small attraction domain, it is necessary to
further explore particular conditions of the algorithm, by redefining parameters
values and their relation.

3.3 Parameter Adjustment

One way to improve the convergence analysis of the algorithm consists on
adjusting the parameters based on physical mobile robots constraints such as
acceleration and deceleration states inherent to their dynamical characteristics.
These states are usually unaddressed in the literature while analyzing the
traditional PSO and its main variants, since virtual agents (i.e., particles)
are not constrained by such behaviors. Let us then suppose that a robot is
traveling at a constant velocity such that vn[t − k] = v with k ∈ N0 and it is
able to find its equilibrium point in such a way that xn[t] = χi, i = 1, 2, 3, 4. In
other words, the best position of the cognitive, social, obstacle and MANET
matrix components are the same. As a result, the robot needs to decelerate
until it stops, i.e., v > vn[t + 1] ≥ · · · ≥ vn[t + j] ≥ · · · ≥ 0. Consequently,
equation (1) and (4) can be rewritten as:

0 ≤ v

(
α +

1

2
α +

1

6
α(1− α) +

1

24
α(1− α)(2− α)

)
< v, (13)

thus resulting in
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0 < α ≤ 0.632. (14)

Let us now consider the opposite scenario, i.e., a robot that was stopped
vn[t − k] = 0 with k ∈ N0 starts to move since xn[t] 6= χi, i = 1, 2, 3, 4. The
robot needs to accelerate until it reaches the maximum velocity defined by
equation (1), taking into account that wn[t] = 0. Similarly to the procedure
presented in (5), but considering the previously described conditions, the fol-
lowing nonhomogeneous first-order difference equation results:

xn[t+ 1] +

(
4∑
i=1

ρiri − 1

)
xn[t] =

4∑
i=1

ρiriχi[t]. (15)

Hence, the characteristic equation associated to (15) is

λ+

(
4∑
i=1

ρiri − 1

)
= 0. (16)

Therefore, using Jury-Marden’s Theorem [12], the following condition is
obtained:

0 <
4∑
i=1

ρiri < 2. (17)

Hence, the global and particular A is represented by the parameter region,
i.e., attraction domain, of the asymptotic stability depicted in Fig. 1.

Figure 1: Global and particular attraction domain A of the asymptotic stabil-
ity of the RDPSO.

As a result of the above analysis, the RDPSO can be conceived in such
a way that the system’s convergence can be controlled taking into account
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obstacle avoidance and MANET connectivity, without resorting to the defi-
nition of any arbitrary or problem-specific parameters. Next section presents
experimental results obtained using physical robots wherein the RDPSO was
parameterized, bearing in mind the particular attraction domain A presented
in Fig. 1.

4 Experimental Results

In this section, it is evaluated the effectiveness of using the RDPSO on swarms
of real robots, while performing a collective foraging task with local and global
information under communication constraints. All of the experiments were
carried out in a 2.55 meters to 2.45 meters scenario. The experimental envi-
ronment (Fig. 3) was an enclosed arena that contained two sites. Each site
was represented by an illuminated spot uniquely identifiable by controlling the
brightness of the light. Despite being an obstacle free scenario, the robots
themselves act as dynamic obstacles - note that a maximum population of
12 robots correspond to a population density of approximately 2 robots per
square meter. The eSwarBot (Educational Swarm Robot) was the platform
used to evaluate the algorithm [5]. Although the platform presents a limited
kinematic resolution of 3.6 degrees while rotating and 2.76mm when moving
forward, its low cost and high autonomy allowed performing experiments with
up to 12 robots. Robots were equipped with RGB-LEDs on top of them to
identify their swarm and overhead light sensors (LDR) to find candidate sites
and measure their quality. The brighter site (global optimum) was considered
better than the dimmer one (local optimum), and so the robot’s goal was to
collectively choose the brighter site.

Figure 2: Experimental Setup.

Inter-robot communication to share positions and local solutions were car-
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ried out using ZigBee 802.15.4 wireless protocol. Since robots were equipped
with XBee modules that allow a maximum communication range larger than
the whole scenario (near 30 meters in indoor scenario), robots were provided
with a list of their teammates’ address in order to simulate the ad-hoc multi-
hop network communication with limited range. The maximum communica-
tion distance between robots dmax varied between 0.5 meters and 1.5 meters.
At each trial, robots were manually deployed on the scenario in a spiral manner
(as previously presented) while preserving the communication distance dmax.
Since the RDPSO is a stochastic algorithm, it may lead to a different trajec-
tory convergence whenever it is executed. Therefore, a test group of 20 trials
of 3 minutes each was considered for N = 4, 8, 12 robots and dmax = 0.5, 1.5
meters. Also, a minimum, initial and maximum number of 1, 2 and 3 swarms
were used. The algorithm parameters where chosen in order to satisfy condi-
tions (14) and (17), with α = 0.5, ρ1 = ρ2 = 0.3, ρ3 = ρ4 = 0.6. The previously
described conditions give a total of 120 experiments, thus leading to a run-
time of 6 hours. Fig. 3 depicts the normalized performance of the algorithm,
by changing the maximum communication distance dmax and the number of
robots N. Boxplot charts are used because they are a quick way of examining
graphically the final result of each trial. The ends of the blue boxes and the
horizontal red line in between correspond to the first and third quartiles and
the median values, respectively.

Figure 3: RDPSO evaluation changing the maximum communication distance
dmax and the number of robots N, a) dmax = 0.5; b) dmax = 1.5.

As expected, with the previously specified parameters, the algorithm con-
verges to the solution (i.e., normalized solution of 1) in approximately 90% of
the experiments regardless on the number of robots and the communication
range. The data distribution, despite the considered trial, turns out to be neg-
atively skewed (i.e., the median is higher than the mean value). This means
that, in this case, as the goal is to maximize the fitness function (i.e., find the
brighter site), most of the trials are near the desired objective value. Also, it
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can be seen that increasing the population size from 4 to 8 robots and, conse-
quently, the dynamic obstacles within the scenario, leads to a slightly decrease
of performance of the algorithm. However, the performance of the algorithm
using a larger population of 12 robots improves when the maximum commu-
nication distance increases. It is noteworthy that robots still collide in some
situations (a mean of 3 collisions per experiment were verified when using 12
robots) and sometimes are unable to guarantee the maximum communication
distance between them (a mean of 3 communication breaches per experiment
were verified when using 4 robots). There are two main reasons leading to this
behavior. The first reason lies in the adopted kinematic strategy. Robots are
programmed with brownian movements where they first orientate, thus moving
forward until they reach the target location, which is defined by equations (1)
and (2). Although the maximum step between iterations was limited to 150
millimeters, when the robot changes its orientation it does not read the sensor
information which may cause some collisions between them. Furthermore, the
use of low-cost encoders, such as the ones used in the eSwarBots, present sig-
nificant cumulative errors. Consequently, it is difficult for robots to complete
the proposed odometry objectives accurately, thus being sometimes unable to
fulfill communication constraints. Secondly, the methodology proposed herein
takes into account that parameters are fixed at constant values throughout the
search. However, there are some situations in which parameters should adapt.
For instance, if a robot is near collision, the obstacle susceptibility weight ρ3
should instantaneously increase, hence ignoring the mission and communica-
tion constraints.

5 Conclusions

The previously proposed RDPSO algorithm is a parameterized foraging algo-
rithm which takes into account real-world multi-robot systems (MRS) char-
acteristics, such as obstacle avoidance and communication constraints. This
paper presented the convergence analysis of the algorithm, studying its stabil-
ity in such a way that parameters may be configured within a small attraction
domain. Moreover, an extended analysis based on the dynamical characteris-
tics of robots is conducted, thus decreasing the size of the attraction domain.
Experimental results show that the algorithm converges in most situations
regardless on the number of robots and the maximum communication range
between them. However, it is still possible to exhibit some minor collisions
and communication ruptures between robots. Therefore, one of the future
approaches will be extending the RDPSO with adaptive parameterization to
overwhelm these issues. Since the swarm behavior may need to change dur-
ing the search, it is possible to control the swarm susceptibility to the main
mission, obstacle avoidance and communi-cation constraint, by systematically
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adjusting the parameters within the herein defined attraction domain. Fur-
thermore, an extended stochastic convergence analysis of the RDPSO must
be undertaken since the analytical results presented in this paper may deviate
from the real stochastic algorithm because randomness was not studied.
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